% \iffalse meta-comment % % Copyright (C) 2007 by David Roderick % ----------------------------------- % % This file may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.2 % of this license or (at your option) any later version. % The latest version of this license is in: % % http://www.latex-project.org/lppl.txt % % and version 1.2 or later is part of all distributions of LaTeX % version 1999/12/01 or later. % % \fi % % \iffalse %<package>\NeedsTeXFormat{LaTeX2e}[2005/12/01] %<package>\ProvidesPackage{binomexp} %<package> [2007/01/07 v1.0 My first attempt] % %<*driver> \documentclass{ltxdoc} \usepackage{binomexp} \EnableCrossrefs \CodelineIndex \RecordChanges \begin{document} \DocInput{binomexp.dtx} \end{document} %</driver> % \fi % % \CheckSum{310} %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} %% % \changes{v1.0}{2007/01/07}{Initial version} % % \GetFileInfo{binomexp.sty} % % \DoNotIndex{\the,\#} % % \title{The \textsf{binomexp} package\thanks{This document % corresponds to \textsf{binomexp}~\fileversion, dated \filedate.}} % \author{David Roderick \\ \texttt{angel\_ov\_north at tiscali dot co dot uk}} % % \maketitle % % \begin{abstract} % Calculates and prints successive lines of Pascal's triangle.. % \makeatletter % \binomexp@putpascal{4}{5}{f}{s}{f}{s} \par % and also will typset the following proof % \binomexp@proof{n}{r} % \end{abstract} % % \section{Introduction} % % A very simple package with simple usage. Putting `binomexp' (which % is also typed exactly the same way than \marg{binomexp} inside % of the argumentative input of the the |\usepackage| commands % enables the user to do two extra things. % \begin{itemize} \item % print any successive rows of Pascal's triangle which will fit on % the page up until the power as 31, at which point \LaTeX{} runs % out of brain power. \\ % \item Use a piece of code which Morten H\o gholm wrote which allows % the cells inside of an array or a tabular to be repeated in a % similar way than those may be repeated inside of the initial % description of said array or tabular. % \end{itemize} % % \section{Usage} % Binomexp ought to load ifthen and calc by itself. If you have already loaded % these packages using |\usepackage{calc,ifthen}| unload these therefore. % You must then use the command as |\makeatletter| so to get the command names with the symbol as @ inside of those to function. % % \DescribeMacro{\binomexp@putpascal} % |\binomexp@putpascal| \marg{number as lower power} % \marg{number as higher power} \marg{symbol as first variable} % \marg{symbol as second variable} \marg{symbol again as first variable} % \marg{symbol again as second variable} % \par|\binomexp@putpascal{7}{9}{f}{x}{f}{x}| will typset the rows as 7, 8, and 9 of % Pascal's triangle. The first column will have $(f+x)^{power}$. % The reason why you have to input the symbol again is because the % user might like to use a |\cdot| or whatever in the other columns % except the first column. % And that's it really. % \DescribeMacro{\binomexp@proof} % |\binomexp@proof| \marg{number as row variable} % \marg{number as column variable} % will typeset the mathematical proof of Pascal's triangle, which is based upon % the observation that the co-efficient is equal with the number of possible % combinations of the column variable out of the row variable. % \StopEventually{\PrintIndex} % % \section{How I wrote it.} % % \begin{macrocode} \RequirePackage{calc,ifthen} % \end{macrocode} % Morten H\o gholm wrote the following code. % \begin{macrocode} \newcommand\binomexp@replicate[2]{% \ifnum#1>\z@ \expandafter\@firstofone \else \expandafter\@gobble \fi {#2\expandafter\binomexp@replicate\expandafter{\number\numexpr#1-1\relax}{#2}}% } % \end{macrocode} % Morten's code allows the following. % \begin{verbatim} % \begin{document} % \makeatletter % \begin{tabular}{|*{6}{|c|}|} % something1 \binomexp@replicate{4}{& something2}Blah&stuff\\ % something1 \binomexp@replicate{4}{& something2}Blah&stuff\\ % Third row with line atop from second to fifth column: % \cline{2-5}something1 \binomexp@replicate{4}{& something2}Blah&stuff\\ % \end{tabular} % \end{document} % \end{verbatim} % You can invoke Morten's code either by loading the |\usepackage{binomexp}| % within the preamble, and then by putting |\makeatletter|, or by including % the following code somewhere (perhaps a preamble). % \begin{verbatim} % \makeatletter % \newcommand\binomexp@replicate[2]{% % \ifnum#1>\z@ \expandafter\@firstofone % \else % \expandafter\@gobble % \fi % {#2\expandafter\binomexp@replicate\expandafter{\number\numexpr#1-1\relax}{#2}}% % } % \makeatother % \end{verbatim} % \begin{macro}{\binomexp@call} % the |\newcommand| as |\binomexp@call| makes things nice and pretty within a cell % \begin{macrocode} \newcommand{\binomexp@call}[1]{\rule[-0.125cm]{0mm}{0.5cm}\mbox{$#1$}} % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@up} % the |\newcommand| as |\binomexp@up| is by the power of the series which ascends % \begin{macrocode} \newcounter{binomexp@up} \newcommand{\binomexp@up}{\number\value{binomexp@up} \addtocounter{binomexp@up}{1}} % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@down} % the |\newcommand| as |\binomexp@down| is by the power of the series which descends % \begin{macrocode} \newcounter{binomexp@down} \newcommand{\binomexp@down}{\number\value{binomexp@down} \addtocounter{binomexp@down}{-1}} % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@columns} % an array of so many columns % \begin{macrocode} \newcounter{binomexp@columns} % \end{macrocode} % \end{macro} % % % \begin{macro}{\binomexp@power} % $(f+s)^{power}$ % \begin{macrocode} \newcounter{binomexp@power} % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@pascalstart} % \begin{macro}{\binomexp@pascalstop} % \begin{macro}{\binomexp@emptytimes} % the next 3 counters are used within the |\binomexp@putpascal| command % \begin{macrocode} \newcounter{binomexp@pascalstart} \newcounter{binomexp@pascalstop} \newcounter{binomexp@emptytimes} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\binomexp@variable1} % \begin{macro}{\binomexp@variable2} % \begin{macro}{\binomexp@answervar} % the following 3 counters are used within the process of calculation as % |\binomexp@printpascal| % \begin{macrocode} \newcounter{binomexp@variable1} \newcounter{binomexp@variable2} \newcounter{binomexp@answervar} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\binomexp@sub} % \begin{macrocode} \newcounter{binomexp@sub} % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@printpascal} % to calculate the coefficients of the Pascal's triangle % \begin{macrocode} \protect\newcommand*{\binomexp@printpascal}{ \addtocounter{binomexp@power}{1} \expandafter\edef\csname binomexp@morten\roman{binomexp@power}exporti\endcsname{1} \setcounter{binomexp@sub}{2} \setcounter{binomexp@variable1}{\numexpr\number\value{binomexp@power}+1\relax} \whiledo{\number\numexpr\number\value{binomexp@power}+1\relax> \value{binomexp@sub}}{ \setcounter{binomexp@variable1}{\numexpr\number\value{binomexp@sub}-1\relax} \setcounter{binomexp@variable2}{\value{binomexp@sub}} \setcounter{binomexp@answervar}{\number\numexpr\csname binomexp@x\roman{binomexp@variable1}\endcsname\relax+\number\numexpr\csname binomexp@x\roman{binomexp@variable2}\endcsname\relax} \expandafter\edef\csname binomexp@y\roman{binomexp@sub}\endcsname {\number\value{binomexp@answervar}}\relax \addtocounter{binomexp@sub}{1} } % \end{macrocode} % TRANSFER PART % set counter as binomexp@sub to 1 % \begin{macrocode} \setcounter{binomexp@sub}{2} % \end{macrocode} % create a loop which shall get the binomexp@y values and put those into the % appropriate binomexp@x values. % Also export the y values by this same corresponding power into a length called % binomexp@morten|\roman{power}|export|\roman{binomexp@sub}| % \begin{macrocode} \whiledo{\numexpr\number\value{binomexp@power}+1\relax>\value{binomexp@sub}}{ \setcounter{binomexp@answervar}{\number\numexpr\csname binomexp@y\roman{binomexp@sub}\endcsname\relax} \expandafter\edef\csname binomexp@x\roman{binomexp@sub}\endcsname {\number\value{binomexp@answervar}} % \end{macrocode} % Here is how I exported the values to the table. % \begin{macrocode} \expandafter\edef\csname binomexp@morten\roman{binomexp@power}export\roman{binomexp@sub}\endcsname {\number\value{binomexp@answervar}} % \end{macrocode} % \begin{macrocode} \addtocounter{binomexp@sub}{1} } \setcounter{binomexp@variable1} {\numexpr\number\value{binomexp@power}+1\relax} \expandafter\edef\csname binomexp@x\roman{binomexp@variable1}\endcsname{1} \expandafter\edef\csname binomexp@morten\roman{binomexp@power}export\roman{binomexp@variable1}\endcsname{1} % \end{macrocode} % To see what is happening add the following lines at this place. % \begin{verbatim} % power is \number\value{binomexp@power}\par % \setcounter{binomexp@variable2}{1} % \whiledo{\value{binomexp@variable2}< % \numexpr\number\value{binomexp@power}+2\relax}{ % binomexp@morten\roman{binomexp@power}export\roman{binomexp@variable2} is % \csname binomexp@morten\roman{binomexp@power}export\roman{binomexp@% % variable2}\endcsname\relax\par\addtocounter{binomexp@variable2}{1}} % \end{verbatim} % \begin{macrocode} } % \end{macrocode} % \end{macro} % % \begin{macro}{\binomexp@putpascal} % set binomexp@xi as 1 \par % binomexp@xi never alters % \begin{macrocode} \newcommand*\binomexp@putpascal[6]{\par \expandafter\edef\csname binomexp@xi\endcsname{1} % \end{macrocode} % set an eventuality for binomexp@xi by the power as zero % \begin{macrocode} \expandafter\edef\csname binomexp@mortenexporti\endcsname{1} % \end{macrocode} % we'll need to start power as zero by the way |\binomexp@printpascal| % is transfigured. % \begin{macrocode} \setcounter{binomexp@power}{0} % \end{macrocode} % wrap the chipolatas in stringy bacon. % \begin{macrocode} \setcounter{binomexp@pascalstart}{#1} \setcounter{binomexp@pascalstop}{#2+1} % \end{macrocode} % now calculate all the co-efficients. % \begin{macrocode} \setcounter{binomexp@emptytimes}{\value{binomexp@pascalstop}} \whiledo{\value{binomexp@emptytimes}>1}{ \binomexp@printpascal \addtocounter{binomexp@emptytimes}{-1} } % \end{macrocode} % work out the number of columns % \begin{macrocode} \setcounter{binomexp@columns} {\numexpr\number\value{binomexp@pascalstop}+2\relax} % \end{macrocode} % now the table % \begin{macrocode} \begin{math} \begin{array}{@{}|c|*{\value{binomexp@columns}}{|c}|@{}} % \end{macrocode} % repeat the number of rows so many times % \begin{macrocode} \whiledo{\value{binomexp@pascalstart}< \numexpr\number\value{binomexp@pascalstop}-1\relax}{ % \end{macrocode} % prime the binomexp@up gun and cock. % \begin{macrocode} \setcounter{binomexp@up}{0} % \end{macrocode} % prime the binomexp@down gun and cock. % \begin{macrocode} \setcounter{binomexp@down}{\value{binomexp@pascalstart}} \binomexp@call{(#3+#4)^{\number\numexpr\number\value{binomexp@pascalstart}\relax}} \binomexp@replicate{\numexpr\number\value{binomexp@pascalstart}+1\relax} {&\binomexp@call{\csname binomexp@morten\romannumeral\numexpr\value{binomexp@pascalstart}\relax export\romannumeral\numexpr\value{binomexp@up}+1\relax\endcsname #5^{\binomexp@down} #6^{\binomexp@up}}}\\ \addtocounter{binomexp@pascalstart}{1} } % \end{macrocode} % add one more row for luck % \begin{macrocode} \setcounter{binomexp@up}{0} \setcounter{binomexp@down}{\value{binomexp@pascalstart}} \binomexp@call{(#3+#4)^{\number\numexpr\number\value{binomexp@pascalstart}\relax}} \binomexp@replicate{\numexpr\number\value{binomexp@pascalstart}+1\relax} {&\binomexp@call{\csname binomexp@morten\romannumeral\numexpr\value{binomexp@pascalstart}\relax export\romannumeral\numexpr\value{binomexp@up}+1\relax\endcsname #5^{\binomexp@down} #6^{\binomexp@up}}} \end{array} \end{math} } % \end{macrocode} % \end{macro} % % % \begin{macro}{\binomexp@proof} % This command prints a mathematical proof of the % Pascals's triangle based upon obervation. % \begin{macrocode} \newcommand{\binomexp@proof}[2]{ \[ 7!=7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1 \hspace*{5em} {#1 \choose #2} = \frac{#1!}{(#1-#2)!\cdot #2!}= \frac{#1!}{(#1-#2)!\cdot(#1-(#1-#2))!}={#1 \choose #1-#2} \] \begin{eqnarray*} {#1 - 1 \choose #2 - 1} + {#1 - 1 \choose #2} &=& \frac{(#1 - 1)!}{(#2 - 1)!\cdot[(#1 - 1) - (#2 - 1)]!} + \frac{(#1 - 1)!}{#2!\cdot[(#1 - 1) - #2)]!}\\ &=& (#1 - 1)!\cdot\left(\frac{1}{(#2 - 1)!\cdot(#1 - #2)!} + \frac{1}{#2!\cdot[(#1 - #2) - 1)]!}\right) \\ &=& (#1 - 1)! \cdot\frac{#2 + (#1 - #2)}{#2! (#1 - #2)!} \\ &=& \frac{#1!}{#2!(#1 - #2)!} = {#1 \choose #2} \end{eqnarray*} \[ \frac{#2}{#2!\cdot(#1-#2)!} = \frac{1}{(#2-1)!\cdot(#1-#2)!} \hspace*{5em} \mbox{because} \hspace*{5em} \\ \frac{6}{6!\cdot(#1-#2)!} = \frac{1}{5!\cdot(#1-#2)!} \] \begin{eqnarray*} (#2 + 1)\cdot {#1 + 1 \choose #2 + 1} &=& (#2 + 1)\cdot \frac{(#1 + 1)!}{((#2 + 1)!\cdot ((#1 + 1) - (#2 + 1))!}\\ &=& (#2 + 1)\cdot \frac{(#1 + 1)!}{(#2 + 1)!\cdot (#1 - #2)!}\\ &=& (#1 + 1)\cdot \frac{#1!}{#2!\cdot (#1 - #2)!} = (#1 + 1)\cdot {#1 \choose #2}\\ \end{eqnarray*} } % \end{macrocode} % \end{macro} % % \Finale % \PrintIndex \endinput