
Package ‘surveillance’
September 2, 2024

Title Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic
Phenomena

Version 1.23.1

Date 2024-09-02

Depends R (>= 3.6.0), methods, grDevices, graphics, stats, utils, sp
(>= 1.0-15), xtable (>= 1.7-0)

Imports polyCub (>= 0.8.0), MASS, Matrix, nlme, spatstat.geom

LinkingTo polyCub

Suggests parallel, grid, gridExtra (>= 2.0.0), lattice (>= 0.20-44),
colorspace, scales, animation, msm, spc, coda, runjags, INLA,
spdep, numDeriv, maxLik, gsl, fanplot, hhh4contacts, quadprog,
memoise, polyclip, intervals, splancs, gamlss, MGLM (>= 0.1.0),
sf, tinytest (>= 1.2.4), knitr

Enhances xts, ggplot2

Description Statistical methods for the modeling and monitoring of time series
of counts, proportions and categorical data, as well as for the modeling
of continuous-time point processes of epidemic phenomena.
The monitoring methods focus on aberration detection in count data time
series from public health surveillance of communicable diseases, but
applications could just as well originate from environmetrics,
reliability engineering, econometrics, or social sciences. The package
implements many typical outbreak detection procedures such as the
(improved) Farrington algorithm, or the negative binomial GLR-CUSUM
method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>.
A novel CUSUM approach combining logistic and multinomial logistic
modeling is also included. The package contains several real-world data
sets, the ability to simulate outbreak data, and to visualize the
results of the monitoring in a temporal, spatial or spatio-temporal
fashion. A recent overview of the available monitoring procedures is
given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>.
For the retrospective analysis of epidemic spread, the package provides
three endemic-epidemic modeling frameworks with tools for visualization,
likelihood inference, and simulation. hhh4() estimates models for
(multivariate) count time series following Paul and Held (2011)

1

https://doi.org/10.1016/j.csda.2008.02.015
https://doi.org/10.18637/jss.v070.i10

2 Contents

<doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>.
twinSIR() models the susceptible-infectious-recovered (SIR) event
history of a fixed population, e.g, epidemics across farms or networks,
as a multivariate point process as proposed by Hoehle (2009)
<doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point
process models for a spatio-temporal point pattern of infective events,
e.g., time-stamped geo-referenced surveillance data, as proposed by
Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>.
A recent overview of the implemented space-time modeling frameworks
for epidemic phenomena is given by Meyer et al. (2017)
<doi:10.18637/jss.v077.i11>.

License GPL-2

URL https://surveillance.R-Forge.R-project.org/

Additional_repositories https://inla.r-inla-download.org/R/stable/

VignetteBuilder utils, knitr

NeedsCompilation yes

Author Michael Hoehle [aut, ths] (<https://orcid.org/0000-0002-0423-6702>),
Sebastian Meyer [aut, cre] (<https://orcid.org/0000-0002-1791-9449>),
Michaela Paul [aut],
Leonhard Held [ctb, ths],
Howard Burkom [ctb],
Thais Correa [ctb],
Mathias Hofmann [ctb],
Christian Lang [ctb],
Juliane Manitz [ctb],
Sophie Reichert [ctb],
Andrea Riebler [ctb],
Daniel Sabanes Bove [ctb],
Maelle Salmon [ctb],
Dirk Schumacher [ctb],
Stefan Steiner [ctb],
Mikko Virtanen [ctb],
Wei Wei [ctb],
Valentin Wimmer [ctb],
R Core Team [ctb] (A few code segments are modified versions of code

from base R)

Maintainer Sebastian Meyer <seb.meyer@fau.de>

Repository CRAN

Date/Publication 2024-09-02 17:00:02 UTC

Contents
surveillance-package . 6
abattoir . 8

https://doi.org/10.1002/sim.4177
https://doi.org/10.1214/14-AOAS743
https://doi.org/10.1002/bimj.200900050
https://doi.org/10.1111/j.1541-0420.2011.01684.x
https://doi.org/10.18637/jss.v077.i11
https://surveillance.R-Forge.R-project.org/
https://inla.r-inla-download.org/R/stable/
https://orcid.org/0000-0002-0423-6702
https://orcid.org/0000-0002-1791-9449

Contents 3

addFormattedXAxis . 9
addSeason2formula . 10
aggregate-methods . 11
algo.bayes . 12
algo.call . 14
algo.cdc . 15
algo.compare . 17
algo.cusum . 18
algo.farrington . 20
algo.farrington.assign.weights . 22
algo.farrington.fitGLM . 23
algo.farrington.threshold . 24
algo.glrnb . 25
algo.hmm . 29
algo.outbreakP . 31
algo.quality . 33
algo.rki . 35
algo.rogerson . 36
algo.summary . 38
algo.twins . 39
all.equal . 42
animate . 42
anscombe.residuals . 43
arlCusum . 44
backprojNP . 45
bestCombination . 49
boda . 50
bodaDelay . 52
calibrationTest . 54
campyDE . 56
categoricalCUSUM . 57
checkResidualProcess . 60
clapply . 62
coeflist . 62
deleval . 63
discpoly . 64
disProg2sts . 65
earsC . 66
epidata . 69
epidataCS . 74
epidataCS_aggregate . 80
epidataCS_animate . 82
epidataCS_permute . 85
epidataCS_plot . 86
epidataCS_update . 89
epidata_animate . 90
epidata_intersperse . 93
epidata_plot . 94

4 Contents

epidata_summary . 96
fanplot . 98
farringtonFlexible . 99
find.kh . 103
findH . 104
findK . 105
fluBYBW . 106
formatDate . 107
formatPval . 108
glm_epidataCS . 109
ha . 110
hagelloch . 111
hepatitisA . 114
hhh4 . 115
hhh4_formula . 123
hhh4_methods . 125
hhh4_plot . 127
hhh4_predict . 134
hhh4_simulate . 135
hhh4_simulate_plot . 138
hhh4_simulate_scores . 142
hhh4_update . 143
hhh4_validation . 145
hhh4_W . 150
hhh4_W_utils . 153
husO104Hosp . 154
imdepi . 155
imdepifit . 158
influMen . 159
intensityplot . 160
intersectPolyCircle . 160
isoWeekYear . 161
knox . 162
ks.plot.unif . 164
layout.labels . 166
linelist2sts . 168
LRCUSUM.runlength . 169
m1 . 172
magic.dim . 173
makeControl . 174
marks . 175
measles.weser . 175
measlesDE . 177
meningo.age . 178
MMRcoverageDE . 178
momo . 179
multiplicity . 181
multiplicity.Spatial . 181

Contents 5

nbOrder . 182
nowcast . 183
pairedbinCUSUM . 188
permutationTest . 191
pit . 192
plapply . 194
plot.atwins . 195
poly2adjmat . 196
polyAtBorder . 197
primeFactors . 198
print.algoQV . 199
R0 . 200
ranef . 203
refvalIdxByDate . 203
residualsCT . 204
rotaBB . 205
salmAllOnset . 205
salmHospitalized . 206
salmNewport . 206
salmonella.agona . 207
scores . 207
shadar . 209
sim.pointSource . 210
sim.seasonalNoise . 211
stcd . 212
stK . 214
sts-class . 216
stsBP-class . 220
stsNC-class . 221
stsNClist_animate . 222
stsNewport . 223
stsplot . 223
stsplot_space . 224
stsplot_time . 227
stsSlot-generics . 230
stsXtrct . 230
sts_animate . 231
sts_creation . 233
sts_ggplot . 235
sts_observation . 236
surveillance.options . 237
tidy.sts . 238
toLatex.sts . 239
twinSIR . 240
twinSIR_intensityplot . 245
twinSIR_methods . 247
twinSIR_profile . 250
twinSIR_simulation . 251

6 surveillance-package

twinstim . 256
twinstim_epitest . 264
twinstim_iaf . 268
twinstim_iafplot . 272
twinstim_intensity . 275
twinstim_methods . 279
twinstim_plot . 282
twinstim_profile . 283
twinstim_siaf . 284
twinstim_simEndemicEvents . 286
twinstim_simulation . 287
twinstim_step . 293
twinstim_tiaf . 295
twinstim_update . 296
unionSpatialPolygons . 297
untie . 298
wrap.algo . 300
zetaweights . 301

Index 303

surveillance-package surveillance: Temporal and Spatio-Temporal Modeling and Monitor-
ing of Epidemic Phenomena

Description

The R package surveillance implements statistical methods for the retrospective modeling and
prospective monitoring of epidemic phenomena in temporal and spatio-temporal contexts. Focus
is on (routinely collected) public health surveillance data, but the methods just as well apply to
data from environmetrics, econometrics or the social sciences. As many of the monitoring methods
rely on statistical process control methodology, the package is also relevant to quality control and
reliability engineering.

Details

The package implements many typical outbreak detection procedures such as Stroup et al. (1989),
Farrington et al. (1996), Rossi et al. (1999), Rogerson and Yamada (2001), a Bayesian approach
(Höhle, 2007), negative binomial CUSUM methods (Höhle and Mazick, 2009), and a detector
based on generalized likelihood ratios (Höhle and Paul, 2008), see wrap.algo. Also CUSUMs
for the prospective change-point detection in binomial, beta-binomial and multinomial time series
are covered based on generalized linear modeling, see categoricalCUSUM. This includes, e.g.,
paired comparison Bradley-Terry modeling described in Höhle (2010), or paired binary CUSUM
(pairedbinCUSUM) described by Steiner et al. (1999). The package contains several real-world
datasets, the ability to simulate outbreak data, visualize the results of the monitoring in temporal,
spatial or spatio-temporal fashion. In dealing with time series data, the fundamental data structure
of the package is the S4 class sts wrapping observations, monitoring results and date handling

surveillance-package 7

for multivariate time series. A recent overview of the available monitoring procedures is given by
Salmon et al. (2016).

For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic
modeling frameworks with tools for visualization, likelihood inference, and simulation. The func-
tion hhh4 offers inference methods for the (multivariate) count time series models of Held et al.
(2005), Paul et al. (2008), Paul and Held (2011), Held and Paul (2012), and Meyer and Held
(2014). See vignette("hhh4") for a general introduction and vignette("hhh4_spacetime") for
a discussion and illustration of spatial hhh4 models. Furthermore, the fully Bayesian approach for
univariate time series of counts from Held et al. (2006) is implemented as function algo.twins.
Self-exciting point processes are modeled through endemic-epidemic conditional intensity func-
tions. twinSIR (Höhle, 2009) models the susceptible-infectious-recovered (SIR) event history of a
fixed population, e.g, epidemics across farms or networks; see vignette("twinSIR") for an illus-
tration. twinstim (Meyer et al., 2012) fits spatio-temporal point process models to point patterns
of infective events, e.g., time-stamped geo-referenced surveillance data on infectious disease oc-
currence; see vignette("twinstim") for an illustration. A recent overview of the implemented
space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017).

Acknowledgements

Substantial contributions of code by: Leonhard Held, Howard Burkom, Thais Correa, Mathias
Hofmann, Christian Lang, Juliane Manitz, Sophie Reichert, Andrea Riebler, Daniel Sabanes Bove,
Maelle Salmon, Dirk Schumacher, Stefan Steiner, Mikko Virtanen, Wei Wei, Valentin Wimmer.

Furthermore, the authors would like to thank the following people for ideas, discussions, testing and
feedback: Doris Altmann, Johannes Bracher, Caterina De Bacco, Johannes Dreesman, Johannes
Elias, Marc Geilhufe, Jim Hester, Kurt Hornik, Mayeul Kauffmann, Junyi Lu, Lore Merdrignac,
Tim Pollington, Marcos Prates, André Victor Ribeiro Amaral, Brian D. Ripley, François Rousseu,
Barry Rowlingson, Christopher W. Ryan, Klaus Stark, Yann Le Strat, André Michael Toschke, Wei
Wei, George Wood, Achim Zeileis, Bing Zhang.

Author(s)

Michael Hoehle, Sebastian Meyer, Michaela Paul

Maintainer: Sebastian Meyer <seb.meyer@fau.de>

References

citation(package="surveillance") gives the two main software references for the modeling
(Meyer et al., 2017) and the monitoring (Salmon et al., 2016) functionalities:

• Meyer S, Held L, Höhle M (2017). “Spatio-Temporal Analysis of Epidemic Phenomena Using
the R Package surveillance.” Journal of Statistical Software, 77(11), 1–55. doi:10.18637/
jss.v077.i11.

• Salmon M, Schumacher D, Höhle M (2016). “Monitoring Count Time Series in R: Aberra-
tion Detection in Public Health Surveillance.” Journal of Statistical Software, 70(10), 1–35.
doi:10.18637/jss.v070.i10.

Further references are listed in surveillance:::REFERENCES.

If you use the surveillance package in your own work, please do cite the corresponding publica-
tions.

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v070.i10

8 abattoir

See Also

https://surveillance.R-forge.R-project.org/

Examples

Additional documentation and illustrations of the methods are
available in the form of package vignettes and demo scripts:
vignette(package = "surveillance")
demo(package = "surveillance")

abattoir Abattoir Data

Description

A synthetic dataset from the Danish meat inspection – useful for illustrating the beta-binomial
CUSUM.

Usage

data(abattoir)

Details

The object of class "sts" contains an artificial data set inspired by meat inspection data used by
Danish Pig Production, Denmark. For each week the number of pigs with positive audit reports is
recorded together with the total number of audits made that week.

References

Höhle, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G.
Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag.

See Also

categoricalCUSUM

Examples

data("abattoir")
plot(abattoir)
population(abattoir)

https://surveillance.R-forge.R-project.org/

addFormattedXAxis 9

addFormattedXAxis Formatted Time Axis for "sts" Objects

Description

Add a nicely formatted x-axis to time series plots related to the "sts" class. This utility function
is, e.g., used by stsplot_time1 and plotHHH4_fitted1.

Usage

addFormattedXAxis(x, epochsAsDate = FALSE,
xaxis.tickFreq = list("%Q"=atChange),
xaxis.labelFreq = xaxis.tickFreq,
xaxis.labelFormat = "%G\n\n%OQ",
...)

Arguments

x an object of class "sts".

epochsAsDate a logical indicating if the old (FALSE) or the new (TRUE) and more flexible im-
plementation should be used. The xaxis.* arguments are only relevant for the
new implementation epochsAsDate = TRUE.

xaxis.labelFormat, xaxis.tickFreq, xaxis.labelFreq
see the details below.

... further arguments passed to axis.

Details

The setting epochsAsDate = TRUE enables very flexible formatting of the x-axis and its annotations
using the xaxis.tickFreq, xaxis.labelFreq and xaxis.labelFormat arguments. The first two
are named lists containing pairs with the name being a strftime single conversion specification
and the second part is a function which based on this conversion returns a subset of the rows in
the sts objects. The subsetting function has the following header: function(x,xm1), where x is
a vector containing the result of applying the conversion in name to the epochs of the sts object
and xm1 is the scalar result when applying the conversion to the natural element just before the first
epoch. Please note that the input to the subsetting function is converted using as.numeric before
calling the function. Hence, the conversion specification needs to result in a string convertible to
integer.

Three predefined subsetting functions exist: atChange, at2ndChange and atMedian, which are
used to make a tick at each (each 2nd for at2ndChange) change and at the median index computed
on all having the same value, respectively:

atChange <- function(x,xm1) which(diff(c(xm1,x)) != 0)
at2ndChange <- function(x,xm1) which(diff(c(xm1,x) %/% 2) != 0)

atMedian <- function(x,xm1) tapply(seq_along(x), INDEX=x, quantile, prob=0.5, type=3)

10 addSeason2formula

By defining own functions here, one can obtain an arbitrary degree of flexibility.

Finally, xaxis.labelFormat is a strftime compatible formatting string., e.g. the default value is
"%G\n\n%OQ", which means ISO year and quarter (in roman letters) stacked on top of each other.

Value

NULL (invisibly). The function is called for its side effects.

Author(s)

Michael Höhle with contributions by Sebastian Meyer

See Also

the examples in stsplot_time1 and plotHHH4_fitted1

addSeason2formula Add Harmonics to an Existing Formula

Description

This function helps to construct a formula object that can be used in a call to hhh4 to model seasonal
variation via a sum of sine and cosine terms.

Usage

addSeason2formula(f = ~1, S = 1, period = 52, timevar = "t")

Arguments

f formula that the seasonal terms should be added to, defaults to an intercept ~1.

S number of sine and cosine terms. If S is a vector, unit-specific seasonal terms
are created.

period period of the season, defaults to 52 for weekly data.

timevar the time variable in the model. Defaults to "t".

Details

The function adds the seasonal terms

sin(s · 2π · timevar/period), cos(s · 2π · timevar/period),

for s = 1, . . . , S to an existing formula f.

Note the following equivalence when interpreting the coefficients of the seasonal terms:

γ sin(ωt) + δ cos(ωt) = A sin(ωt+ ϵ)

with amplitudeA =
√
γ2 + δ2 and phase shift ϵ = arctan(δ/γ). The amplitude and phase shift can

be obtained from a fitted hhh4 model via coef(..., amplitudeShift = TRUE), see coef.hhh4.

aggregate-methods 11

Value

Returns a formula with the seasonal terms added and its environment set to .GlobalEnv. Note that
to use the resulting formula in hhh4, a time variable named as specified by the argument timevar
must be available.

Author(s)

M. Paul, with contributions by S. Meyer

See Also

hhh4, fe, ri

Examples

add 2 sine/cosine terms to a model with intercept and linear trend
addSeason2formula(f = ~ 1 + t, S = 2)

the same for monthly data
addSeason2formula(f = ~ 1 + t, S = 2, period = 12)

different number of seasons for a bivariate time series
addSeason2formula(f = ~ 1, S = c(3, 1), period = 52)

aggregate-methods Aggregate an "sts" Object Over Time or Across Units

Description

Aggregate the matrix slots of an "sts" object. Either the time series is aggregated so a new sampling
frequency of nfreq observations per year is obtained (i.e., as in aggregate.ts), or the aggregation
is over all columns (units).

Usage

S4 method for signature 'sts'
aggregate(x, by = "time", nfreq = "all", ...)

Arguments

x an object of class "sts".

by a string being either "time" or "unit".

nfreq new sampling frequency for by="time". If nfreq="all" then all time points
are summed.

... unused (argument of the generic).

12 algo.bayes

Value

an object of class "sts".

Warning

Aggregation over units fills the upperbound slot with NAs and the map slot is left as-is, but the object
cannot be plotted by unit any longer.

The populationFrac slot is aggregated just like observed. Population fractions are recomputed
if and only if x is no multinomialTS and already contains population fractions. This might not be
intended, especially for aggregation over time.

Examples

data("ha.sts")
dim(ha.sts)
dim(aggregate(ha.sts, by = "unit"))
dim(aggregate(ha.sts, nfreq = 13))

algo.bayes The Bayes System

Description

Evaluation of timepoints with the Bayes subsystem 1, 2, 3 or a self defined Bayes subsystem.

Usage

algo.bayesLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes(disProgObj, control = list(range = range,
b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes1(disProgObj, control = list(range = range))
algo.bayes2(disProgObj, control = list(range = range))
algo.bayes3(disProgObj, control = list(range = range))

Arguments

disProgObj object of class disProg (including the observed and the state chain)
timePoint time point which should be evaluated in algo.bayes LatestTimepoint. The

default is to use the latest timepoint
control control object: range determines the desired timepoints which should be evalu-

ated, b describes the number of years to go back for the reference values, w is the
half window width for the reference values around the appropriate timepoint and
actY is a boolean to decide if the year of timePoint also contributes w reference
values. The parameter alpha is the (1− α)-quantile to use in order to calculate
the upper threshold. As default b, w, actY are set for the Bayes 1 system with
alpha=0.05.

algo.bayes 13

Details

Using the reference values the (1 − α) · 100% quantile of the predictive posterior distribution is
calculated as a threshold. An alarm is given if the actual value is bigger or equal than this threshold.
It is possible to show using analytical computations that the predictive posterior in this case is the
negative binomial distribution. Note: algo.rki or algo.farrington use two-sided prediction
intervals – if one wants to compare with these procedures it is necessary to use an alpha, which is
half the one used for these procedures.

Note also that algo.bayes calls algo.bayesLatestTimepoint for the values specified in range
and for the system specified in control. algo.bayes1, algo.bayes2, algo.bayes3 call algo.bayesLatestTimepoint
for the values specified in range for the Bayes 1 system, Bayes 2 system or Bayes 3 system.

• "Bayes 1" reference values from 6 weeks. Alpha is fixed a t 0.05.

• "Bayes 2" reference values from 6 weeks ago and 13 weeks of the previous year (symmetrical
around the same week as the current one in the previous year). Alpha is fixed at 0.05.

• "Bayes 3" 18 reference values. 9 from the year ago and 9 from two years ago (also symmet-
rical around the comparable week). Alpha is fixed at 0.05.

The procedure is now able to handle NA’s in the reference values. In the summation and when
counting the number of observed reference values these are simply not counted.

Value

survRes algo.bayesLatestTimepoint returns a list of class survRes (surveillance re-
sult), which includes the alarm value for recognizing an outbreak (1 for alarm, 0
for no alarm), the threshold value for recognizing the alarm and the input object
of class disProg. algo.bayes gives a list of class survRes which includes the
vector of alarm values for every timepoint in range and the vector of threshold
values for every timepoint in range for the system specified by b, w and actY,
the range and the input object of class disProg. algo.bayes1 returns the same
for the Bayes 1 system, algo.bayes2 for the Bayes 2 system and algo.bayes3
for the Bayes 3 system.

Author(s)

M. Höhle, A. Riebler, C. Lang

Source

Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei
Surveillance Daten, Bachelor’s thesis.

See Also

algo.call, algo.rkiLatestTimepoint and algo.rki for the RKI system.

14 algo.call

Examples

disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,
alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Test for bayes 1 the latest timepoint
algo.bayesLatestTimepoint(disProg)

Test week 200 to 208 for outbreaks with a selfdefined bayes
algo.bayes(disProg, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE,alpha=0.05))
The same for bayes 1 to bayes 3
algo.bayes1(disProg, control = list(range = 200:208,alpha=0.05))
algo.bayes2(disProg, control = list(range = 200:208,alpha=0.05))
algo.bayes3(disProg, control = list(range = 200:208,alpha=0.05))

algo.call Query Transmission to Specified Surveillance Algorithm

Description

Transmission of a object of class disProg to the specified surveillance algorithm.

Usage

algo.call(disProgObj, control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki", range = range,

b = 2, w = 4, actY = TRUE),
list(funcName = "rki", range = range,

b = 2, w = 5, actY = TRUE)))

Arguments

disProgObj object of class disProg, which includes the state chain and the observed

control specifies which surveillance algorithm should be used with their parameters.
The parameter funcName and range must be specified. Here, funcName is the
appropriate method function (without ’algo.’) and range defines the timepoints
to be evaluated by the actual system.

Value

a list of survRes objects generated by the specified surveillance algorithm

See Also

algo.rki, algo.bayes, algo.farrington

algo.cdc 15

Examples

Create a test object
disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProg,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
list(funcName = "bayes3", range = range),
list(funcName = "bayes",

range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)
))

show selected survRes objects
names(survRes)
plot(survRes[["rki(6,6,0)"]])
survRes[["bayes(5,5,1)"]]

algo.cdc The CDC Algorithm

Description

Surveillance using the CDC Algorithm

Usage

algo.cdcLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 5, m = 1, alpha=0.025))

algo.cdc(disProgObj, control = list(range = range, b= 5, m=1,
alpha = 0.025))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which should be evaluated in algo.cdcLatestTimepoint. The de-
fault is to use the latest timepoint.

16 algo.cdc

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, m is
the half window width for the reference values around the appropriate timepoint
(see details). The standard definition is b=5 and m=1.

Details

Using the reference values for calculating an upper limit, alarm is given if the actual value is bigger
than a computed threshold. algo.cdc calls algo.cdcLatestTimepoint for the values specified
in range and for the system specified in control. The threshold is calculated from the predictive
distribution, i.e.

mean(x) + zα/2 ∗ sd(x) ∗
√

1 + 1/k,

which corresponds to Equation 8-1 in Farrington and Andrews (2003). Note that an aggregation
into 4-week blocks occurs in algo.cdcLatestTimepoint and m denotes number of 4-week blocks
(months) to use as reference values. This function currently does the same for monthly data (not
correct!)

Value

algo.cdcLatestTimepoint returns a list of class survRes (surveillance result), which includes
the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for
recognizing the alarm and the input object of class disProg.

algo.cdc gives a list of class survRes which includes the vector of alarm values for every timepoint
in range, the vector of threshold values for every timepoint in range for the system specified by b,
w, the range and the input object of class disProg.

Author(s)

M. Höhle

References

Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the oc-
currence of notifiable diseases surveillance data. Statistics in Medicine 8, 323–329. doi:10.1002/
sim.4780080312

Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak
Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press.

See Also

algo.rkiLatestTimepoint,algo.bayesLatestTimepoint and algo.bayes for the Bayes sys-
tem.

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 500,

A = 1,alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

https://doi.org/10.1002/sim.4780080312
https://doi.org/10.1002/sim.4780080312

algo.compare 17

Test week 200 to 208 for outbreaks with a selfdefined cdc
algo.cdc(disProgObj, control = list(range = 400:500,alpha=0.025))

algo.compare Comparison of Specified Surveillance Systems using Quality Values

Description

Comparison of specified surveillance algorithms using quality values.

Usage

algo.compare(survResList)

Arguments

survResList a list of survRes objects to compare via quality values.

Value

Matrix with values from algo.quality, i.e. quality values for every surveillance algorithm found
in survResults.

See Also

algo.quality

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProgObj,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
list(funcName = "bayes3", range = range),
list(funcName = "bayes",

18 algo.cusum

range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)
))

algo.compare(survRes)

algo.cusum CUSUM method

Description

Approximate one-side CUSUM method for a Poisson variate based on the cumulative sum of the
deviation between a reference value k and the transformed observed values. An alarm is raised if
the cumulative sum equals or exceeds a prespecified decision boundary h. The function can handle
time varying expectations.

Usage

algo.cusum(disProgObj, control = list(range = range, k = 1.04, h = 2.26,
m = NULL, trans = "standard", alpha = NULL))

Arguments

disProgObj object of class disProg (including the observed and the state chain)

control control object:

range determines the desired time points which should be evaluated
k is the reference value
h the decision boundary
m how to determine the expected number of cases – the following arguments are

possible
numeric a vector of values having the same length as range. If a single

numeric value is specified then this value is replicated length(range)
times.

NULL A single value is estimated by taking the mean of all observations
previous to the first range value.

"glm" A GLM of the form

log(mt) = α+ βt+

S∑
s=1

(γs sin(ωst) + δs cos(ωst)),

where ωs = 2π
52 s are the Fourier frequencies is fitted. Then this model

is used to predict the range values.
trans one of the following transformations (warning: Anscombe and NegBin

transformations are experimental)
rossi standardized variables z3 as proposed by Rossi
standard standardized variables z1 (based on asymptotic normality) - This

is the default.

algo.cusum 19

anscombe anscombe residuals – experimental
anscombe2nd anscombe residuals as in Pierce and Schafer (1986) based

on 2nd order approximation of E(X) – experimental
pearsonNegBin compute Pearson residuals for NegBin – experimental
anscombeNegBin anscombe residuals for NegBin – experimental
none no transformation

alpha parameter of the negative binomial distribution, s.t. the variance is m+
α ∗m2

Value

algo.cusum gives a list of class "survRes" which includes the vector of alarm values for every
timepoint in range and the vector of cumulative sums for every timepoint in range for the system
specified by k and h, the range and the input object of class "disProg".

The upperbound entry shows for each time instance the number of diseased individuals it would
have taken the cusum to signal. Once the CUSUM signals no resetting is applied, i.e. signals occurs
until the CUSUM statistic again returns below the threshold.

In case control$m="glm" was used, the returned control$m.glm entry contains the fitted "glm"
object.

Note

This implementation is experimental, but will not be developed further.

Author(s)

M. Paul and M. Höhle

References

G. Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveil-
lance of health events, Statistics in Medicine, 18, 2111–2122

D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the
American Statistical Association, 81, 977–986

Examples

Xi ~ Po(5), i=1,...,500
set.seed(321)
stsObj <- sts(observed = rpois(500,lambda=5))
there should be no alarms as mean doesn't change
res <- cusum(stsObj, control = list(range = 100:500, trans = "anscombe"))
plot(res, xaxis.labelFormat = NULL)

simulated data
disProgObj <- sim.pointSource(p = 1, r = 1, length = 250,

A = 0, alpha = log(5), beta = 0, phi = 10,
frequency = 10, state = NULL, K = 0)

plot(disProgObj)

20 algo.farrington

Test weeks 200 to 250 for outbreaks
surv0 <- algo.cusum(disProgObj, control = list(range = 200:250))
plot(surv0, xaxis.years = FALSE)

alternatively, using the newer "sts" interface
stsObj <- disProg2sts(disProgObj)
surv <- cusum(stsObj, control = list(range = 200:250))
plot(surv)
stopifnot(upperbound(surv) == surv0$upperbound)

algo.farrington Surveillance for Count Time Series Using the Classic Farrington
Method

Description

Implements the procedure of Farrington et al. (1996). At each time point of the specified range, a
GLM is fitted to predict the counts. This is then compared to the observed counts. If the observation
is above a specific quantile of the prediction interval, then an alarm is raised.

Usage

original interface for a single "disProg" time series
algo.farrington(disProgObj, control=list(

range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, plot=FALSE,
alpha=0.05, trend=TRUE, limit54=c(5,4), powertrans="2/3",
fitFun="algo.farrington.fitGLM.fast"))

wrapper for "sts" data, possibly multivariate
farrington(sts, control=list(

range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE,
alpha=0.05), ...)

Arguments

disProgObj an object of class "disProg" (a list including observed and state time series).
control list of control parameters

range Specifies the index of all timepoints which should be tested. If range is
NULL the maximum number of possible weeks is used (i.e. as many weeks
as possible while still having enough reference values).

b how many years back in time to include when forming the base counts.
w windows size, i.e. number of weeks to include before and after the current

week
reweight Boolean specifying whether to perform reweight step
trend If TRUE a trend is included and kept in case the conditions documented

in Farrington et al. (1996) are met (see the results). If FALSE then NO trend
is fit.

algo.farrington 21

verbose Boolean indicating whether to show extra debugging information.
plot Boolean specifying whether to show the final GLM model fit graphically

(use History|Recording to see all pictures).
powertrans Power transformation to apply to the data. Use either "2/3" for

skewness correction (Default), "1/2" for variance stabilizing transformation
or "none" for no transformation.

alpha An approximate (two-sided) (1− α) prediction interval is calculated.
limit54 To avoid alarms in cases where the time series only has about 0-2

cases the algorithm uses the following heuristic criterion (see Section 3.8
of the Farrington paper) to protect against low counts: no alarm is sounded
if fewer than cases = 5 reports were received in the past period = 4
weeks. limit54=c(cases,period) is a vector allowing the user to change
these numbers. Note: As of version 0.9-7 the term "last" period of weeks
includes the current week - otherwise no alarm is sounded for horrible large
numbers if the four weeks before that are too low.

fitFun String containing the name of the fit function to be used for fitting
the GLM. The options are algo.farrington.fitGLM.fast (default) and
algo.farrington.fitGLM or algo.farrington.fitGLM.populationOffset.
See details of algo.farrington.fitGLM for more information.

sts an object of class "sts".

... arguments for wrap.algo, e.g., verbose=FALSE.

Details

The following steps are performed according to the Farrington et al. (1996) paper.

1. fit of the initial model and initial estimation of mean and overdispersion.

2. calculation of the weights omega (correction for past outbreaks)

3. refitting of the model

4. revised estimation of overdispersion

5. rescaled model

6. omission of the trend, if it is not significant

7. repetition of the whole procedure

8. calculation of the threshold value

9. computation of exceedance score

Value

For algo.farrington, a list object of class "survRes" with elements alarm, upperbound, trend,
disProgObj, and control.

For farrington, the input "sts" object with updated alarm, upperbound and control slots, and
subsetted to control$range.

Author(s)

M. Höhle

22 algo.farrington.assign.weights

References

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996), J. R. Statist. Soc. A, 159, 547-563.

See Also

algo.farrington.fitGLM, algo.farrington.threshold

An improved Farrington algorithm is available as function farringtonFlexible.

Examples

#load "disProg" data
data("salmonella.agona")

#Do surveillance for the last 42 weeks
n <- length(salmonella.agona$observed)
control <- list(b=4,w=3,range=(n-42):n,reweight=TRUE, verbose=FALSE,alpha=0.01)
res <- algo.farrington(salmonella.agona,control=control)
plot(res)

#Generate Poisson counts and create an "sts" object
set.seed(123)
x <- rpois(520,lambda=1)
stsObj <- sts(observed=x, frequency=52)

if (surveillance.options("allExamples")) {
#Compare timing of the two possible fitters for algo.farrington

range <- 312:520
system.time(sts1 <- farrington(stsObj, control=list(range=range,

fitFun="algo.farrington.fitGLM.fast"), verbose=FALSE))
system.time(sts2 <- farrington(stsObj, control=list(range=range,

fitFun="algo.farrington.fitGLM"), verbose=FALSE))
#Check if results are the same
stopifnot(upperbound(sts1) == upperbound(sts2))

}

algo.farrington.assign.weights

Assign weights to base counts

Description

Weights are assigned according to the Anscombe residuals

Usage

algo.farrington.assign.weights(s, weightsThreshold=1)

algo.farrington.fitGLM 23

Arguments

s Vector of standardized Anscombe residuals
weightsThreshold

A scalar indicating when observations are seen as outlier. In the original Far-
rington proposal the value was 1 (default value), in the improved version this
value is suggested to be 2.58.

Value

Weights according to the residuals

See Also

anscombe.residuals

algo.farrington.fitGLM

Fit Poisson GLM of the Farrington procedure for a single time point

Description

The function fits a Poisson regression model (GLM) with mean predictor

logµt = α+ βt

as specified by the Farrington procedure. If requested, Anscombe residuals are computed based on
an initial fit and a 2nd fit is made using weights, where base counts suspected to be caused by earlier
outbreaks are downweighted.

Usage

algo.farrington.fitGLM(response, wtime, timeTrend = TRUE,
reweight = TRUE, ...)

algo.farrington.fitGLM.fast(response, wtime, timeTrend = TRUE,
reweight = TRUE, ...)

algo.farrington.fitGLM.populationOffset(response, wtime, population,
timeTrend=TRUE,reweight=TRUE, ...)

Arguments

response The vector of observed base counts

wtime Vector of week numbers corresponding to response

timeTrend Boolean whether to fit the βt or not

reweight Fit twice – 2nd time with Anscombe residuals

24 algo.farrington.threshold

population Population size. Possibly used as offset, i.e. in algo.farrington.fitGLM.populationOffset
the value log(population) is used as offset in the linear predictor of the GLM:

logµt = log(population) + α+ βt

This provides a way to adjust the Farrington procedure to the case of greatly
varying populations. Note: This is an experimental implementation with method-
ology not covered by the original paper.

... Used to catch additional arguments, currently not used.

Details

Compute weights from an initial fit and rescale using Anscombe based residuals as described in the
anscombe.residuals function.

Note that algo.farrington.fitGLM uses the glm routine for fitting. A faster alternative is provided
by algo.farrington.fitGLM.fast which uses the glm.fit function directly (thanks to Mikko
Virtanen). This saves computational overhead and increases speed for 500 monitored time points
by a factor of approximately two. However, some of the routine glm functions might not work on
the output of this function. Which function is used for algo.farrington can be controlled by the
control$fitFun argument.

Value

an object of class GLM with additional fields wtime, response and phi. If the glm returns without
convergence NULL is returned.

See Also

anscombe.residuals,algo.farrington

algo.farrington.threshold

Compute prediction interval for a new observation

Description

Depending on the current transformation h(y) = {y,√y, y2/3},

V (h(y0)− h(µ0)) = V (h(y0)) + V (h(µ0))

is used to compute a prediction interval. The prediction variance consists of a component due to the
variance of having a single observation and a prediction variance.

Usage

algo.farrington.threshold(pred,phi,alpha=0.01,skewness.transform="none",y)

algo.glrnb 25

Arguments

pred A GLM prediction object

phi Current overdispersion parameter (superfluous?)

alpha Quantile level in Gaussian based CI, i.e. an (1− α) · 100% confidence interval
is computed.

skewness.transform

Skewness correction, i.e. one of "none", "1/2", or "2/3".

y Observed number

Value

Vector of length four with lower and upper bounds of an (1−α)·100% confidence interval (first two
arguments) and corresponding quantile of observation y together with the median of the predictive
distribution.

algo.glrnb Count Data Regression Charts

Description

Count data regression charts for the monitoring of surveillance time series as proposed by Höhle
and Paul (2008). The implementation is described in Salmon et al. (2016).

Usage

algo.glrnb(disProgObj, control = list(range=range, c.ARL=5,
mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",
theta=NULL, dir=c("inc","dec"),
ret=c("cases","value"), xMax=1e4))

algo.glrpois(disProgObj, control = list(range=range, c.ARL=5,
mu0=NULL, Mtilde=1, M=-1, change="intercept",
theta=NULL, dir=c("inc","dec"),
ret=c("cases","value"), xMax=1e4))

Arguments

disProgObj object of class disProg to do surveillance for. For new sts-class data, use the
glrnb wrapper, or the sts2disProg converter.

control A list controlling the behaviour of the algorithm

range vector of indices in the observed vector to monitor (should be consecu-
tive)

26 algo.glrnb

mu0 A vector of in-control values of the mean of the Poisson / negative binomial
distribution with the same length as range. If NULL the observed values in
1:(min(range)-1) are used to estimate the beta vector through a general-
ized linear model. To fine-tune the model one can instead specify mu0 as a
list with two components:
S integer number of harmonics to include (typically 1 or 2)
trend A Boolean indicating whether to include a term t in the GLM model
The fitting is controlled by the estimateGLRNbHook function. The in-
control mean model is re-fitted after every alarm. The fitted models can
be found as a list mod in the control slot after the call.
Note: If a value for alpha is given, then the inverse of this value is used
as fixed theta in a negative.binomial glm. If is.null(alpha) then the
parameter is estimated as well (using glm.nb) – see the description of this
parameter for details.

alpha The (known) dispersion parameter of the negative binomial distribution,
i.e. the parametrization of the negative binomial is such that the variance
is mean + alpha ∗ mean2. Note: This parametrization is the inverse of
the shape parametrization used in R – for example in dnbinom and glr.nb.
Hence, if alpha=0 then the negative binomial distribution boils down to
the Poisson distribution and a call of algo.glrnb is equivalent to a call to
algo.glrpois. If alpha=NULL the parameter is calculated as part of the
in-control estimation. However, the parameter is estimated only once from
the first fit. Subsequent fittings are only for the parameters of the linear
predictor with alpha fixed.

c.ARL threshold in the GLR test, i.e. cγ
Mtilde number of observations needed before we have a full rank the typical

setup for the "intercept" and "epi" charts is Mtilde=1
M number of time instances back in time in the window-limited approach, i.e.

the last value considered is max 1, n−M . To always look back until the
first observation use M=-1.

change a string specifying the type of the alternative. Currently the two choices
are intercept and epi. See the SFB Discussion Paper 500 for details.

theta if NULL then the GLR scheme is used. If not NULL the prespecified value
for κ or λ is used in a recursive LR scheme, which is faster.

dir a string specifying the direction of testing in GLR scheme. With "inc"
only increases in x are considered in the GLR-statistic, with "dec" de-
creases are regarded.

ret a string specifying the type of upperbound-statistic that is returned. With
"cases" the number of cases that would have been necessary to produce an
alarm or with "value" the GLR-statistic is computed (see below).

xMax Maximum value to try for x to see if this is the upperbound number of
cases before sounding an alarm (Default: 1e4). This only applies for the
GLR using the NegBin when ret="cases" – see details.

Details

This function implements the seasonal count data chart based on generalized likelihood ratio (GLR)
as described in the Höhle and Paul (2008) paper. A moving-window generalized likelihood ratio

algo.glrnb 27

detector is used, i.e. the detector has the form

N = inf

{
n : max

1≤k≤n

[
n∑
t=k

log

{
fθ1(xt|zt)
fθ0(xt|zt)

}]
≥ cγ

}

where instead of 1 ≤ k ≤ n the GLR statistic is computed for all k ∈ {n −M, . . . , n − M̃ + 1}.
To achieve the typical behaviour from 1 ≤ k ≤ n use Mtilde=1 and M=-1.

So N is the time point where the GLR statistic is above the threshold the first time: An alarm is
given and the surveillance is reset starting from time N + 1. Note that the same c.ARL as before is
used, but if mu0 is different at N +1, N +2, . . . compared to time 1, 2, . . . the run length properties
differ. Because c.ARL to obtain a specific ARL can only be obtained my Monte Carlo simulation
there is no good way to update c.ARL automatically at the moment. Also, FIR GLR-detectors might
be worth considering.

In case is.null(theta) and alpha>0 as well as ret="cases" then a brute-force search is con-
ducted for each time point in range in order to determine the number of cases necessary before an
alarm is sounded. In case no alarm was sounded so far by time t, the function increases x[t] until
an alarm is sounded any time before time point t. If no alarm is sounded by xMax, a return value of
1e99 is given. Similarly, if an alarm was sounded by time t the function counts down instead. Note:
This is slow experimental code!

At the moment, window limited “intercept” charts have not been extensively tested and are at the
moment not supported. As speed is not an issue here this doesn’t bother too much. Therefore, a
value of M=-1 is always used in the intercept charts.

Value

algo.glrpois simply calls algo.glrnb with control$alpha set to 0.

algo.glrnb returns a list of class survRes (surveillance result), which includes the alarm value for
recognizing an outbreak (1 for alarm, 0 for no alarm), the threshold value for recognizing the alarm
and the input object of class disProg. The upperbound slot of the object are filled with the current
GLR(n) value or with the number of cases that are necessary to produce an alarm at any time point
≤ n. Both lead to the same alarm timepoints, but "cases" has an obvious interpretation.

Author(s)

M. Höhle with contributions by V. Wimmer

References

Höhle, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time
series. Computational Statistics and Data Analysis, 52 (9), 4357-4368.

Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/
jss.v070.i10

Examples

##Simulate data and apply the algorithm
S <- 1 ; t <- 1:120 ; m <- length(t)

https://doi.org/10.18637/jss.v070.i10
https://doi.org/10.18637/jss.v070.i10

28 algo.glrnb

beta <- c(1.5,0.6,0.6)
omega <- 2*pi/52
#log mu_{0,t}
base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t)
#Generate example data with changepoint and tau=tau
tau <- 100
kappa <- 0.4
mu0 <- exp(base)
mu1 <- exp(base + kappa)

Poisson example
#Generate data
set.seed(42)
x <- rpois(length(t),mu0*(exp(kappa)^(t>=tau)))
s.ts <- sts(observed=x, state=(t>=tau))
#Plot the data
plot(s.ts, xaxis.labelFormat=NULL)
#Run
cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0,

change="intercept",ret="value",dir="inc")
glr.ts <- glrpois(s.ts,control=cntrl)
plot(glr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5)
lr.ts <- glrpois(s.ts,control=c(cntrl,theta=0.4))
plot(lr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5)

#using the legacy interface for "disProg" data
lr.ts0 <- algo.glrpois(sts2disProg(s.ts), control=c(cntrl,theta=0.4))
stopifnot(upperbound(lr.ts) == lr.ts0$upperbound)

NegBin example
#Generate data
set.seed(42)
alpha <- 0.2
x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha)
s.ts <- sts(observed=x, state=(t>=tau))

#Plot the data
plot(s.ts, xaxis.labelFormat=NULL)

#Run GLR based detection
cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha,

change="intercept",ret="value",dir="inc")
glr.ts <- glrnb(s.ts, control=cntrl)
plot(glr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5)

#CUSUM LR detection with backcalculated number of cases
cntrl2 = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha,

change="intercept",ret="cases",dir="inc",theta=1.2)
glr.ts2 <- glrnb(s.ts, control=cntrl2)
plot(glr.ts2, xaxis.labelFormat=NULL)

algo.hmm 29

algo.hmm Hidden Markov Model (HMM) method

Description

This function implements on-line HMM detection of outbreaks based on the retrospective procedure
described in Le Strat and Carret (1999). Using the function msm (from package msm) a specified
HMM is estimated, the decoding problem, i.e. the most probable state configuration, is found by the
Viterbi algorithm and the most probable state of the last observation is recorded. On-line detection
is performed by sequentially repeating this procedure.

Warning: This function can be very slow - a more efficient implementation would be nice!

Usage

algo.hmm(disProgObj, control = list(range=range, Mtilde=-1,
noStates=2, trend=TRUE, noHarmonics=1,
covEffectEqual=FALSE, saveHMMs = FALSE, extraMSMargs=list()))

Arguments

disProgObj object of class disProg (including the observed and the state chain)

control control object:

range determines the desired time points which should be evaluated. Note
that opposite to other surveillance methods an initial parameter estimation
occurs in the HMM. Note that range should be high enough to allow for
enough reference values for estimating the HMM

Mtilde number of observations back in time to use for fitting the HMM (includ-
ing the current observation). Reasonable values are a multiple of disProgObj$freq,
the default is Mtilde=-1, which means to use all possible values - for long
series this might take very long time!

noStates number of hidden states in the HMM – the typical choice is 2. The
initial rates are set such that the noStatesth state is the one having the
highest rate. In other words: this state is considered the outbreak state.

trend Boolean stating whether a linear time trend exists, i.e. if TRUE (default)
then βj ̸= 0

noHarmonics number of harmonic waves to include in the linear predictor. De-
fault is 1.

covEffectEqual see details
saveHMMs Boolean, if TRUE then the fitted HMMs are saved. With this option

the function can also be used to analyse data retrospectively. Default option
is FALSE

extraMSMArgs A named list with additional arguments to send to the msm HMM
fitting function. Note that the msm arguments formula, data, qmatrix,
hmodel, hcovariates and hconstraint are automatically filled by algo.hmm,
thus these should NOT be modified.

30 algo.hmm

Details

For each time point t the reference values values are extracted. If the number of requested values
is larger than the number of possible values the latter is used. Now the following happens on these
reference values:

A noStates-State Hidden Markov Model (HMM) is used based on the Poisson distribution with
linear predictor on the log-link scale. I.e.

Yt|Xt = j ∼ Po(µjt),

where

log(µjt) = αj + βj · t+
nH∑
i=1

γij cos(2iπ/freq · (t− 1)) + δij sin(2iπ/freq · (t− 1))

and nH =noHarmonics and freq = 12, 52 depending on the sampling frequency of the surveil-
lance data. In the above t− 1 is used, because the first week is always saved as t=1, i.e. we want to
ensure that the first observation corresponds to cos(0) and sin(0).

If covEffectEqual then all covariate effects parameters are equal for the states, i.e. βj = β, γij =

γi, δij = δi for all j = 1, ..., noStates.

In case more complicated HMM models are to be fitted it is possible to modify the msm code used
in this function. Using e.g. AIC one can select between different models (see the msm package for
further details).

Using the Viterbi algorithms the most probable state configuration is obtained for the reference
values and if the most probable configuration for the last reference value (i.e. time t) equals
control$noOfStates then an alarm is given.

Note: The HMM is re-fitted from scratch every time, sequential updating schemes of the HMM
would increase speed considerably! A major advantage of the approach is that outbreaks in the
reference values are handled automatically.

Value

algo.hmm gives a list of class survRes which includes the vector of alarm values for every timepoint
in range. No upperbound can be specified and is put equal to zero.

The resulting object contains a list control$hmms, which contains the "msm" objects with the fitted
HMMs (if saveHMMs=TRUE).

Author(s)

M. Höhle

References

Y. Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Mod-
els (1999), Statistics in Medicine, 18, 3463–3478

I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time
Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70

algo.outbreakP 31

See Also

msm

Examples

#Simulate outbreak data from HMM
set.seed(123)
counts <- sim.pointSource(p = 0.98, r = 0.8, length = 3*52,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.5)

Not run:
#Do surveillance using a two state HMM without trend component and
#the effect of the harmonics being the same in both states. A sliding
#window of two years is used to fit the HMM
surv <- algo.hmm(counts, control=list(range=(2*52):length(counts$observed),

Mtilde=2*52,noStates=2,trend=FALSE,
covEffectsEqual=TRUE,extraMSMargs=list()))

plot(surv,legend.opts=list(x="topright"))

End(Not run)

if (require("msm")) {
#Retrospective use of the function, i.e. monitor only the last time point
#but use option saveHMMs to store the output of the HMM fitting
surv <- algo.hmm(counts,control=list(range=length(counts$observed),Mtilde=-1,noStates=2,

trend=FALSE,covEffectsEqual=TRUE, saveHMMs=TRUE))

#Compute most probable state using the viterbi algorithm - 1 is "normal", 2 is "outbreak".
viterbi.msm(surv$control$hmms[[1]])$fitted

#How often correct?
tab <- cbind(truth=counts$state + 1 ,

hmm=viterbi.msm(surv$control$hmm[[1]])$fitted)
table(tab[,1],tab[,2])
}

algo.outbreakP Semiparametric surveillance of outbreaks

Description

Frisen and Andersson (2009) method for semiparametric surveillance of outbreaks

Usage

algo.outbreakP(disProgObj, control = list(range = range, k=100,
ret=c("cases","value"),maxUpperboundCases=1e5))

32 algo.outbreakP

Arguments

disProgObj object of class disProg (including the observed and the state chain).

control A list controlling the behaviour of the algorithm

range determines the desired time-points which should be monitored. Note
that it is automatically assumed that ALL other values in disProgObj can
be used for the estimation, i.e. for a specific value i in range all values
from 1 to i are used for estimation.

k The threshold value. Once the outbreak statistic is above this threshold k an
alarm is sounded.

ret a string specifying the type of upperbound-statistic that is returned. With
"cases" the number of cases that would have been necessary to produce
an alarm (NNBA) or with "value" the outbreakP-statistic is computed (see
below).

maxUpperboundCases Upperbound when numerically searching for NNBA. De-
fault is 1e5.

Details

A generalized likelihood ratio test based on the Poisson distribution is implemented where the
means of the in-control and out-of-control states are computed by isotonic regression.

OutbreakP (s) =

s∏
t=1

(
µ̂C1(t)

µ̂D(t)

)x(t)

where µ̂C1(t) is the estimated mean obtained by uni-modal regression under the assumption of one
change-point and µ̂D(t) is the estimated result when there is no change-point (i.e. this is just the
mean of all observations). Note that the contrasted hypothesis assume all means are equal until
the change-point, i.e. this detection method is especially suited for detecting a shift from a relative
constant mean. Hence, this is less suited for detection in diseases with strong seasonal endemic
component. Onset of influenza detection is an example where this method works particular well.

In case control$ret == "cases" then a brute force numerical search for the number needed before
alarm (NNBA) is performed. That is, given the past observations, what’s the minimum number
which would have caused an alarm? Note: Computing this might take a while because the search
is done by sequentially increasing/decreasing the last observation by one for each time point in
control$range and then calling the workhorse function of the algorithm again. The argument
control$maxUpperboundCases controls the upper limit of this search (default is 1e5). Currently,
even though the statistic has passed the threshold, the NNBA is still computed. After a few time
instances what typically happens is that no matter the observed value we would have an alarm at
this time point. In this case the value of NNBA is set to NA. Furthermore, the first time point is
always NA, unless k<1.

Value

algo.outbreakP gives a list of class survRes which includes the vector of alarm values for every
time-point in range, the vector of threshold values for every time-point in range.

algo.quality 33

Author(s)

M. Höhle – based on Java code by M. Frisen and L. Schiöler

Source

The code is an extended R port of the Java code by Marianne Frisén and Linus Schiöler from the
Computer Assisted Search For Epidemics (CASE) project, formerly available from https://case.folkhalsomyndigheten.se/
under the GNU GPL License v3.

An additional feature of the R code is that it contains a search for NNBA (see details).

References

Frisén, M., Andersson and Schiöler, L., (2009), Robust outbreak surveillance of epidemics in Swe-
den, Statistics in Medicine, 28(3):476-493.

Frisén, M. and Andersson, E., (2009) Semiparametric Surveillance of Monotonic Changes, Sequen-
tial Analysis 28(4):434-454.

Examples

#Use data from outbreakP manual (http://www.hgu.gu.se/item.aspx?id=16857)
y <- matrix(c(1,0,3,1,2,3,5,4,7,3,5,8,16,23,33,34,48),ncol=1)

#Generate sts object with these observations
mysts <- sts(y, alarm=y*0)

#Run the algorithm and present results
#Only the value of outbreakP statistic
upperbound(outbreakP(mysts, control=list(range=1:length(y),k=100,

ret="value")))

#Graphical illustration with number-needed-before-alarm (NNBA) upperbound.
res <- outbreakP(mysts, control=list(range=1:length(y),k=100,

ret="cases"))
plot(res,dx.upperbound=0,lwd=c(1,1,3),legend.opts=list(legend=c("Infected",

"NNBA","Outbreak","Alarm"),horiz=TRUE))

algo.quality Computation of Quality Values for a Surveillance System Result

Description

Computation of the quality values for a surveillance system output.

Usage

algo.quality(sts, penalty = 20)

34 algo.quality

Arguments

sts object of class survRes or sts, which includes the state chain and the computed
alarm chain

penalty the maximal penalty for the lag

Details

The lag is defined as follows: In the state chain just the beginnings of an outbreak chain (outbreaks
directly following each other) are considered. In the alarm chain, the range from the beginning of
an outbreak until min(next outbreak beginning, penalty) timepoints is considered. The penalty
timepoints were chosen, to provide an upper bound on the penalty for not discovering an outbreak.
Now the difference between the first alarm by the system and the defined beginning is denoted “the
lag”. Additionally outbreaks found by the system are not punished. At the end, the mean of the lags
for every outbreak chain is returned as summary lag.

Value

an object of class "algoQV", which is a list of quality values:

TP Number of correct found outbreaks.

FP Number of false found outbreaks.

TN Number of correct found non outbreaks.

FN Number of false found non outbreaks.

sens True positive rate, meaning TP/(FN + TP).

spec True negative rate, meaning TN/(TN + FP).

dist Euclidean distance between (1-spec, sens) to (0,1).

lag Lag of the outbreak recognizing by the system.

See Also

algo.compare

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

Compute the list of quality values
quality <- algo.quality(survResObj)
quality # the list is printed in matrix form

Format as an "xtable", which is printed with LaTeX markup (by default)

algo.rki 35

library("xtable")
xtable(quality)

algo.rki The system used at the RKI

Description

Evaluation of timepoints with the detection algorithms used by the RKI

Usage

algo.rkiLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 2, w = 4, actY = FALSE))

algo.rki(disProgObj, control = list(range = range,
b = 2, w = 4, actY = FALSE))

algo.rki1(disProgObj, control = list(range = range))
algo.rki2(disProgObj, control = list(range = range))
algo.rki3(disProgObj, control = list(range = range))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which should be evaluated in algo.rkiLatestTimepoint. The de-
fault is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, w is
the half window width for the reference values around the appropriate timepoint
and actY is a boolean to decide if the year of timePoint also spend w reference
values of the past. As default b, w, actY are set for the RKI 3 system.

Details

Using the reference values for calculating an upper limit (threshold), alarm is given if the actual
value is bigger than a computed threshold. algo.rki calls algo.rkiLatestTimepoint for the val-
ues specified in range and for the system specified in control. algo.rki1 calls algo.rkiLatestTimepoint
for the values specified in range for the RKI 1 system. algo.rki2 calls algo.rkiLatestTimepoint
for the values specified in range for the RKI 2 system. algo.rki3 calls algo.rkiLatestTimepoint
for the values specified in range for the RKI 3 system.

• "RKI 1" reference values from 6 weeks ago

• "RKI 2" reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical around
the comparable week).

• "RKI 3" 18 reference values. 9 from the year ago and 9 from two years ago (also symmetrical
around the comparable week).

36 algo.rogerson

Value

algo.rkiLatestTimepoint returns a list of class survRes (surveillance result), which includes
the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for
recognizing the alarm and the input object of class disProg.

algo.rki gives a list of class survRes which includes the vector of alarm values for every timepoint
in range, the vector of threshold values for every timepoint in range for the system specified by
b, w and actY, the range and the input object of class disProg. algo.rki1 returns the same for the
RKI 1 system, algo.rki2 for the RKI 2 system and algo.rki3 for the RKI 3 system.

Author(s)

M. Höhle, A. Riebler, Christian Lang

See Also

algo.bayesLatestTimepoint and algo.bayes for the Bayes system.

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Test week 200 to 208 for outbreaks with a selfdefined rki
algo.rki(disProgObj, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE))
The same for rki 1 to rki 3
algo.rki1(disProgObj, control = list(range = 200:208))
algo.rki2(disProgObj, control = list(range = 200:208))
algo.rki3(disProgObj, control = list(range = 200:208))

Test for rki 1 the latest timepoint
algo.rkiLatestTimepoint(disProgObj)

algo.rogerson Modified CUSUM method as proposed by Rogerson and Yamada
(2004)

Description

Modified Poisson CUSUM method that allows for a time-varying in-control parameter θ0,t as pro-
posed by Rogerson and Yamada (2004). The same approach can be applied to binomial data if
distribution="binomial" is specified.

algo.rogerson 37

Usage

algo.rogerson(disProgObj, control = list(range = range,
theta0t = NULL, ARL0 = NULL, s = NULL, hValues = NULL,
distribution = c("poisson","binomial"), nt = NULL, FIR=FALSE,
limit = NULL, digits = 1))

Arguments

disProgObj object of class disProg that includes a matrix with the observed number of
counts

control list with elements

range vector of indices in the observed matrix of disProgObj to monitor
theta0t matrix with in-control parameter, must be specified
ARL0 desired average run length γ
s change to detect, see findH for further details
hValues matrix with decision intervals h for a sequence of values θ0,t (in the

range of theta0t)
distribution "poisson" or "binomial"
nt optional matrix with varying sample sizes for the binomial CUSUM
FIR a FIR CUSUM with head start h/2 is applied to the data if TRUE, otherwise

no head start is used; see details
limit numeric that determines the procedure after an alarm is given, see details
digits the reference value and decision interval are rounded to digits decimal

places. Defaults to 1 and should correspond to the number of digits used to
compute hValues

Details

The CUSUM for a sequence of Poisson or binomial variates xt is computed as

St = max{0, St−1 + ct(xt − kt)}, t = 1, 2, . . . ,

where S0 = 0 and ct = h/ht; kt and ht are time-varying reference values and decision intervals.
An alarm is given at time t if St ≥ h.

If FIR=TRUE, the CUSUM starts with a head start value S0 = h/2 at time t = 0. After an alarm is
given, the FIR CUSUM starts again at this head start value.

The procedure after the CUSUM gives an alarm can be determined by limit. Suppose that the
CUSUM signals at time t, i.e. St ≥ h. For numeric values of limit, the CUSUM is bounded above
after an alarm is given, i.e. St is set to min{limit ·h, St}. Using limit=0 corresponds to resetting
St to zero after an alarm as proposed in the original formulation of the CUSUM. If FIR=TRUE, St is
reset to h/2 (i.e. limit=h/2). If limit=NULL, no resetting occurs after an alarm is given.

Value

Returns an object of class survRes with elements

alarm indicates whether the CUSUM signaled at time t or not (1 = alarm, 0 = no alarm)

38 algo.summary

upperbound CUSUM values St
disProgObj disProg object

control list with the alarm threshold h and the specified control object

Note

algo.rogerson is a univariate CUSUM method. If the data are available in several regions (i.e.
observed is a matrix), multiple univariate CUSUMs are applied to each region.

References

Rogerson, P. A. and Yamada, I. Approaches to Syndromic Surveillance When Data Consist of Small
Regional Counts. Morbidity and Mortality Weekly Report, 2004, 53/Supplement, 79-85

See Also

hValues

Examples

simulate data (seasonal Poisson)
set.seed(123)
t <- 1:300
lambda <- exp(-0.5 + 0.4 * sin(2*pi*t/52) + 0.6 * cos(2*pi*t/52))
data <- sts(observed = rpois(length(lambda), lambda))

determine a matrix with h values
hVals <- hValues(theta0 = 10:150/100, ARL0=500, s = 1, distr = "poisson")

convert to legacy "disProg" class and apply modified Poisson CUSUM
disProgObj <- sts2disProg(data)
res <- algo.rogerson(disProgObj, control=c(hVals, list(theta0t=lambda, range=1:300)))
plot(res, xaxis.years = FALSE)

algo.summary Summary Table Generation for Several Disease Chains

Description

Summary table generation for several disease chains.

Usage

algo.summary(compMatrices)

Arguments

compMatrices list of matrices constructed by algo.compare.

algo.twins 39

Details

As lag the mean of all single lags is returned. TP values, FN values, TN values and FP values are
summed up. dist, sens and spec are new computed on the basis of the new TP value, FN value,
TN value and FP value.

Value

a matrix summing up the singular input matrices

See Also

algo.compare, algo.quality

Examples

Create a test object
disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 17)

Let this object be tested from any methods in range = 200:400
range <- 200:400
control <- list(list(funcName = "rki1", range = range),

list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range))

compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))
compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))
compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

algo.summary(list(a=compMatrix1, b=compMatrix2, c=compMatrix3))

algo.twins Fit a Two-Component Epidemic Model using MCMC

Description

Fits a negative binomial model as described in Held et al. (2006) to an univariate time series of
counts.

This is an experimental implementation that may be removed in future versions of the package.

40 algo.twins

Usage

algo.twins(disProgObj, control=list(burnin=1000, filter=10,
sampleSize=2500, noOfHarmonics=1, alpha_xi=10, beta_xi=10,
psiRWSigma=0.25,alpha_psi=1, beta_psi=0.1, nu_trend=FALSE,
logFile="twins.log"))

Arguments

disProgObj object of class disProg

control control object:

burnin Number of burn in samples.
filter Thinning parameter. If filter = 10 every 10th sample is after the burn

in is returned.
sampleSize Number of returned samples. Total number of samples = burnin+filter*sampleSize
noOfHarmonics Number of harmonics to use in the modelling, i.e. L in (2.2)

of Held et al (2006).
alpha_xi Parameter αξ of the hyperprior of the epidemic parameter λ
beta_xi Parameter βξ of the hyperprior of the epidemic parameter λ
psiRWSigma Starting value for the tuning of the variance of the random walk

proposal for the overdispersion parameter ψ.
alpha_psi Parameter αψ of the prior of the overdispersion parameter ψ
beta_psi Parameter βψ of the prior of the overdispersion parameter ψ
nu_trend Adjust for a linear trend in the endemic part? (default: FALSE)
logFile Base file name for the output files. The function writes three output

files in the current working directory getwd(). If logfile = "twins.log"
the results are stored in the three files ‘twins.log’, ‘twins.log2’ and
‘twins.log.acc’.
‘twins.log’ contains the returned samples of the parameters ψ, γ0, γ1, γ2,
K, ξλ λ1, ..., λn, the predictive distribution of the number of cases at time
n+ 1 and the deviance.
‘twins.log2’ contains the sample means of the variables Xt, Yt, ωt and
the relative frequency of a changepoint at time t for t=1,...,n and the relative
frequency of a predicted changepoint at time n+1.
‘twins.log.acc’ contains the acceptance rates of ψ, the changepoints and
the endemic parameters γ0, γ1, γ2 in the third column and the variance of
the random walk proposal for the update of the parameter ψ in the second
column.

Value

Returns an object of class atwins with elements

control specified control object

disProgObj specified disProg-object

logFile contains the returned samples of the parameters ψ, γ0, γ1, γ2, K, ξλ λ1, ..., λn,
the predictive distribution and the deviance.

algo.twins 41

logFile2 contains the sample means of the variables Xt, Yt, ωt and the relative frequency
of a changepoint at time t for t=1,...,n and the relative frequency of a predicted
changepoint at time n+1.

Note

This function is not a surveillance algorithm, but only a modelling approach as described in the
Held et. al (2006) paper.

Note also that the function writes three logfiles in the current working directory getwd(): ‘twins.log’,
‘twins.log.acc’ and ‘twins.log2’. Thus you need to have write permissions in the current work-
ing directory.

Author(s)

M. Hofmann and M. Höhle and D. Sabanés Bové

References

Held, L., Hofmann, M., Höhle, M. and Schmid V. (2006): A two-component model for counts of
infectious diseases. Biostatistics, 7, pp. 422–437.

Examples

Load the data used in the Held et al. (2006) paper
data("hepatitisA")

Fix seed - this is used for the MCMC samplers in twins
set.seed(123)

Call algorithm and save result (use short chain without filtering for speed)
oldwd <- setwd(tempdir()) # where logfiles will be written
otwins <- algo.twins(hepatitisA,

control=list(burnin=500, filter=1, sampleSize=1000))
setwd(oldwd)

This shows the entire output (use ask=TRUE for pause between plots)
plot(otwins, ask=FALSE)

Direct access to MCMC output
hist(otwins$logFile$psi,xlab=expression(psi),main="")
if (require("coda")) {

print(summary(mcmc(otwins$logFile[,c("psi","xipsi","K")])))
}

42 animate

all.equal Test if Two Model Fits are (Nearly) Equal

Description

Two model fits are compared using standard all.equal-methods after discarding certain elements
considered irrelevant for the equality of the fits, e.g., the runtime and the call.

Usage

S3 method for class 'twinstim'
all.equal(target, current, ..., ignore = NULL)

S3 method for class 'hhh4'
all.equal(target, current, ..., ignore = NULL)

Arguments

target, current the model fits to be compared.

... further arguments for standard all.equal-methods, e.g., the numerical tolerance.

ignore an optional character vector of elements to ignore when comparing the two fitted
objects. The following elements are always ignored: "runtime" and "call".

Value

Either TRUE or a character vector describing differences between the target and the current model
fit.

Author(s)

Sebastian Meyer

animate Generic animation of spatio-temporal objects

Description

Generic function for animation of R objects.

Usage

animate(object, ...)

anscombe.residuals 43

Arguments

object The object to animate.

... Arguments to be passed to methods, such as graphical parameters or time inter-
val options for the snapshots.

See Also

The methods animate.epidata, animate.epidataCS, and animate.sts for the animation of
surveillance data.

anscombe.residuals Compute Anscombe Residuals

Description

Compute Anscombe residuals from a fitted glm, which makes them approximately standard normal
distributed.

Usage

anscombe.residuals(m, phi)

Arguments

m a fitted "glm"

phi the current estimated overdispersion

Value

The standardized Anscombe residuals of m

References

McCullagh & Nelder, Generalized Linear Models, 1989

44 arlCusum

arlCusum Calculation of Average Run Length for discrete CUSUM schemes

Description

Calculates the average run length (ARL) for an upward CUSUM scheme for discrete distributions
(i.e. Poisson and binomial) using the Markov chain approach.

Usage

arlCusum(h=10, k=3, theta=2.4, distr=c("poisson","binomial"),
W=NULL, digits=1, ...)

Arguments

h decision interval

k reference value

theta distribution parameter for the cumulative distribution function (cdf) F , i.e. rate
λ for Poisson variates or probability p for binomial variates

distr "poisson" or "binomial"

W Winsorizing value W for a robust CUSUM, to get a nonrobust CUSUM set W >
k+h. If NULL, a nonrobust CUSUM is used.

digits k and h are rounded to digits decimal places

... further arguments for the distribution function, i.e. number of trials n for bino-
mial cdf

Value

Returns a list with the ARL of the regular (zero-start) and the fast initial response (FIR) CUSUM
scheme with reference value k, decision interval h forX ∼ F (θ), where F is the Poisson or binomial
CDF.

ARL one-sided ARL of the regular (zero-start) CUSUM scheme

FIR.ARL one-sided ARL of the FIR CUSUM scheme with head start h
2

Source

Based on the FORTRAN code of

Hawkins, D. M. (1992). Evaluation of Average Run Lengths of Cumulative Sum Charts for an
Arbitrary Data Distribution. Communications in Statistics - Simulation and Computation, 21(4), p.
1001-1020.

backprojNP 45

backprojNP Non-parametric back-projection of incidence cases to exposure cases
using a known incubation time as in Becker et al (1991)

Description

The function is an implementation of the non-parametric back-projection of incidence cases to ex-
posure cases described in Becker et al. (1991). The method back-projects exposure times from
a univariate time series containing the number of symptom onsets per time unit. Here, the delay
between exposure and symptom onset for an individual is seen as a realization of a random vari-
able governed by a known probability mass function. The back-projection function calculates the
expected number of exposures λt for each time unit under the assumption of a Poisson distribution,
but without any parametric assumption on how the λt evolve in time.

Furthermore, the function contains a bootstrap based procedure, as given in Yip et al (2011), which
allows an indication of uncertainty in the estimated λt. The procedure is equivalent to the suggestion
in Becker and Marschner (1993). However, the present implementation in backprojNP allows only
a univariate time series, i.e. simultaneous age groups as in Becker and Marschner (1993) are not
possible.

The method in Becker et al. (1991) was originally developed for the back-projection of AIDS
incidence, but it is equally useful for analysing the epidemic curve in outbreak situations of a dis-
ease with long incubation time, e.g. in order to qualitatively investigate the effect of intervention
measures.

Usage

backprojNP(sts, incu.pmf,
control = list(k = 2,

eps = rep(0.005,2),
iter.max=rep(250,2),
Tmark = nrow(sts),
B = -1,
alpha = 0.05,
verbose = FALSE,
lambda0 = NULL,
eq3a.method = c("R","C"),
hookFun = function(stsbp) {}),

...)

Arguments

sts an object of class "sts" (or one that can be coerced to that class): contains the
observed number of symptom onsets as a time series.

incu.pmf Probability mass function (PMF) of the incubation time. The PMF is specified
as a vector or matrix with the value of the PMF evaluated at 0, ..., dmax, i.e. note
that the support includes zero. The value of dmax is automatically calculated
as length(incu.pmf)-1 or nrow(incu.pmf)-1. Note that if the sts object has

46 backprojNP

more than one column, then for the backprojection the incubation time is either
recycled for all components or, if it is a matrix with the same number of columns
as the sts object, the k’th column of incu.pmf is used for the backprojection of
the k’th series.

control A list with named arguments controlling the functionality of the non-parametric
back-projection.
k An integer representing the smoothing parameter to use in the smoothing step

of the EMS algorithm. Needs to be an even number.
eps A vector of length two representing the convergence threshold ϵ of the EMS

algorithm, see Details for further information. The first value is the thresh-
old to use in the k = 0 loop, which forms the values for the parametric
bootstrap. The second value is the threshold to use in the actual fit and
bootstrap fitting using the specified k. If k is only of length one, then this
number is replicated twice.

Tmark Numeric with T ′ ≤ T . Upper time limit on which to base convergence,
i.e. only the values λ1, . . . , λT ′ are monitored for convergence. See details.

iter.max The maximum number of EM iterations to do before stopping.
B Number of parametric bootstrap samples to perform from an initial k=0 fit.

For each sample a back projection is performed. See Becker and Marschner
(1993) for details.

alpha (1-α)*100% confidence intervals are computed based on the percentile
method.

verbose (boolean). If true show extra progress and debug information.
lambda0 Start values for lambda. Vector needs to be of the length nrow(sts).
eq3a.method A single character being either "R" or "C" depending on whether

the three nested loops of equation 3a in Becker et al. (1991) are to be exe-
cuted as safe R code (can be extremely slow, however the implementation is
not optimized for speed) or a C code (can be more than 200 times faster!).
However, the C implementation is experimental and can hang R if, e.g., the
time series does not go far enough back.

hookFun Hook function called for each iteration of the EM algorithm. The
function should take a single argument stsbp of class "stsBP" class. It
will be have the lambda set to the current value of lambda. If no action
desired just leave the function body empty (default). Additional arguments
are possible.

... Additional arguments are sent to the hook function.

Details

Becker et al. (1991) specify a non-parametric back-projection algorithm based on the Expectation-
Maximization-Smoothing (EMS) algorithm.

In the present implementation the algorithm iterates until

||λ(k+1) − λ(k)||
||λ(k)||

< ϵ

This is a slight adaptation of the proposals in Becker et al. (1991). If T is the length of λ then one
can avoid instability of the algorithm near the end by considering only the λ’s with index 1, . . . , T ′.

backprojNP 47

See the references for further information.

Value

backprojNP returns an object of "stsBP".

Note

The method is still experimental. A proper plot routine for stsBP objects is currently missing.

Author(s)

Michael Höhle with help by Daniel Sabanés Bové and Sebastian Meyer for eq3a.method = "C"

References

Becker NG, Watson LF and Carlin JB (1991), A method for non-parametric back-projection and its
application to AIDS data, Statistics in Medicine, 10:1527-1542.

Becker NG and Marschner IC (1993), A method for estimating the age-specific relative risk of HIV
infection from AIDS incidence data, Biometrika, 80(1):165-178.

Yip PSF, Lam KF, Xu Y, Chau PH, Xu J, Chang W, Peng Y, Liu Z, Xie X and Lau HY (2011), Re-
construction of the Infection Curve for SARS Epidemic in Beijing, China Using a Back-Projection
Method, Communications in Statistics - Simulation and Computation, 37(2):425-433.

Associations of Age and Sex on Clinical Outcome and Incubation Period of Shiga toxin-producing
Escherichia coli O104:H4 Infections, 2011 (2013), Werber D, King LA, Müller L, Follin P, Buch-
holz U, Bernard H, Rosner BM, Ethelberg S, de Valk H, Höhle M, American Journal of Epidemiol-
ogy, 178(6):984-992.

Examples

#Generate an artificial outbreak of size n starting at time t0 and being of length
n <- 1e3 ; t0 <- 23 ; l <- 10

#PMF of the incubation time is an interval censored gamma distribution
#with mean 15 truncated at 25.
dmax <- 25
inc.pmf <- c(0,(pgamma(1:dmax,15,1.4) - pgamma(0:(dmax-1),15,1.4))/pgamma(dmax,15,1.4))
#Function to sample from the incubation time
rincu <- function(n) {

sample(0:dmax, size=n, replace=TRUE, prob=inc.pmf)
}
#Sample time of exposure and length of incubation time
set.seed(123)
exposureTimes <- t0 + sample(x=0:(l-1),size=n,replace=TRUE)
symptomTimes <- exposureTimes + rincu(n)

#Time series of exposure (truth) and symptom onset (observed)
X <- table(factor(exposureTimes,levels=1:(max(symptomTimes)+dmax)))
Y <- table(factor(symptomTimes,levels=1:(max(symptomTimes)+dmax)))
#Convert Y to an sts object

48 backprojNP

Ysts <- sts(Y)

#Plot the outbreak
plot(Ysts, xaxis.labelFormat=NULL, legend=NULL)
#Add true number of exposures to the plot
lines(1:length(Y)+0.2,X,col="red",type="h",lty=2)

#Helper function to show the EM step
plotIt <- function(cur.sts) {

plot(cur.sts,xaxis.labelFormat=NULL, legend.opts=NULL,ylim=c(0,140))
}

#Call non-parametric back-projection function with hook function but
#without bootstrapped confidence intervals
bpnp.control <- list(k=0,eps=rep(0.005,2),iter.max=rep(250,2),B=-1,hookFun=plotIt,verbose=TRUE)

#Fast C version (use argument: eq3a.method="C")!
sts.bp <- backprojNP(Ysts, incu.pmf=inc.pmf,

control=modifyList(bpnp.control,list(eq3a.method="C")), ylim=c(0,max(X,Y)))

#Show result
plot(sts.bp,xaxis.labelFormat=NULL,legend=NULL,lwd=c(1,1,2),lty=c(1,1,1),main="")
lines(1:length(Y)+0.2,X,col="red",type="h",lty=2)

#Do the convolution for the expectation
mu <- matrix(0,ncol=ncol(sts.bp),nrow=nrow(sts.bp))
#Loop over all series
for (j in 1:ncol(sts.bp)) {

#Loop over all time points
for (t in 1:nrow(sts.bp)) {
#Convolution, note support of inc.pmf starts at zero (move idx by 1)
i <- seq_len(t)
mu[t,j] <- sum(inc.pmf[t-i+1] * upperbound(sts.bp)[i,j],na.rm=TRUE)

}
}
#Show the fit
lines(1:nrow(sts.bp)-0.5,mu[,1],col="green",type="s",lwd=3)

#Non-parametric back-projection including bootstrap CIs
bpnp.control2 <- modifyList(bpnp.control, list(hookFun=NULL, k=2,

B=10, # in practice, use B >= 1000 !
eq3a.method="C"))

sts.bp2 <- backprojNP(Ysts, incu.pmf=inc.pmf, control=bpnp.control2)

##
Plot the result. This is currently a manual routine.
ToDo: Need to specify a plot method for stsBP objects which also
shows the CI.
#
Parameters:
stsBP - object of class stsBP which is to be plotted.
##

bestCombination 49

plot.stsBP <- function(stsBP) {
maxy <- max(observed(stsBP),upperbound(stsBP),stsBP@ci,na.rm=TRUE)
plot(upperbound(stsBP),type="n",ylim=c(0,maxy), ylab="Cases",xlab="time")
if (!all(is.na(stsBP@ci))) {
polygon(c(1:nrow(stsBP),rev(1:nrow(stsBP))),

c(stsBP@ci[2,,1],rev(stsBP@ci[1,,1])),col="lightgray")
}
lines(upperbound(stsBP),type="l",lwd=2)
legend(x="topright",c(expression(lambda[t])),lty=c(1),col=c(1),fill=c(NA),border=c(NA),lwd=c(2))

invisible()
}

#Plot the result of k=0 and add truth for comparison. No CIs available
plot.stsBP(sts.bp)
lines(1:length(Y),X,col=2,type="h")
#Same for k=2
plot.stsBP(sts.bp2)
lines(1:length(Y),X,col=2,type="h")

bestCombination Partition of a number into two factors

Description

Given a prime number factorization x, bestCombination partitions x into two groups, such that the
product of the numbers in group one is as similar as possible to the product of the numbers of group
two. This is useful in magic.dim.

Usage

bestCombination(x)

Arguments

x prime number factorization

Value

a vector c(prod(set1),prod(set2))

50 boda

boda Bayesian Outbreak Detection Algorithm (BODA)

Description

The function takes range values of a univariate surveillance time series sts and for each time point
uses a negative binomial regression model to compute the predictive posterior distribution for the
current observation. The (1 − α) · 100% quantile of this predictive distribution is then used as
bound: If the actual observation is above the bound an alarm is raised. The Bayesian Outbreak
Detection Algorithm (boda) is due to Manitz and Höhle (2013) and its implementation is illustrated
in Salmon et al. (2016). However, boda should be considered as an experiment, see the Warning
section below!

Usage

boda(sts, control = list(
range=NULL, X=NULL, trend=FALSE, season=FALSE,
prior=c('iid','rw1','rw2'), alpha=0.05, mc.munu=100,
mc.y=10, verbose=FALSE,
samplingMethod=c('joint','marginals'),
quantileMethod=c("MC","MM")

))

Arguments

sts object of class sts (including the observed and the state time series)

control Control object given as a list containing the following components:

range Specifies the index of all timepoints which should be tested. If range is
NULL all possible timepoints are used.

X

trend Boolean indicating whether a linear trend term should be included in the
model for the expectation the log-scale

season Boolean to indicate whether a cyclic spline should be included.
alpha The threshold for declaring an observed count as an aberration is the

(1− α) · 100% quantile of the predictive posterior.
mc.munu

mc.y Number of samples of y to generate for each par of the mean and size
parameter. A total of mc.munu×mc.y samples are generated.

verbose Argument sent to the inla call. When using ESS it might be necessary
to force verbose mode for INLA to work.

samplingMethod Should one sample from the parameters joint distribution (joint)
or from their respective marginal posterior distribution (marginals)?

quantileMethod Character, either MC or MM. Indicates how to compute the quan-
tile based on the posterior distribution (no matter the inference method):
either by sampling mc.munu values from the posterior distribution of the

boda 51

parameters and then for each sampled parameters vector sampling mc.y re-
sponse values so that one gets a vector of response values based on which
one computes an empirical quantile (MC method, as explained in Manitz
and Höhle 2013); or by sampling mc.munu from the posterior distribution
of the parameters and then compute the quantile of the mixture distribution
using bisectioning, which is faster.

Warning

This function is currently experimental!! It also heavily depends on the INLA package so changes
there might affect the operational ability of this function. Since the computations for the Bayesian
GAM are quite involved do not expect this function to be particularly fast.

Results are not reproducible if INLA uses parallelization (as by default); set INLA::inla.setOption(num.threads
= "1:1") to avoid that, then do set.seed as usual.

Note

This function requires the R package INLA, which is currently not available from CRAN. It can be
obtained from INLA’s own repository via install.packages("INLA", repos="https://inla.r-inla-download.org/R/stable").

Author(s)

J. Manitz, M. Höhle, M. Salmon

References

Manitz, J. and Höhle, M. (2013): Bayesian outbreak detection algorithm for monitoring reported
cases of campylobacteriosis in Germany. Biometrical Journal, 55(4), 509-526.

Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/
jss.v070.i10

Examples

Not run:
running this example takes a couple of minutes

#Load the campylobacteriosis data for Germany
data("campyDE")
#Make an sts object from the data.frame
cam.sts <- sts(epoch=campyDE$date,

observed=campyDE$case, state=campyDE$state)

#Define monitoring period
range <- which(epoch(cam.sts)>=as.Date("2007-01-01"))
range <- which(epoch(cam.sts)>=as.Date("2011-12-10"))

range <- tail(1:nrow(cam.sts),n=2)

control <- list(range=range, X=NULL, trend=TRUE, season=TRUE,
prior='iid', alpha=0.025, mc.munu=100, mc.y=10,

https://doi.org/10.18637/jss.v070.i10
https://doi.org/10.18637/jss.v070.i10

52 bodaDelay

samplingMethod = "joint")

#Apply the boda algorithm in its simples form, i.e. spline is
#described by iid random effects and no extra covariates
library("INLA") # needs to be attached
cam.boda1 <- boda(cam.sts, control=control)

plot(cam.boda1, xlab='time [weeks]', ylab='No. reported', dx.upperbound=0)

End(Not run)

bodaDelay Bayesian Outbreak Detection in the Presence of Reporting Delays

Description

The function takes range values of the surveillance time series sts and for each time point uses a
Bayesian model of the negative binomial family with log link inspired by the work of Noufaily et al.
(2012) and of Manitz and Höhle (2014). It allows delay-corrected aberration detection as explained
in Salmon et al. (2015). A reportingTriangle has to be provided in the control slot.

Usage

bodaDelay(sts, control = list(
range = NULL, b = 5, w = 3, mc.munu = 100, mc.y = 10,
pastAberrations = TRUE, verbose = FALSE,
alpha = 0.05, trend = TRUE, limit54 = c(5,4),
inferenceMethod = c("asym","INLA"), quantileMethod = c("MC","MM"),
noPeriods = 1, pastWeeksNotIncluded = NULL, delay = FALSE))

Arguments

sts sts-object to be analysed. Needs to have a reporting triangle.

control list of control arguments:

b How many years back in time to include when forming the base counts.
w Window’s half-size, i.e. number of weeks to include before and after the

current week in each year.
range Specifies the index of all timepoints which should be tested. If range is

NULL all possible timepoints are used.
pastAberrations Boolean indicating whether to include an effect for past out-

breaks in a second fit of the model. This option only makes sense if inferenceMethod
is INLA, as it is not supported by the other inference method.

verbose Boolean specifying whether to show extra debugging information.
alpha An approximate (one-sided) (1 − α) · 100% prediction interval is cal-

culated unlike the original method where it was a two-sided interval. The
upper limit of this interval i.e. the (1 − α) · 100% quantile serves as an
upperbound.

bodaDelay 53

trend Boolean indicating whether a trend should be included
noPeriods Number of levels in the factor allowing to use more baseline. If

equal to 1 no factor variable is created, the set of reference values is defined
as in Farrington et al (1996).

inferenceMethod Which inference method used, as defined in Salmon et al.
(2015). If one chooses "INLA" then inference is performed with INLA. If
one chooses "asym" (default) then the asymptotic normal approximation of
the posteriori is used.

pastWeeksNotIncluded Number of past weeks to ignore in the calculation.
The default (NULL) means to use the value of control$w.

delay Boolean indicating whether to take reporting delays into account.
mc.munu Number of samples for the parameters of the negative binomial distri-

bution for calculating a threshold
mc.y Number of samples for observations when performing Monte Carlo to

calculate a threshold
limit54 c(cases,period) is a vector allowing the user to change these numbers.
quantileMethod Character, either "MC" (default) or "MM". Indicates how to

compute the quantile based on the posterior distribution (no matter the in-
ference method): either by sampling mc.munu values from the posterior
distribution of the parameters and then for each sampled parameters vector
sampling mc.y response values so that one gets a vector of response values
based on which one computes an empirical quantile (MC method, as ex-
plained in Salmon et al. 2015); or by sampling mc.munu from the posterior
distribution of the parameters and then compute the quantile of the mixture
distribution using bisectioning, which is faster.

References

Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

Salmon, M., Schumacher, D., Stark, K., Höhle, M. (2015): Bayesian outbreak detection in the
presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067.

Examples

Not run:
data("stsNewport")
salm.Normal <- list()
salmDelayAsym <- list()
for (week in 43:45){
listWeeks <- as.Date(row.names(stsNewport@control$reportingTriangle$n))
dateObs <- listWeeks[isoWeekYear(listWeeks)$ISOYear==2011 &

isoWeekYear(listWeeks)$ISOWeek==week]
stsC <- sts_observation(stsNewport,

dateObservation=dateObs,

54 calibrationTest

cut=TRUE)
inWeeks <- with(isoWeekYear(epoch(stsC)),

ISOYear == 2011 & ISOWeek >= 40 & ISOWeek <= 48)

rangeTest <- which(inWeeks)
alpha <- 0.07

Control slot for Noufaily method
controlNoufaily <- list(range=rangeTest,noPeriods=10,

b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26,
pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=alpha*2,
limit54=c(0,50))

Control slot for the Proposed algorithm with D=0 correction
controlNormal <- list(range = rangeTest, b = 4, w = 3,

reweight = TRUE, mc.munu=10000, mc.y=100,
verbose = FALSE,
alpha = alpha, trend = TRUE,
limit54=c(0,50),
noPeriods = 10, pastWeeksNotIncluded = 26,
delay=FALSE)

Control slot for the Proposed algorithm with D=10 correction
controlDelayNorm <- list(range = rangeTest, b = 4, w = 3,

reweight = FALSE, mc.munu=10000, mc.y=100,
verbose = FALSE,
alpha = alpha, trend = TRUE,
limit54=c(0,50),
noPeriods = 10, pastWeeksNotIncluded = 26,
delay=TRUE,inferenceMethod="asym")

set.seed(1)
salm.Normal[[week]] <- farringtonFlexible(stsC, controlNoufaily)
salmDelayAsym[[week]] <- bodaDelay(stsC, controlDelayNorm)

}

opar <- par(mfrow=c(2,3))
lapply(salmDelayAsym[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35))
lapply(salm.Normal[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35))
par(opar)

End(Not run)

calibrationTest Calibration Tests for Poisson or Negative Binomial Predictions

Description

The implemented calibration tests for Poisson or negative binomial predictions of count data are
based on proper scoring rules and described in detail in Wei and Held (2014). The following proper

calibrationTest 55

scoring rules are available: Dawid-Sebastiani score ("dss"), logarithmic score ("logs"), ranked
probability score ("rps").

Usage

calibrationTest(x, ...)

Default S3 method:
calibrationTest(x, mu, size = NULL,

which = c("dss", "logs", "rps"),
tolerance = 1e-4, method = 2, ...)

Arguments

x the observed counts. All involved functions are vectorized and also accept ma-
trices or arrays.

mu the means of the predictive distributions for the observations x.
size either NULL (default), indicating Poisson predictions with mean mu, or dispersion

parameters of negative binomial forecasts for the observations x, parametrized
as in dnbinom with variance mu*(1+mu/size).

which a character string indicating which proper scoring rule to apply.
tolerance absolute tolerance for the null expectation and variance of "logs" and "rps".

For the latter, see the note below. Unused for which = "dss" (closed form).
method selection of the z-statistic: method = 2 refers to the alternative test statistic Z∗

s of
Wei and Held (2014, Discussion), which has been recommended for low counts.
method = 1 corresponds to Equation 5 in Wei and Held (2014).

... unused (argument of the generic).

Value

an object of class "htest", which is a list with the following components:

method a character string indicating the type of test performed (including which scoring
rule).

data.name a character string naming the supplied x argument.
statistic the z-statistic of the test.
parameter the number of predictions underlying the test, i.e., length(x).
p.value the p-value for the test.

Note

If the gsl package is installed, its implementations of the Bessel and hypergeometric functions are
used when calculating the null expectation and variance of the rps. These functions are faster and
yield more accurate results (especially for larger mu).

Author(s)

Sebastian Meyer and Wei Wei

https://CRAN.R-project.org/package=gsl

56 campyDE

References

Wei, W. and Held, L. (2014): Calibration tests for count data. Test, 23, 787-805.

Examples

mu <- c(0.1, 1, 3, 6, pi, 100)
size <- 0.1
set.seed(1)
y <- rnbinom(length(mu), mu = mu, size = size)
calibrationTest(y, mu = mu, size = size) # p = 0.99
calibrationTest(y, mu = mu, size = 1) # p = 4.3e-05
calibrationTest(y, mu = 1, size = size) # p = 0.6959
calibrationTest(y, mu = 1, size = size, which = "rps") # p = 0.1286

campyDE Campylobacteriosis and Absolute Humidity in Germany 2002-2011

Description

Weekly number of reported campylobacteriosis cases in Germany, 2002-2011, together with the
corresponding absolute humidity (in g/m^3) that week. The absolute humidity was computed ac-
cording to the procedure by Dengler (1997) using the means of representative weather station data
from the German Climate service.

Usage

data(campyDE)

Format

A data.frame containing the following columns

date Date instance containing the Monday of the reporting week.

case Number of reported cases that week.

state Boolean indicating whether there is external knowledge about an outbreak that week

hum Mean absolute humidity (in g/m^3) of that week as measured by a single representative weather
station.

l1.hum-l5.hum Lagged version (lagged by 1-5) of the hum covariate.

newyears Boolean indicating whether the reporting week corresponds to the first two weeks of
the year (TRUE) or not (FALSE). Note: The first week of a year is here defined as the first
reporting week, which has its corresponding Monday within new year.

christmas Boolean indicating whether the reporting week corresponds to the last two weeks of the
year (TRUE) or not (FALSE). Note: This are the first two weeks before the newyears weeks.

O104period Boolean indicating whether the reporting week corresponds to the W21-W30 period
of increased gastroenteritis awareness during the O104:H4 STEC outbreak.

categoricalCUSUM 57

Source

The data on campylobacteriosis cases have been queried from the Survstat@RKI database of the
German Robert Koch Institute (https://survstat.rki.de/).

Data for the computation of absolute humidity were obtained from the German Climate Service
(Deutscher Wetterdienst), Climate data of Germany, available at https://www.dwd.de.

A complete data description and an analysis of the data can be found in Manitz and Höhle (2013).

References

Manitz, J. and Höhle, M. (2013): Bayesian outbreak detection algorithm for monitoring reported
cases of campylobacteriosis in Germany. Biometrical Journal, 55(4), 509-526.

Examples

Load the data
data("campyDE")

O104 period is W21-W30 in 2011
stopifnot(all(campyDE$O104period == (

(campyDE$date >= as.Date("2011-05-23")) &
(campyDE$date < as.Date("2011-07-31"))

)))

Make an sts object from the data.frame
cam.sts <- sts(epoch=campyDE$date, observed=campyDE$case, state=campyDE$state)

Plot the result
plot(cam.sts)

categoricalCUSUM CUSUM detector for time-varying categorical time series

Description

Function to process sts object by binomial, beta-binomial or multinomial CUSUM as described by
Höhle (2010). Logistic, multinomial logistic, proportional odds or Bradley-Terry regression models
are used to specify in-control and out-of-control parameters. The implementation is illustrated in
Salmon et al. (2016).

Usage

categoricalCUSUM(stsObj,control = list(range=NULL,h=5,pi0=NULL,
pi1=NULL, dfun=NULL, ret=c("cases","value")),...)

https://survstat.rki.de/
https://www.dwd.de

58 categoricalCUSUM

Arguments

stsObj Object of class sts containing the number of counts in each of the k categories
of the response variable. Time varying number of counts nt is found in slot
populationFrac.

control Control object containing several items

range Vector of length tmax with indices of the observed slot to monitor.
h Threshold to use for the monitoring. Once the CUSUM statistics is larger or

equal to h we have an alarm.
pi0 (k − 1) × tmax in-control probability vector for all categories except the

reference category.
mu1 (k − 1) × tmax out-of-control probability vector for all categories except

the reference category.
dfun The probability mass function (PMF) or density used to compute the

likelihood ratios of the CUSUM. In a negative binomial CUSUM this is
dnbinom, in a binomial CUSUM dbinom and in a multinomial CUSUM
dmultinom. The function must be able to handle the arguments y, size,
mu and log. As a consequence, one in the case of, e.g, the beta-binomial
distribution has to write a small wrapper function.

ret Return the necessary proportion to sound an alarm in the slot upperbound
or just the value of the CUSUM statistic. Thus, ret is one of the values
in c("cases","value"). Note: For the binomial PMF it is possible to
compute this value explicitly, which is much faster than the numeric search
otherwise conducted. In case dfun just corresponds to dbinom just set the
attribute isBinomialPMF for the dfun object.

... Additional arguments to send to dfun.

Details

The function allows the monitoring of categorical time series as described by regression models for
binomial, beta-binomial or multinomial data. The later includes e.g. multinomial logistic regression
models, proportional odds models or Bradley-Terry models for paired comparisons. See the Höhle
(2010) reference for further details about the methodology.

Once an alarm is found the CUSUM scheme is reset (to zero) and monitoring continues from there.

Value

An sts object with observed, alarm, etc. slots trimmed to the control$range indices.

Author(s)

M. Höhle

References

Höhle, M. (2010): Online Change-Point Detection in Categorical Time Series. In: T. Kneib and G.
Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag.

categoricalCUSUM 59

Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/
jss.v070.i10

See Also

LRCUSUM.runlength

Examples

IGNORE_RDIFF_BEGIN
have_GAMLSS <- require("gamlss")
IGNORE_RDIFF_END

if (have_GAMLSS) {
###
#Beta-binomial CUSUM for a small example containing the time-varying
#number of positive test out of a time-varying number of total
#test.
#######################################

#Load meat inspection data
data("abattoir")

#Use GAMLSS to fit beta-bin regression model
phase1 <- 1:(2*52)
phase2 <- (max(phase1)+1) : nrow(abattoir)

#Fit beta-binomial model using GAMLSS
abattoir.df <- as.data.frame(abattoir)

#Replace the observed and epoch column names to something more convenient
dict <- c("observed"="y", "epoch"="t", "population"="n")
replace <- dict[colnames(abattoir.df)]
colnames(abattoir.df)[!is.na(replace)] <- replace[!is.na(replace)]

m.bbin <- gamlss(cbind(y,n-y) ~ 1 + t +
+ sin(2*pi/52*t) + cos(2*pi/52*t) +
+ sin(4*pi/52*t) + cos(4*pi/52*t), sigma.formula=~1,

family=BB(sigma.link="log"),
data=abattoir.df[phase1,c("n","y","t")])

#CUSUM parameters
R <- 2 #detect a doubling of the odds for a test being positive
h <- 4 #threshold of the cusum

#Compute in-control and out of control mean
pi0 <- predict(m.bbin,newdata=abattoir.df[phase2,c("n","y","t")],type="response")
pi1 <- plogis(qlogis(pi0)+log(R))
#Create matrix with in control and out of control proportions.
#Categories are D=1 and D=0, where the latter is the reference category
pi0m <- rbind(pi0, 1-pi0)

https://doi.org/10.18637/jss.v070.i10
https://doi.org/10.18637/jss.v070.i10

60 checkResidualProcess

pi1m <- rbind(pi1, 1-pi1)

##
Use the multinomial surveillance function. To this end it is necessary
to create a new abattoir object containing counts and proportion for
each of the k=2 categories. For binomial data this appears a bit
redundant, but generalizes easier to k>2 categories.
##

abattoir2 <- sts(epoch=1:nrow(abattoir), start=c(2006,1), freq=52,
observed=cbind(abattoir@observed, abattoir@populationFrac-abattoir@observed),
populationFrac=cbind(abattoir@populationFrac,abattoir@populationFrac),
state=matrix(0,nrow=nrow(abattoir),ncol=2),
multinomialTS=TRUE)

##
#Function to use as dfun in the categoricalCUSUM
#(just a wrapper to the dBB function). Note that from v 3.0-1 the
#first argument of dBB changed its name from "y" to "x"!
##
mydBB.cusum <- function(y, mu, sigma, size, log = FALSE) {

return(dBB(y[1,], mu = mu[1,], sigma = sigma, bd = size, log = log))
}

#Create control object for multinom cusum and use the categoricalCUSUM
#method
control <- list(range=phase2,h=h,pi0=pi0m, pi1=pi1m, ret="cases",
dfun=mydBB.cusum)
surv <- categoricalCUSUM(abattoir2, control=control,
sigma=exp(m.bbin$sigma.coef))

#Show results
plot(surv[,1],dx.upperbound=0)
lines(pi0,col="green")
lines(pi1,col="red")

#Index of the alarm
which.max(alarms(surv[,1]))

}

checkResidualProcess Check the residual process of a fitted twinSIR or twinstim

Description

Transform the residual process (cf. the residuals methods for classes "twinSIR" and "twinstim")
such that the transformed residuals should be uniformly distributed if the fitted model well describes

checkResidualProcess 61

the true conditional intensity function. Graphically check this using ks.plot.unif. The transfor-
mation for the residuals tau is 1 - exp(-diff(c(0,tau))) (cf. Ogata, 1988). Another plot inspects
the serial correlation between the transformed residuals (scatterplot between ui and ui+1).

Usage

checkResidualProcess(object, plot = 1:2, mfrow = c(1,length(plot)), ...)

Arguments

object an object of class "twinSIR" or "twinstim".

plot logical (or integer index) vector indicating if (which) plots of the transformed
residuals should be produced. The plot index 1 corresponds to a ks.plot.unif
to check for deviations of the transformed residuals from the uniform distribu-
tion. The plot index 2 corresponds to a scatterplot of ui vs. ui+1. By default
(plot = 1:2), both plots are produced.

mfrow see par.

... further arguments passed to ks.plot.unif.

Value

A list (returned invisibly, if plot = TRUE) with the following components:

tau the residual process obtained by residuals(object).

U the transformed residuals which should be distributed as U(0,1).

ks the result of the ks.test for the uniform distribution of U.

Author(s)

Sebastian Meyer

References

Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point pro-
cesses. Journal of the American Statistical Association, 83, 9-27

See Also

ks.plot.unif and the residuals-method for classes "twinSIR" and "twinstim".

Examples

data("hagelloch")
fit <- twinSIR(~ household, data = hagelloch) # a simplistic model
extract the "residual process", i.e., the fitted cumulative intensities
residuals(fit)
assess goodness of fit based on these residuals
checkResidualProcess(fit) # could be better

62 coeflist

clapply Conditional lapply

Description

Use lapply if the input is a list and otherwise apply the function directly to the input and wrap the
result in a list. The function is implemented as

if (is.list(X)) lapply(X, FUN, ...) else list(FUN(X, ...))

Usage

clapply(X, FUN, ...)

Arguments

X a list or a single R object on which to apply FUN.

FUN the function to be applied to (each element of) X.

... optional arguments to FUN.

Value

a list (of length 1 if X is not a list).

coeflist List Coefficients by Model Component

Description

S3-generic function to use with models which contain several groups of coefficients in their coef-
ficient vector. The coeflist methods are intended to list the coefficients by group. The default
method simply splits the coefficient vector given the number of coefficients by group.

Usage

coeflist(x, ...)

Default S3 method:
coeflist(x, npars, ...)

Arguments

x a model with groups of coefficients or, for the default method, a vector of coef-
ficients.

npars a named vector specifying the number of coefficients per group.

... potential further arguments (currently ignored).

deleval 63

Value

a list of coefficients

Author(s)

Sebastian Meyer

Examples

the default method just 'split's the coefficient vector
coefs <- c(a = 1, b = 3, dispersion = 0.5)
npars <- c(regression = 2, variance = 1)
coeflist(coefs, npars)

deleval Surgical Failures Data

Description

The dataset from Steiner et al. (1999) on A synthetic dataset from the Danish meat inspection –
useful for illustrating the beta-binomial CUSUM.

Usage

data(deleval)

Details

Steiner et al. (1999) use data from de Leval et al. (1994) to illustrate monitoring of failure rates of
a surgical procedure for a bivariate outcome.

Over a period of six years an arterial switch operation was performed on 104 newborn babies. Since
the death rate from this surgery was relatively low the idea of surgical "near miss" was introduced.
It is defined as the need to reinstitute cardiopulmonary bypass after a trial period of weaning. The
object of class sts contains the recordings of near misses and deaths from the surgery for the 104
newborn babies of the study.

The data could also be handled by a multinomial CUSUM model.

References

Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes
using cumulative sum charts, Statistics in Medicine, 18, pp. 69–86.

De Leval, Marc R., Franiois, K., Bull, C., Brawn, W. B. and Spiegelhalter, D. (1994), Analysis of a
cluster of surgical failures, Journal of Thoracic and Cardiovascular Surgery, March, pp. 914–924.

See Also

pairedbinCUSUM

64 discpoly

Examples

data("deleval")
plot(deleval, xaxis.labelFormat=NULL,ylab="Response",xlab="Patient number")

discpoly Polygonal Approximation of a Disc/Circle

Description

Generates a polygon representing a disc/circle (in planar coordinates) as an object of one of three
possible classes: "Polygon" from package sp, "owin" from package spatstat.geom, or "gpc.poly"
from gpclib (if available).

Usage

discpoly(center, radius, npoly = 64,
class = c("Polygon", "owin", "gpc.poly"),
hole = FALSE)

Arguments

center numeric vector of length 2 (center coordinates of the circle).

radius single numeric value (radius of the circle).

npoly single integer. Number of edges of the polygonal approximation.

class class of the resulting polygon (partial name matching applies). For "owin", this
is just a wrapper around spatstat.geom’s own disc function.

hole logical. Does the resulting polygon represent a hole?

Value

A polygon of class class representing a circle/disc with npoly edges accuracy.

If class="gpc.poly" and this S4 class is not yet registered in the current R session (by loading
gpclib beforehand), only the pts slot of a "gpc.poly" is returned with a warning.

See Also

disc in package spatstat.geom.

Examples

Construct circles with increasing accuracy and of different spatial classes
disc1 <- discpoly(c(0,0), 5, npoly=4, class = "owin")
disc2 <- discpoly(c(0,0), 5, npoly=16, class = "Polygon")
disc3 <- discpoly(c(0,0), 5, npoly=64, class = "gpc.poly") # may warn

Look at the results

https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=spatstat.geom

disProg2sts 65

print(disc1)
plot(disc1, axes=TRUE, main="", border=2)

str(disc2)
lines(disc2, col=3)

str(disc3) # a list or a formal "gpc.poly" (if gpclib is available)
if (is(disc3, "gpc.poly")) {

plot(disc3, add=TRUE, poly.args=list(border=4))
} else {

lines(disc3[[1]], col=4)
}

to only _draw_ a circle
symbols(0, 0, circles=5, inches=FALSE, add=TRUE, fg=5)

disProg2sts Convert disProg object to sts and vice versa

Description

A small helper function to convert a disProg object to become an object of the S4 class sts and
vice versa. In the future the sts should replace the disProg class, but for now this function allows
for conversion between the two formats.

Usage

disProg2sts(disProgObj, map=NULL)
sts2disProg(sts)

Arguments

disProgObj an object of class "disProg"
map an optional "SpatialPolygons" object
sts an object of class "sts" to convert

Value

an object of class "sts" or "disProg", respectively.

See Also

sts-class

Examples

data(ha)
print(disProg2sts(ha))
class(sts2disProg(disProg2sts(ha)))

66 earsC

earsC Surveillance for a count data time series using the EARS C1, C2 or C3
method and its extensions

Description

The function takes range values of the surveillance time series sts and for each time point com-
putes a threshold for the number of counts based on values from the recent past. This is then
compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

Usage

earsC(sts, control = list(range = NULL, method = "C1",
baseline = 7, minSigma = 0,
alpha = 0.001))

Arguments

sts object of class sts (including the observed and the state time series) , which is
to be monitored.

control Control object

range Specifies the index in the sts object of all the timepoints which should be
monitored. If range is NULL the maximum number of possible timepoints
is used (this number depends on the method chosen):
C1 all timepoints from the observation with index baseline + 1 can be

monitored,
C2 timepoints from index baseline + 3 can be monitored,
C3 timepoints starting from the index baseline + 5 can be monitored.

method String indicating which method to use:

"C1" for EARS C1-MILD method (Default),
"C2" for EARS C2-MEDIUM method,
"C3" for EARS C3-HIGH method.
See Details for further information about the methods.

baseline how many time points to use for calculating the baseline, see details
minSigma By default 0. If minSigma is higher than 0, for C1 and C2, the quan-

tity zAlpha * minSigma is then the alerting threshold if the baseline is zero.
Howard Burkom suggests using a value of 0.5 or 1 for sparse data.

alpha An approximate (two-sided) (1− α) · 100% prediction interval is calcu-
lated. By default if alpha is NULL the value 0.001 is assumed for C1 and
C2 whereas 0.025 is assumed for C3. These different choices are the one
made at the CDC.

earsC 67

Details

The three methods are different in terms of baseline used for calculation of the expected value and
in terms of method for calculating the expected value:

• in C1 and C2 the expected value is the moving average of counts over the sliding window
of the baseline and the prediction interval depends on the standard derivation of the observed
counts in this window. They can be considered as Shewhart control charts with a small sample
used for calculations.

• in C3 the expected value is based on the sum over 3 timepoints (assessed timepoints and the
two previous timepoints) of the discrepancy between observations and predictions, predictions
being calculated with the C2 method. This method has similarities with a CUSUM method
due to it adding discrepancies between predictions and observations over several timepoints,
but is not a CUSUM (sum over 3 timepoints, not accumulation over a whole range), even if it
sometimes is presented as such.

Here is what the function does for each method, see the literature sources for further details:

1. For C1 the baseline are the baseline (default 7) timepoints before the assessed timepoint t, t-
baseline to t-1. The expected value is the mean of the baseline. An approximate (two-sided)
(1−α) ·100% prediction interval is calculated based on the assumption that the difference be-
tween the expected value and the observed value divided by the standard derivation of counts
over the sliding window, called C1(t), follows a standard normal distribution in the absence
of outbreaks:

C1(t) =
Y (t)− Ȳ1(t)

S1(t)
,

where

Ȳ1(t) =
1

baseline

t−baseline∑
i=t−1

Y (i)

and

S2
1(t) =

1

6

t−baseline∑
i=t−1

[Y (i)− Ȳ1(i)]
2.

Then under the null hypothesis of no outbreak,

C1(t) ∼ N(0, 1)

An alarm is raised if
C1(t) ≥ z1−α

with z1−α the (1− α)th quantile of the standard normal distribution.

The upperbound U1(t) is then defined by:

U1(t) = Ȳ1(t) + z1−αS1(t).

2. C2 is very similar to C1 apart from a 2-day lag in the baseline definition. In other words the
baseline for C2 is baseline (Default: 7) timepoints with a 2-day lag before the monitored
timepoint t, i.e. (t− baseline− 2) to t− 3. The expected value is the mean of the baseline.
An approximate (two-sided) (1 − α) · 100% prediction interval is calculated based on the

68 earsC

assumption that the difference between the expected value and the observed value divided by
the standard derivation of counts over the sliding window, called C2(t), follows a standard
normal distribution in the absence of outbreaks:

C2(t) =
Y (t)− Ȳ2(t)

S2(t)
,

where

Ȳ2(t) =
1

baseline

t−baseline−2∑
i=t−3

Y (i)

and

S2
2(t) =

1

baseline− 1

t−baseline−2∑
i=t−3

[Y (i)− Ȳ2(i)]
2.

Then under the null hypothesis of no outbreak,

C2(t)∼N(0, 1)

An alarm is raised if
C2(t) ≥ z1−α,

with z1−α the (1− α)th quantile of the standard normal distribution.

The upperbound U2(t) is then defined by:

U2(t) = Ȳ2(t) + z1−αS2(t).

3. C3 is quite different from the two other methods, but it is based on C2. Indeed it uses C2(t)
from timepoint t and the two previous timepoints. This means the baseline consists of the
timepoints t − (baseline + 4) to t − 3. The statistic C3(t) is the sum of discrepancies
between observations and predictions.

C3(t) =

t−2∑
i=t

max(0, C2(i)− 1)

Then under the null hypothesis of no outbreak,

C3(t)∼N(0, 1)

An alarm is raised if
C3(t) ≥ z1−α,

with z1−α the (1− α)th quantile of the standard normal distribution.

The upperbound U3(t) is then defined by:

U3(t) = Ȳ2(t) + S2(t)

(
z1−α −

t−2∑
i=t−1

max(0, C2(i)− 1)

)
.

epidata 69

Value

An object of class sts with the slots upperbound and alarm filled by the chosen method.

Author(s)

M. Salmon, H. Burkom

Source

Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/
jss.v070.i10

Examples

#Sim data and convert to sts object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

stsObj <- disProg2sts(disProgObj)

Call earsC function and show result
res1 <- earsC(stsObj, control = list(range = 20:208, method="C1"))
plot(res1, legend.opts=list(horiz=TRUE, x="topright"))

Compare C3 upperbounds depending on alpha
res3 <- earsC(stsObj, control = list(range = 20:208,method="C3",alpha = 0.001))
plot(upperbound(res3), type='l')
res3 <- earsC(stsObj, control = list(range = 20:208,method="C3"))
lines(upperbound(res3), col='red')

epidata Continuous-Time SIR Event History of a Fixed Population

Description

The function as.epidata is used to generate objects of class "epidata". Objects of this class
are specific data frames containing the event history of an epidemic together with some additional
attributes. These objects are the basis for fitting spatio-temporal epidemic intensity models with
the function twinSIR. Their implementation is illustrated in Meyer et al. (2017, Section 4), see
vignette("twinSIR"). Note that the spatial information itself, i.e. the positions of the individuals,
is assumed to be constant over time. Besides epidemics following the SIR compartmental model,
also data from SI, SIRS and SIS epidemics may be supplied.

https://doi.org/10.18637/jss.v070.i10
https://doi.org/10.18637/jss.v070.i10

70 epidata

Usage

as.epidata(data, ...)

S3 method for class 'data.frame'
as.epidata(data, t0,

tE.col, tI.col, tR.col, id.col, coords.cols,
f = list(), w = list(), D = dist,
max.time = NULL, keep.cols = TRUE, ...)

Default S3 method:
as.epidata(data, id.col, start.col, stop.col,

atRiskY.col, event.col, Revent.col, coords.cols,
f = list(), w = list(), D = dist, .latent = FALSE, ...)

S3 method for class 'epidata'
print(x, ...)
S3 method for class 'epidata'
x[i, j, drop]
S3 method for class 'epidata'
update(object, f = list(), w = list(), D = dist, ...)

Arguments

data For the data.frame-method, a data frame with as many rows as there are indi-
viduals in the population and time columns indicating when each individual be-
came exposed (optional), infectious (mandatory, but can be NA for non-affected
individuals) and removed (optional). Note that this data format does not allow
for re-infection (SIRS) and time-varying covariates. The data.frame-method
converts the individual-indexed data frame to the long event history start/stop
format and then feeds it into the default method. If calling the generic func-
tion as.epidata on a data.frame and the t0 argument is missing, the default
method is called directly.
For the default method, data can be a matrix or a data.frame. It must con-
tain the observed event history in a form similar to Surv(, type="counting")
in package survival, with additional information (variables) along the process.
Rows will be sorted automatically during conversion. The observation period is
split up into consecutive intervals of constant state - thus constant infection in-
tensities. The data frame consists of a block of N (number of individuals) rows
for each of those time intervals (all rows in a block have the same start and stop
values. . . therefore the name “block”), where there is one row per individual in
the block. Each row describes the (fixed) state of the individual during the inter-
val given by the start and stop columns start.col and stop.col.
Note that there may not be more than one event (infection or removal) in a single
block. Thus, in a single block, only one entry in the event.col and Revent.col
may be 1, all others are 0. This rule follows the point process characteristic that
there are no concurrent events (infections or removals).

t0, max.time observation period. In the resulting "epidata", the time scale will be relative
to the start time t0. Individuals that have already been removed prior to t0,
i.e., rows with tR <= t0, will be dropped. The end of the observation period

epidata 71

(max.time) will by default (NULL, or if NA) coincide with the last observed event.
tE.col, tI.col, tR.col

single numeric or character indexes of the time columns in data, which spec-
ify when the individuals became exposed, infectious and removed, respectively.
tE.col and tR.col can be missing, corresponding to SIR, SEI, or SI data.
NA entries mean that the respective event has not (yet) occurred. Note that
is.na(tE) implies is.na(tI) and is.na(tR), and is.na(tI) implies is.na(tR)
(and this is checked for the provided data).
CAVE: Support for latent periods (tE.col) is experimental! twinSIR cannot
handle them anyway.

id.col single numeric or character index of the id column in data. The id column
identifies the individuals in the data frame. It is converted to a factor by calling
factor, i.e., unused levels are dropped if it already was a factor.

start.col single index of the start column in data. Can be numeric (by column number)
or character (by column name). The start column contains the (numeric) time
points of the beginnings of the consecutive time intervals of the event history.
The minimum value in this column, i.e. the start of the observation period should
be 0.

stop.col single index of the stop column in data. Can be numeric (by column number)
or character (by column name). The stop column contains the (numeric) time
points of the ends of the consecutive time intervals of the event history. The stop
value must always be greater than the start value of a row.

atRiskY.col single index of the atRiskY column in data. Can be numeric (by column num-
ber) or character (by column name). The atRiskY column indicates if the indi-
vidual was “at-risk” of becoming infected during the time interval (start; stop].
This variable must be logical or in 0/1-coding. Individuals with atRiskY == 0 in
the first time interval (normally the rows with start == 0) are taken as initially
infectious.

event.col single index of the event column in data. Can be numeric (by column number)
or character (by column name). The event column indicates if the individual
became infected at the stop time of the interval. This variable must be logical
or in 0/1-coding.

Revent.col single index of the Revent column in data. Can be numeric (by column num-
ber) or character (by column name). The Revent column indicates if the indi-
vidual was recovered at the stop time of the interval. This variable must be
logical or in 0/1-coding.

coords.cols indexes of the coords columns in data. Can be numeric (by column number),
character (by column name), or NULL (no coordinates, e.g., if D is a pre-specified
distance matrix). These columns contain the individuals’ coordinates, which
determine the distance matrix for the distance-based components of the force of
infection (see argument f). By default, Euclidean distance is used (see argument
D).
Note that the functions related to twinSIR currently assume fixed positions of
the individuals during the whole epidemic. Thus, an individual has the same
coordinates in every block. For simplicity, the coordinates are derived from the
first time block only (normally the rows with start == 0).
The animate-method requires coordinates.

72 epidata

f a named list of vectorized functions for a distance-based force of infection. The
functions must interact elementwise on a (distance) matrix D so that f[[m]](D)
results in a matrix. A simple example is function(u) {u <= 1}, which indicates
if the Euclidean distance between the individuals is smaller than or equal to
1. The names of the functions determine the names of the epidemic variables
in the resulting data frame. So, the names should not coincide with names of
other covariates. The distance-based weights are computed as follows: Let I(t)
denote the set of infectious individuals just before time t. Then, for individual i
at time t, the m’th covariate has the value

∑
j∈I(t) fm(dij), where dij denotes

entries of the distance matrix (by default this is the Euclidean distance ||si−sj ||
between the individuals’ coordinates, but see argument D).

w a named list of vectorized functions for extra covariate-based weights wij in
the epidemic component. Each function operates on a single time-constant co-
variate in data, which is determined by the name of the first argument: The
two function arguments should be named varname.i and varname.j, where
varname is one of names(data). Similar to the components in f, length(w)
epidemic covariates will be generated in the resulting "epidata" named ac-
cording to names(w). So, the names should not coincide with names of other
covariates. For individual i at time t, the m’th such covariate has the value∑
j∈I(t) wm(z

(m)
i , z

(m)
j), where z(m) denotes the variable in data associated

with w[[m]].

D either a function to calculate the distances between the individuals with loca-
tions taken from coord.cols (the default is Euclidean distance via the function
dist) and the result converted to a matrix via as.matrix, or a pre-computed dis-
tance matrix with dimnames containing the individual ids (a classed "Matrix"
is supported).

keep.cols logical indicating if all columns in data should be retained (and not only the
obligatory "epidata" columns), in particular any additional columns with time-
constant individual-specific covariates. Alternatively, keep.cols can be a nu-
meric or character vector indexing columns of data to keep.

.latent (internal) logical indicating whether to allow for latent periods (EXPERIMEN-
TAL). Otherwise (default), the function verifies that an event (i.e., switching to
the I state) only happens when the respective individual is at risk (i.e., in the S
state).

x, object an object of class "epidata".

... arguments passed to print.data.frame. Currently unused in the as.epidata-
methods.

i, j, drop arguments passed to [.data.frame.

Details

The print method for objects of class "epidata" simply prints the data frame with a small header
containing the time range of the observed epidemic and the number of infected individuals. Usually,
the data frames are quite long, so the summary method summary.epidata might be useful. Also,
indexing/subsetting "epidata" works exactly as for data.frames, but there is an own method,

epidata 73

which assures consistency of the resulting "epidata" or drops this class, if necessary. The update-
method can be used to add or replace distance-based (f) or covariate-based (w) epidemic variables
in an existing "epidata" object.

SIS epidemics are implemented as SIRS epidemics where the length of the removal period equals
0. This means that an individual, which has an R-event will be at risk immediately afterwards, i.e.
in the following time block. Therefore, data of SIS epidemics have to be provided in that form
containing “pseudo-R-events”.

Value

a data.frame with the columns "BLOCK", "id", "start", "stop", "atRiskY", "event", "Revent"
and the coordinate columns (with the original names from data), which are all obligatory. These
columns are followed by any remaining columns of the input data. Last but not least, the newly
generated columns with epidemic variables corresponding to the functions in the list f are appended,
if length(f) > 0.

The data.frame is given the additional attributes

"eventTimes" numeric vector of infection time points (sorted chronologically).

"timeRange" numeric vector of length 2: c(min(start), max(stop)).

"coords.cols" numeric vector containing the column indices of the coordinate columns in the
resulting data frame.

"f" this equals the argument f.

"w" this equals the argument w.

Note

The column name "BLOCK" is a reserved name. This column will be added automatically at con-
version and the resulting data frame will be sorted by this column and by id. Also the names "id",
"start", "stop", "atRiskY", "event" and "Revent" are reserved for the respective columns only.

Author(s)

Sebastian Meyer

References

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

The hagelloch data as an example.

The plot and the summary method for class "epidata". Furthermore, the function animate.epidata
for the animation of epidemics.

Function twinSIR for fitting spatio-temporal epidemic intensity models to epidemic data.

Function simEpidata for the simulation of epidemic data.

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

74 epidataCS

Examples

data("hagelloch") # see help("hagelloch") for a description
head(hagelloch.df)

convert the original data frame to an "epidata" event history
myEpi <- as.epidata(hagelloch.df, t0 = 0,

tI.col = "tI", tR.col = "tR", id.col = "PN",
coords.cols = c("x.loc", "y.loc"),
keep.cols = c("SEX", "AGE", "CL"))

str(myEpi)
head(as.data.frame(myEpi)) # "epidata" has event history format
summary(myEpi) # see 'summary.epidata'
plot(myEpi) # see 'plot.epidata' and also 'animate.epidata'

add distance- and covariate-based weights for the force of infection
in a twinSIR model, see vignette("twinSIR") for a description
myEpi <- update(myEpi,

f = list(
household = function(u) u == 0,
nothousehold = function(u) u > 0

),
w = list(

c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i,
c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i

)
)
this is now identical to the prepared hagelloch "epidata"
stopifnot(all.equal(myEpi, hagelloch))

epidataCS Continuous Space-Time Marked Point Patterns with Grid-Based Co-
variates

Description

Data structure for continuous spatio-temporal event data, e.g. individual case reports of an infec-
tious disease. Apart from the actual events, the class simultaneously holds a spatio-temporal grid
of endemic covariates (similar to disease mapping) and a representation of the observation region.

The "epidataCS" class is the basis for fitting spatio-temporal endemic-epidemic intensity models
with the function twinstim (Meyer et al., 2012). The implementation is described in Meyer et al.
(2017, Section 3), see vignette("twinstim").

epidataCS 75

Usage

as.epidataCS(events, stgrid, W, qmatrix = diag(nTypes),
nCircle2Poly = 32L, T = NULL,
clipper = "polyclip", verbose = interactive())

S3 method for class 'epidataCS'
print(x, n = 6L, digits = getOption("digits"), ...)

S3 method for class 'epidataCS'
nobs(object, ...)
S3 method for class 'epidataCS'
head(x, n = 6L, ...)
S3 method for class 'epidataCS'
tail(x, n = 6L, ...)
S3 method for class 'epidataCS'
x[i, j, ..., drop = TRUE]
S3 method for class 'epidataCS'
subset(x, subset, select, drop = TRUE, ...)

S3 method for class 'epidataCS'
marks(x, coords = TRUE, ...)

S3 method for class 'epidataCS'
summary(object, ...)
S3 method for class 'summary.epidataCS'
print(x, ...)

S3 method for class 'epidataCS'
as.stepfun(x, ...)

getSourceDists(object, dimension = c("space", "time"))

Arguments

events a "SpatialPointsDataFrame" of cases with the following obligatory columns
(in the events@data data.frame):
time time point of event. Will be converted to a numeric variable by as.numeric.

There should be no concurrent events (but see untie for an ex post adjust-
ment) and there cannot be events beyond stgrid (i.e., time<=T is required).
Events at or before time t0 = min(stgrid$start) are allowed and form the
prehistory of the process.

tile the spatial region (tile) where the event is located. This links to the tiles of
stgrid.

type optional type of event in a marked twinstim model. Will be converted
to a factor variable dropping unused levels. If missing, all events will be
attribute the single type "1".

eps.t maximum temporal influence radius (e.g. length of infectious period, time
to culling, etc.); must be positive and may be Inf.

76 epidataCS

eps.s maximum spatial influence radius (e.g. 100 [km]); must be positive and
may be Inf. A compact influence region mainly has computational advan-
tages, but might also be plausible for specific applications.

The data.frame may contain columns with further marks of the events, e.g. sex,
age of infected individuals, which may be used as epidemic covariates influenc-
ing infectiousness. Note that some auxiliary columns will be added at conver-
sion whose names are reserved: ".obsInfLength", ".bdist", ".influenceRegion",
and ".sources", as well as "start", "BLOCK", and all endemic covariates’
names from stgrid.

stgrid a data.frame describing endemic covariates on a full spatio-temporal region x
interval grid (e.g., district x week), which is a decomposition of the observation
region W and period t0, T . This means that for every combination of spatial
region and time interval there must be exactly one row in this data.frame, that
the union of the spatial tiles equals W, the union of the time intervals equals t0, T ,
and that regions (and intervals) are non-overlapping. There are the following
obligatory columns:

tile ID of the spatial region (e.g., district ID). It will be converted to a factor
variable (dropping unused levels if it already was one).

start, stop columns describing the consecutive temporal intervals (converted to
numeric variables by as.numeric). The start time of an interval must
be equal to the stop time of the previous interval. The stop column may
be missing, in which case it will be auto-generated from the set of start
values and T.

area area of the spatial region (tile). Be aware that the unit of this area (e.g.,
square km) must be consistent with the units of W and events (as specified
in their proj4strings).

The remaining columns are endemic covariates. Note that the column name
"BLOCK" is reserved (a column which will be added automatically for indexing
the time intervals of stgrid).

W an object of class "SpatialPolygons" representing the observation region. It
must have the same proj4string as events and all events must be within W.
Prior simplification of W may considerably reduce the computational burden of
likelihood evaluations in twinstim models with non-trivial spatial interaction
functions (see the “Note” section below).

qmatrix a square indicator matrix (0/1 or FALSE/TRUE) for possible transmission between
the event types. The matrix will be internally converted to logical. Defaults to
an independent spread of the event types, i.e. the identity matrix.

nCircle2Poly accuracy (number of edges) of the polygonal approximation of a circle, see
discpoly.

T end of observation period (i.e. last stop time of stgrid). Must be specified if
the start but not the stop times are supplied in stgrid (=> auto-generation of
stop times).

clipper polygon clipping engine to use for calculating the .influenceRegions of events
(see the Value section below). Default is the polyclip package (called via intersect.owin
from package spatstat.geom). In surveillance <= 1.6-0, package gpclib was
used; this is no longer supported, neither is rgeos.

https://CRAN.R-project.org/package=polyclip
https://CRAN.R-project.org/package=spatstat.geom

epidataCS 77

verbose logical indicating if status messages should be printed during input checking and
"epidataCS" generation. The default is to do so in interactive R sessions.

x an object of class "epidataCS" or "summary.epidataCS", respectively.

n a single integer. If positive, the first (head, print) / last (tail) n events are
extracted. If negative, all but the n first/last events are extracted.

digits minimum number of significant digits to be printed in values.

i, j, drop arguments passed to the [-method for SpatialPointDataFrames for subsetting
the events while retaining stgrid and W.
If drop=TRUE (the default), event types that completely disappear due to i-
subsetting will be dropped, which reduces qmatrix and the factor levels of the
type column.
By the j index, epidemic covariates can be removed from events.

... unused (arguments of the generics) with a few exceptions: The print method
for "epidataCS" passes ... to the print.data.frame method, and the print
method for "summary.epidataCS" passes additional arguments to print.table.

subset, select arguments used to subset the events from an "epidataCS" object like in subset.data.frame.

coords logical indicating if the data frame of event marks returned by marks(x) should
have the event coordinates appended as last columns. This defaults to TRUE.

object an object of class "epidataCS".

dimension the distances of all events to their potential source events can be computed in
either the "space" or "time" dimension.

Details

The function as.epidataCS is used to generate objects of class "epidataCS", which is the data
structure required for twinstim models.

The [-method for class "epidataCS" ensures that the subsetted object will be valid, for instance, it
updates the auxiliary list of potential transmission paths stored in the object. The [-method is used
in subset.epidataCS, which is implemented similar to subset.data.frame.

The print method for "epidataCS" prints some metadata of the epidemic, e.g., the observation
period, the dimensions of the spatio-temporal grid, the types of events, and the total number of
events. By default, it also prints the first n = 6 rows of the events.

Value

An object of class "epidataCS" is a list containing the following components:

events a "SpatialPointsDataFrame" (see the description of the argument). The input
events are checked for requirements and sorted chronologically. The columns
are in the following order: obligatory event columns, event marks, the columns
BLOCK, start and endemic covariates copied from stgrid, and finally, hidden
auxiliary columns. The added auxiliary columns are:

.obsInfLength observed length of the infectious period (possibly truncated at
T), i.e., pmin(T-time, eps.t).

78 epidataCS

.sources a list of numeric vectors of potential sources of infection (wrt the
interaction ranges eps.s and eps.t) for each event. Row numbers are used as
index.

.bdist minimal distance of the event locations to the polygonal boundary W.

.influenceRegion a list of influence regions represented by objects of the
spatstat.geom class "owin". For each event, this is the intersection of
W with a (polygonal) circle of radius eps.s centered at the event’s loca-
tion, shifted such that the event location becomes the origin. The list has
nCircle2Poly set as an attribute.

stgrid a data.frame (see description of the argument). The spatio-temporal grid of
endemic covariates is sorted by time interval (indexed by the added variable
BLOCK) and region (tile). It is a full BLOCK x tile grid.

W a "SpatialPolygons" object representing the observation region.
qmatrix see the above description of the argument. The storage.mode of the indicator

matrix is set to logical and the dimnames are set to the levels of the event types.

The nobs-method returns the number of events.

The head and tail methods subset the epidemic data using the extraction method ([), i.e. they
return an object of class "epidataCS", which only contains (all but) the first/last n events.

For the "epidataCS" class, the method of the generic function marks defined by the spatstat.geom
package returns a data.frame of the event marks (actually also including time and location of the
events), disregarding endemic covariates and the auxiliary columns from the events component of
the "epidataCS" object.

The summary method (which has again a print method) returns a list of metadata, event data, the ta-
bles of tiles and types, a step function of the number of infectious individuals over time ($counter),
i.e., the result of the as.stepfun-method for "epidataCS", and the number of potential sources of
transmission for each event ($nSources) which is based on the given maximum interaction ranges
eps.t and eps.s.

Note

Since the observation region W defines the integration domain in the point process likelihood, the
more detailed the polygons of W are the longer it will take to fit a twinstim. You are advised to
sacrifice some shape details for speed by reducing the polygon complexity, for example via the
mapshaper JavaScript library wrapped by the R package rmapshaper, or via simplify.owin.

Author(s)

Sebastian Meyer

Contributions to this documentation by Michael Höhle and Mayeul Kauffmann.

References

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

https://CRAN.R-project.org/package=rmapshaper
https://doi.org/10.1111/j.1541-0420.2011.01684.x
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

epidataCS 79

See Also

vignette("twinstim").

plot.epidataCS for plotting, and animate.epidataCS for the animation of such an epidemic.
There is also an update method for the "epidataCS" class.

To re-extract the events point pattern from "epidataCS", use as(object, "SpatialPointsDataFrame").

It is possible to convert an "epidataCS" point pattern to an "epidata" object (as.epidata.epidataCS),
or to aggregate the events into an "sts" object (epidataCS2sts).

Examples

load "imdepi" example data (which is an object of class "epidataCS")
data("imdepi")

print and summary
print(imdepi, n=5, digits=2)
print(s <- summary(imdepi))
plot(s$counter, # same as 'as.stepfun(imdepi)'

xlab = "Time [days]", ylab="Number of infectious individuals",
main=paste("Time course of the number of infectious individuals",

"assuming an infectious period of 30 days", sep="\n"))
plot(table(s$nSources), xlab="Number of \"close\" infective individuals",

ylab="Number of events",
main=paste("Distribution of the number of potential sources",

"assuming an interaction range of 200 km and 30 days",
sep="\n"))

the summary object contains further information
str(s)

a histogram of the spatial distances to potential source events
(i.e., to events of the previous eps.t=30 days within eps.s=200 km)
sourceDists_space <- getSourceDists(imdepi, "space")
hist(sourceDists_space); rug(sourceDists_space)

internal structure of an "epidataCS"-object
str(imdepi, max.level=4)
see help("imdepi") for more info on the data set

extraction methods subset the 'events' component
imdepi[101:200,]
head(imdepi, n=1) # only first event
tail(imdepi, n=4) # only last 4 events
subset(imdepi, type=="B") # only events of type B

see help("plot.epidataCS") for convenient plot-methods for "epidataCS"

###
reconstruct the "imdepi" object
###

observation region

80 epidataCS_aggregate

load(system.file("shapes", "districtsD.RData", package="surveillance"),
verbose = TRUE)

extract point pattern of events from the "imdepi" data
a) as a data frame with coordinate columns via marks()
eventsData <- marks(imdepi)
b) as a Spatial object via the coerce-method
events <- as(imdepi, "SpatialPointsDataFrame")

plot observation region with events (may require package 'sf')
if (requireNamespace("sf")) {

plot(stateD, axes=TRUE); title(xlab="x [km]", ylab="y [km]")
points(events, pch=unclass(events$type), cex=0.5, col=unclass(events$type))
legend("topright", legend=levels(events$type), title="Type", pch=1:2, col=1:2)

summary(events)
}

space-time grid with endemic covariates
head(stgrid <- imdepi$stgrid[,-1])

reconstruct the "imdepi" object from its components
myimdepi <- as.epidataCS(events = events, stgrid = stgrid,

W = stateD, qmatrix = diag(2), nCircle2Poly = 16)

This reconstructed object should be equal to 'imdepi' as long as the internal
structures of the embedded classes ("owin", "SpatialPolygons", ...), and
the calculation of the influence regions by "polyclip" have not changed:
all.equal(imdepi, myimdepi)

epidataCS_aggregate Conversion (aggregation) of "epidataCS" to "epidata" or "sts"

Description

Continuous-time continuous-space epidemic data stored in an object of class "epidataCS" can be
aggregated in space or in space and time yielding an object of class "epidata" or "sts" for use of
twinSIR or hhh4 modelling, respectively.

Usage

aggregation in space and time over 'stgrid' for use of 'hhh4' models
epidataCS2sts(object, freq, start, neighbourhood,

tiles = NULL, popcol.stgrid = NULL, popdensity = TRUE)

aggregation in space for use of 'twinSIR' models
S3 method for class 'epidataCS'
as.epidata(data, tileCentroids, eps = 0.001, ...)

epidataCS_aggregate 81

Arguments

object, data an object of class "epidataCS".

freq, start see the description of the "sts" class. The start specification should reflect
the beginning of object$stgrid, i.e., the start of the first time interval.

neighbourhood binary adjacency or neighbourhood-order matrix of the regions (tiles). If miss-
ing but tiles is given, a binary adjacency matrix will be auto-generated from
tiles using functionality of the spdep package (see poly2adjmat). Since the
"neighbourhood" slot in "sts" is actually optional, neighbourhood=NULL also
works.

tiles object inheriting from "SpatialPolygons" representing the regions in object$stgrid
(column "tile"). It will become the "map" slot of the resulting "sts" object.
Its row.names must match levels(object$stgrid$tile). If neighbourhood
is provided, tiles is optional (not required for hhh4, but for plots of the result-
ing "sts" object).

popcol.stgrid single character or numeric value indexing the column in object$stgrid which
contains the population data (counts or densities, depending on the popdensity
argument). This will become the "populationFrac" slot (optional).

popdensity logical indicating if the column referenced by popcol.stgrid contains popula-
tion densities or absolute counts.

tileCentroids a coordinate matrix of the region centroids (i.e., the result of coordinates(tiles)).
Its row names must match levels(data$stgrid$tile). This will be the co-
ordinates used for the “population” (i.e., the tiles from "epidataCS") in the
discrete-space twinSIR modelling.

eps numeric scalar for breaking tied removal and infection times between different
individuals (tiles), which might occur during conversion from "epidataCS" to
"epidata". Rather dumb, this is simply done by subtracting eps from each tied
removal time. One should consider other ways of breaking the tied event times.

... unused (argument of the generic).

Details

Conversion to "sts" only makes sense if the time intervals (BLOCKs) of the stgrid are regularly
spaced (to give freq intervals per year). Note that events of the prehistory (not covered by stgrid)
are not included in the resulting sts object.

Some comments on the conversion to "epidata": the conversion results into SIS epidemics only,
i.e. the at-risk indicator is set to 1 immediately after recovery. A tile is considered infective if
at least one individual within the tile is infective, otherwise it is susceptible. The lengths of the
infectious periods are taken from data$events$eps.t. There will be no f columns in the resulting
"epidata". These must be generated by a subsequent call to as.epidata with desired f.

Value

epidataCS2sts: an object of class "sts" representing the multivariate time-series of the number
of cases aggregated over stgrid.

as.epidata.epidataCS: an object of class "epidata" representing an SIS epidemic in form of a
multivariate point process (one for each region/tile).

82 epidataCS_animate

Author(s)

Sebastian Meyer

See Also

epidata and twinSIR

linkS4class{sts} and hhh4.

Examples

data("imdepi")
load(system.file("shapes", "districtsD.RData", package="surveillance"))

convert imdepi point pattern into multivariate time series
imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1),

neighbourhood = NULL, # not needed here
tiles = districtsD)

check the overall number of events by district
stopifnot(all.equal(colSums(observed(imdsts)),

c(table(imdepi$events$tile))))

compare plots of monthly number of cases
opar <- par(mfrow = c(2, 1))
plot(imdepi, "time")
plot(imdsts, type = observed ~ time)
par(opar)

plot number of cases by district
plot(imdsts, type = observed ~ unit)

also test conversion to an SIS event history ("epidata") of the "tiles"
if (requireNamespace("intervals")) {

imdepi_short <- subset(imdepi, time < 50) # to reduce the runtime
imdepi_short$stgrid <- subset(imdepi_short$stgrid, start < 50)
imdepidata <- as.epidata(imdepi_short,

tileCentroids = coordinates(districtsD))
summary(imdepidata)

}

epidataCS_animate Spatio-Temporal Animation of a Continuous-Time Continuous-Space
Epidemic

Description

Function for the animation of continuous-time continuous-space epidemic data, i.e. objects inher-
iting from class "epidataCS". There are three types of animation, see argument time.spacing.

epidataCS_animate 83

Besides the on-screen plotting in the interactive R session, it is possible and recommended to redi-
rect the animation to an off-screen graphics device using the contributed R package animation.
For instance, the animation can be watched and navigated in a web browser via saveHTML (see
Examples).

Usage

S3 method for class 'epidataCS'
animate(object, interval = c(0,Inf), time.spacing = NULL,

nmax = NULL, sleep = NULL, legend.opts = list(), timer.opts = list(),
pch = 15:18, col.current = "red", col.I = "#C16E41",
col.R = "#B3B3B3", col.influence = NULL,
main = NULL, verbose = interactive(), ...)

Arguments

object an object inheriting from class "epidataCS".

interval time range of the animation.

time.spacing time interval for the animation steps.
If NULL (the default), the events are plotted sequentially by producing a snapshot
at every time point where an event occurred. Thus, it is just the ordering of the
events, which is shown.
To plot the appearance of events proportionally to the exact time line, time.spacing
can be set to a numeric value indicating the period of time between consecutive
snapshots. Then, for each time point in seq(0, end, by = time.spacing) the
current state of the epidemic can be seen and an additional timer indicates the
current time (see timer.opts below).
If time.spacing = NA, then the time spacing is automatically determined in
such a way that nmax snapshots result. In this case, nmax must be given a fi-
nite value.

nmax maximum number of snapshots to generate. The default NULL means to take the
value from ani.options("nmax") if the animation package is available, and
no limitation (Inf) otherwise.

sleep numeric scalar specifying the artificial pause in seconds between two time points
(using Sys.sleep), or NULL (default), when this is taken from ani.options("interval")
if the animation package is available, and set to 0.1 otherwise. Note that sleep
is ignored on non-interactive devices (see dev.interactive), e.g., if generating
an animation inside animation’s saveHTML.

pch, col vectors of length equal to the number of event types specifying the point symbols
and colors for events to plot (in this order). The vectors are recycled if necessary.

legend.opts either a list of arguments passed to the legend function or NULL (or NA), in which
case no legend will be plotted. All necessary arguments have sensible defaults
and need not be specified.

timer.opts either a list of arguments passed to the legend function or NULL (or NA), in which
case no timer will be plotted. All necessary arguments have sensible defaults and
need not be specified, i.e.

x: "bottomright"

84 epidataCS_animate

title: "time"

box.lty: 0

adj: c(0.5,0.5)

inset: 0.01

bg: "white"

Note that the argument legend, which is the current time of the animation, can
not be modified.

col.current color of events when occurring (new).

col.I color once infectious.

col.R color event has once “recovered”. If NA, then recovered events will not be shown.

col.influence color with which the influence region is drawn. Use NULL (default) if no influ-
ence regions should be drawn.

main optional main title placed above the map.

verbose logical specifying if a (textual) progress bar should be shown during snapshot
generation. This is especially useful if the animation is produced within saveHTML
or similar.

... further graphical parameters passed to the plot method for "SpatialPolygons".

Author(s)

Sebastian Meyer with documentation contributions by Michael Höhle

See Also

plot.epidataCS for plotting the numbers of events by time (aggregated over space) or the locations
of the events in the observation region W (aggregated over time).

The contributed R package animation.

Examples

data("imdepi")
imdepiB <- subset(imdepi, type == "B")

Not run:
Animate the first year of type B with a step size of 7 days
animate(imdepiB, interval=c(0,365), time.spacing=7, nmax=Inf, sleep=0.1)

Sequential animation of type B events during the first year
animate(imdepiB, interval=c(0,365), time.spacing=NULL, sleep=0.1)

Animate the whole time range but with nmax=20 snapshots only
animate(imdepiB, time.spacing=NA, nmax=20, sleep=0.1)

End(Not run)

Such an animation can be saved in various ways using the tools of
the animation package, e.g., saveHTML()

epidataCS_permute 85

if (interactive() && require("animation")) {
oldwd <- setwd(tempdir()) # to not clutter up the current working dir
saveHTML(animate(imdepiB, interval = c(0,365), time.spacing = 7),

nmax = Inf, interval = 0.2, loop = FALSE,
title = "Animation of the first year of type B events")

setwd(oldwd)
}

epidataCS_permute Randomly Permute Time Points or Locations of "epidataCS"

Description

Monte Carlo tests for space-time interaction (epitest) use the distribution of some test statistic un-
der the null hypothesis of no space-time interaction. For this purpose, the function permute.epidataCS
randomly permutes the time or space labels of the events.

Usage

permute.epidataCS(x, what = c("time", "space"), keep)

Arguments

x an object of class "epidataCS".

what character string determining what to permute: time points (default) or locations.

keep optional logical expression to be evaluated in the context of x$events@data,
determining for which events the time and location should be kept as is. For
instance, to keep some “prehistory” before time point 30 unchanged, use keep
= time <= 30.

Value

the permuted "epidataCS" object.

Author(s)

Sebastian Meyer

See Also

epitest

86 epidataCS_plot

Examples

data("imdepi")

set.seed(3)
permepi <- permute.epidataCS(imdepi, what = "time", keep = time <= 30)

print(imdepi, n = 8)
print(permepi, n = 8)
the first 6 events are kept (as are all row.names),
the time labels of the remaining events are shuffled
(and events then again sorted by time),
the marginal temporal distribution is unchanged

epidataCS_plot Plotting the Events of an Epidemic over Time and Space

Description

The plot method for class "epidataCS" either plots the number of events along the time axis
(epidataCSplot_time) as a hist(), or the locations of the events in the observation region W
(epidataCSplot_space). The spatial plot can be enriched with tile-specific color levels to indicate
attributes such as the population (using spplot).

Usage

S3 method for class 'epidataCS'
plot(x, aggregate = c("time", "space"), subset, by = type, ...)

epidataCSplot_time(x, subset, by = type,
t0.Date = NULL, breaks = "stgrid", freq = TRUE,
col = rainbow(nTypes), cumulative = list(),
add = FALSE, mar = NULL, xlim = NULL, ylim = NULL,
xlab = "Time", ylab = NULL, main = NULL,
panel.first = abline(h=axTicks(2), lty=2, col="grey"),
legend.types = list(), ...)

epidataCSplot_space(x, subset, by = type, tiles = x$W, pop = NULL,
cex.fun = sqrt, points.args = list(), add = FALSE,
legend.types = list(), legend.counts = list(),
sp.layout = NULL, ...)

Arguments

x an object of class "epidataCS".

aggregate character, one of "time" and "space", referring to the specific plot functions
epidataCSplot_time and epidataCSplot_time, respectively. For "time", the
number of events over time is plotted as hist (or hist.Date). For "space", the

epidataCS_plot 87

observation region x$W (or the tiles) and the locations of the events therein are
plotted.

subset logical expression indicating a subset of events to consider for plotting: missing
values are taken as false. Note that the expression is evaluated in the data frame
of event marks (marks(x)), which means that column names can be referred to
by name (like in subset.data.frame).

... in the basic plot-method further arguments are passed to the aggregate-specific
plot function. In epidataCSplot_time, further graphical parameters are passed
to hist or hist.Date, respectively. In epidataCSplot_space, further argu-
ments are passed to the plot-method for "SpatialPolygons", which draws
tiles.

by an expression evaluated in marks(x), defining how events should be stratified
in the plot (the result is converted to a factor), or NULL to disregard event types.
By default (by = type) the plot distinguishes between event types, i.e., the bars
of the temporal plot are stacked by type, and the point colors in the spatial plot
differ by type, respectively.
Note: to select specific event types for plotting use the subset argument, e.g.,
subset=(type=="B").

t0.Date the beginning of the observation period t0 = x$stgrid$start[1] as a "Date"
(or anything coercible by as.Date without further arguments), enabling a nice
x-axis using hist.Date and sensible breaks of the histogram, e.g., breaks="months".
The event times then equal t0.Date + as.integer(x$events$time - t0), i.e.
possible fractional parts of the event times are removed (which ensures that us-
ing breaks = "months" or other automatic types always works).

breaks a specification of the histogram break points, see hist (or hist.Date if t0.Date
is used). The default value "stgrid" is special and means to use the tempo-
ral grid points with(x$stgrid, c(start[1L], unique.default(stop))) as
breaks (or their "Date" equivalents).

freq see hist, defaults to TRUE.

col fill colour for the bars of the histogram, defaults to the vector of rainbow colours.

cumulative if a list (of style options), lines for the cumulative number of events (per type)
will be added to the plot. Possible options are axis (logical), lab (axis label),
maxat (single integer affecting the axis range), lwd, col, and offset (a numeric
vector of length the number of types).

add logical (default: FALSE) indicating if the plot should be added to an existing
window. Ignored if an spplot is created (if pop is non-NULL).

mar see par. The default (NULL) is mar <- par("mar"), with mar[4] <- mar[2] if
an axis is requested for the cumulative numbers.

xlim, ylim NULL provides automatic axis limits.

xlab, ylab axis labels (with sensible defaults).

main main title of the plot (defaults to no title).

panel.first expression that should be evaluated after the plotting window has been set up
but before the histogram is plotted. Defaults to adding horizontal grid lines.

legend.types if a list (of arguments for legend), a legend for the event types is added to the
plot in case there is more than one type.

88 epidataCS_plot

tiles the observation region x$W (default) or, alternatively, a "SpatialPolygons"
representation of the tiles of x$stgrid.

pop if tiles is a "SpatialPolygonsDataFrame", pop can specify an attribute to
be displayed in a levelplot behind the point pattern, see spplot. By default
(NULL), the conventional graphics system is used to display the tiles and event
locations, otherwise the result is a trellis.object.

cex.fun function which takes a vector of counts of events at each unique location and
returns a (vector of) cex value(s) for the sizes of the corresponding points.
Defaults to the sqrt() function, which for the default circular pch=1 means
that the area of each point is proportional to the number of events at its location.

points.args a list of (type-specific) graphical parameters for points, specifically pch, lwd,
and col, which are all recycled to give the length nlevels(x$events$type).
In contrast, a possible cex element should be scalar (default: 0.5) and multiplies
the sizes obtained from cex.fun.

legend.counts if a list (of arguments for legend), a legend illustrating the effect of cex.fun is
added to the plot. This list may contain a special element counts, which is an
integer vector specifying the counts to illustrate.

sp.layout optional list of additional layout items in case pop is non-NULL, see spplot.

Value

For aggregate="time" (i.e., epidataCSplot_time) the data of the histogram (as returned by
hist), and for aggregate="space" (i.e., epidataCSplot_space) NULL, invisibly, or the trellis.object
generated by spplot (if pop is non-NULL).

Author(s)

Sebastian Meyer

See Also

animate.epidataCS

Examples

data("imdepi")

show the occurrence of events along time
plot(imdepi, "time", main = "Histogram of event time points")
plot(imdepi, "time", by = NULL, main = "Aggregated over both event types")

show the distribution in space
plot(imdepi, "space", lwd = 2, col = "lavender")

with the district-specific population density in the background,
a scale bar, and customized point style
load(system.file("shapes", "districtsD.RData", package = "surveillance"))
districtsD$log10popdens <- log10(districtsD$POPULATION/districtsD$AREA)
keylabels <- (c(1,2,5) * rep(10^(1:3), each=3))[-1]

epidataCS_update 89

plot(imdepi, "space", tiles = districtsD, pop = "log10popdens",
modify point style for better visibility on gray background
points.args = list(pch=c(1,3), col=c("orangered","blue"), lwd=2),
metric scale bar, see proj4string(imdepi$W)
sp.layout = layout.scalebar(imdepi$W, scale=100, labels=c("0","100 km")),
gray scale for the population density and white borders
col.regions = gray.colors(100, start=0.9, end=0.1), col = "white",
color key is equidistant on log10(popdens) scale
at = seq(1.3, 3.7, by=0.05),
colorkey = list(labels=list(at=log10(keylabels), labels=keylabels),

title=expression("Population density per " * km^2)))

epidataCS_update Update method for "epidataCS"

Description

The update method for the "epidataCS" class may be used to modify the hyperparameters ϵ
(eps.t) and δ (eps.s), the indicator matrix qmatrix determining possible transmission between
the event types, the numerical accuracy nCircle2Poly of the polygonal approximation, and the
endemic covariates from stgrid (including the time intervals). The update method will also update
the auxiliary information contained in an "epidataCS" object accordingly, e.g., the vector of po-
tential sources of each event, the influence regions, or the endemic covariates copied from the new
stgrid.

Usage

S3 method for class 'epidataCS'
update(object, eps.t, eps.s, qmatrix, nCircle2Poly, stgrid, ...)

Arguments

object an object of class "epidataCS".

eps.t numeric vector of length 1 or corresponding to the number of events in object$events.
The event data column eps.t specifies the maximum temporal influence radius
(e.g., length of infectious period, time to culling, etc.) of the events.

eps.s numeric vector of length 1 or corresponding to the number of events in object$events.
The event data column eps.s specifies the maximum spatial influence radius of
the events.

qmatrix square indicator matrix (0/1 or TRUE/FALSE) for possible transmission be-
tween the event types.

nCircle2Poly accuracy (number of edges) of the polygonal approximation of a circle.

stgrid a new data.frame with endemic covariates, possibly transformed from or adding
to the original object$stgrid. The grid must cover the same regions as the
original, i.e., levels(object$stgrid$tile) must remain identical. See epidataCS
for a detailed description of the required format.

... unused (argument of the generic).

90 epidata_animate

Value

The updated "epidataCS" object.

Author(s)

Sebastian Meyer

See Also

class "epidataCS".

Examples

data("imdepi")

assume different interaction ranges and simplify polygons
imdepi2 <- update(imdepi, eps.t = 20, eps.s = Inf, nCircle2Poly = 16)

(s <- summary(imdepi))
(s2 <- summary(imdepi2))
The update reduced the number of infectives (along time)
because the length of the infectious periods is reduced. It also
changed the set of potential sources of transmission for each
event, since the interaction is shorter in time but wider in space
(eps.s=Inf means interaction over the whole observation region).

use a time-constant grid
imdepi3 <- update(imdepi, stgrid = subset(imdepi$stgrid, BLOCK == 1, -stop))
(s3 <- summary(imdepi3)) # "1 time block"

epidata_animate Spatio-Temporal Animation of an Epidemic

Description

Function for the animation of epidemic data, i.e. objects inheriting from class "epidata". This
only works with 1- or 2-dimensional coordinates and is not useful if some individuals share the
same coordinates (overlapping). There are two types of animation, see argument time.spacing.
Besides the direct plotting in the R session, it is also possible to generate a sequence of graphics
files to create animations outside R.

Usage

S3 method for class 'summary.epidata'
animate(object, main = "An animation of the epidemic",

pch = 19, col = c(3, 2, gray(0.6)), time.spacing = NULL,
sleep = quote(5/.nTimes), legend.opts = list(), timer.opts = list(),
end = NULL, generate.snapshots = NULL, ...)

epidata_animate 91

S3 method for class 'epidata'
animate(object, ...)

Arguments

object an object inheriting from class "epidata" or "summary.epidata". In the for-
mer case, its summary is calculated and the function continues as in the latter
case, passing all ... arguments to the summary.epidata method.

main a main title for the plot, see also title.

pch, col vectors of length 3 specifying the point symbols and colors for susceptible, in-
fectious and removed individuals (in this order). The vectors are recycled if
necessary. By default, susceptible individuals are marked as filled green circles,
infectious individuals as filled red circles and removed individuals as filled gray
circles. Note that the symbols are iteratively drawn (overlaid) in the same plot-
ting region as time proceeds. For information about the possible values of pch
and col, see the help pages of points and par, respectively.

time.spacing time interval for the animation steps. If NULL (the default), the events are plot-
ted one by one with pauses of sleep seconds. Thus, it is just the ordering of
the events, which is shown. To plot the appearance of events proportionally to
the exact time line, time.spacing can be set to a numeric value indicating the
period of time between consecutive plots. Then, for each time point in seq(0,
end, by = time.spacing) the current state of the epidemic can be seen and an
additional timer indicates the current time (see timer.opts below). The argu-
ment sleep will be the artificial pause in seconds between two of those time
points.

sleep time in seconds to Sys.sleep before the next plotting event. By default, each
artificial pause is of length 5/.nTimes seconds, where .nTimes is the number
of events (infections and removals) of the epidemic, which is evaluated in the
function body. Thus, for time.spacing = NULL the animation has a duration of
approximately 5 seconds. In the other case, sleep is the duration of the artificial
pause between two time points. Note that sleep is ignored on non-interactive
devices (see dev.interactive)

legend.opts either a list of arguments passed to the legend function or NULL (or NA), in which
case no legend will be plotted. All necessary arguments have sensible defaults
and need not be specified, i.e.

x: "topright"

legend: c("susceptible", "infectious", "removed")

pch: same as argument pch of the main function
col: same as argument col of the main function

timer.opts either a list of arguments passed to the legend function or NULL (or NA), in which
case no timer will be plotted. All necessary arguments have sensible defaults and
need not be specified, i.e.

x: "bottomright"

title: "time"

box.lty: 0

92 epidata_animate

adj: c(0.5,0.5)

inset: 0.01

bg: "white"

Note that the argument legend, which is the current time of the animation, can
not be modified.

end ending time of the animation in case of time.spacing not being NULL. By de-
fault (NULL), time stops after the last event.

generate.snapshots

By default (NULL), the animation is not saved to image files but only shown on
the on-screen device. In order to print to files, time.spacing must not be NULL,
a screen device must be available, and there are two options:
If the framework of the animation package should be used, i.e. the animate-call
is passed as the expr argument to one of the save* functions of the animation
package, then set generate.snapshots = img.name, where img.name is the
base name for the generated images (the same as passed to the save* function).
The path and format (type, width, height) for the generated images is derived
from ani.options. See the last example below.
Alternatively, generate.snapshots may be a list of arguments passed to the
function dev.print, which then is executed at each time point of the grid de-
fined by time.spacing. Essentially, this is used for saving the produced snap-
shots to files, e.g.
generate.snapshots = list(device=pdf, file=quote(paste("epidemic_",sprintf(form,tp),".pdf",
sep="")))

will store the animation steps in pdf-files in the current working directory, where
the file names each end with the time point represented by the corresponding
plot. Because the variables tp and form should only be evaluated inside the
function the file argument is quoted. Alternatively, the file name could also
make use of the internal plot index i, e.g., use file=quote(paste("epidemic",i,".pdf",sep="")).

... further graphical parameters passed to the basic call of plot, e.g. las, cex.axis
(etc.) and mgp.

Author(s)

Sebastian Meyer

See Also

summary.epidata for the data, on which the plot is based. plot.epidata for plotting the evolution
of an epidemic by the numbers of susceptible, infectious and removed individuals.

The contributed R package animation.

Examples

data("hagelloch")
(s <- summary(hagelloch))

plot the ordering of the events only
animate(s) # or: animate(hagelloch)

epidata_intersperse 93

with timer (animate only up to t=10)
animate(s, time.spacing=0.1, end=10, sleep=0.01,

legend.opts=list(x="topleft"))

Such an animation can be saved in various ways using tools of
the animation package, e.g., saveHTML()
if (interactive() && require("animation")) {

oldwd <- setwd(tempdir()) # to not clutter up the current working dir
saveHTML({
par(bg="white") # default "transparent" is grey in some browsers
animate(s, time.spacing=1, sleep=0, legend.opts=list(x="topleft"),

generate.snapshots="epiani")
}, use.dev=FALSE, img.name="epiani", ani.width=600, interval=0.5)
setwd(oldwd)

}

epidata_intersperse Impute Blocks for Extra Stops in "epidata" Objects

Description

This function modifies an object inheriting from class "epidata" such that it features the specified
stop time points. For this purpose, the time interval in the event history into which the new stop
falls will be split up into two parts, one block for the time period until the new stop – where no
infection or removal occurs – and the other block for the time period from the new stop to the end
of the original interval.
Main application is to enable the use of knots in twinSIR, which are not existing stop time points
in the "epidata" object.

Usage

intersperse(epidata, stoptimes, verbose = FALSE)

Arguments

epidata an object inheriting from class "epidata".

stoptimes a numeric vector of time points inside the observation period of the epidata.

verbose logical indicating if a txtProgressBar should be shown while inserting blocks
for extra stoptimes.

Value

an object of the same class as epidata with additional time blocks for any new stoptimes.

Author(s)

Sebastian Meyer

94 epidata_plot

See Also

as.epidata.epidataCS where this function is used.

Examples

data("hagelloch")
subset(hagelloch, start < 25 & stop > 25 & id %in% 9:13, select = 1:7)
there is no "stop" time at 25, but we can add this extra stop
nrow(hagelloch)
moreStopsEpi <- intersperse(hagelloch, stoptimes = 25)
nrow(moreStopsEpi)
subset(moreStopsEpi, (stop == 25 | start == 25) & id %in% 9:13, select = 1:7)

epidata_plot Plotting the Evolution of an Epidemic

Description

Functions for plotting the evolution of epidemics. The plot methods for classes "epidata" and
"summary.epidata" plots the numbers of susceptible, infectious and recovered (= removed) in-
dividuals by step functions along the time axis. The function stateplot shows individual state
changes along the time axis.

Usage

S3 method for class 'summary.epidata'
plot(x,

lty = c(2, 1, 3), lwd = 2,
col = c("#1B9E77", "#D95F02", "#7570B3"), col.hor = col, col.vert = col,
xlab = "Time", ylab = "Number of individuals",
xlim = NULL, ylim = NULL, legend.opts = list(), do.axis4 = NULL,
panel.first = grid(), rug.opts = list(),
which.rug = c("infections", "removals", "susceptibility", "all"), ...)

S3 method for class 'epidata'
plot(x, ...)

stateplot(x, id, ...)

Arguments

x an object inheriting from class "epidata" or "summary.epidata". In the for-
mer case, its summary is calculated and the function continues as in the latter
case. The plot method for class "epidata" is a simple wrapper for plot.summary.epidata
implemented as plot(summary(x, ...)).

lty, lwd vectors of length 3 containing the line types and widths, respectively, for the
numbers of susceptible, infectious and removed individuals (in this order). By
default, all lines have width 1 and the line types are dashed (susceptible), solid

epidata_plot 95

(infectious) and dotted (removed), respectively. To omit the drawing of a spe-
cific line, just set the corresponding entry in lty to 0. The vectors are recycled
if necessary. For information about the different lty and lwd codes, see the help
pages of par.

col, col.hor, col.vert
vectors of length 3 containing the line colors for the numbers of susceptible, in-
fectious and removed individuals (in this order). col.hor defines the color for
the horizontal parts of the step function, whilst col.vert defines the color for its
vertical parts. The argument col is just short for col.hor = col and col.vert
= col. The default col vector corresponds to brewer.pal("Dark2",n=3) from
the RColorBrewer package. The vectors are recycled if necessary. For infor-
mation about the possible values of col, see the help pages of par.

xlab, ylab axis labels, default to "Time" and "Number of individuals", respectively.

xlim, ylim the x and y limits of the plot in the form c(xmin, xmax) and c(ymin, ymax),
respectively. By default, these are chosen adequately to fit the time range of the
epidemic and the number of individuals.

legend.opts if this is a list (of arguments for the legend function), a legend will be plotted.
The defaults are as follows:

x: "topright"

inset: c(0,0.02)

legend: c("susceptible", "infectious", "removed")

lty,lwd,col: same as the arguments lty, lwd, and col.hor of the main func-
tion

bty: "n"

do.axis4 logical indicating if the final numbers of susceptible and removed individuals
should be indicated on the right axis. The default NULL means TRUE, if x rep-
resents a SIR epidemic and FALSE otherwise, i.e. if the epidemic is SI, SIS or
SIRS.

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place. By default, a standard grid is drawn.

rug.opts either a list of arguments passed to the function rug or NULL (or NA), in which
case no rug will be plotted. By default, the argument ticksize is set to 0.02,
col is set to the color according to which.rug (black if this is "all"), and
quiet is set to TRUE. Note that the argument x, which contains the locations for
the rug is fixed internally and can not be modified. The argument which.rug
(see below) determines the locations to mark.

which.rug By default, tick marks are drawn at the time points of infections. Alternatively,
one can choose to mark only "removals", "susceptibilities" (i.e. state
change from R to S) or "all" events.

id single character string or factor of length 1 specifying the individual for which
the stateplot should be established.

... For plot.summary.epidata: further graphical parameters passed to plot, lines
and axis, e.g. main, las, cex.axis (etc.) and mgp.
For plot.epidata: arguments passed to plot.summary.epidata.
For stateplot: arguments passed to plot.stepfun or plot.function (if id

https://CRAN.R-project.org/package=RColorBrewer

96 epidata_summary

had no events during the observation period). By default, xlab="time", ylab="state",
xlim=attr(x,"timeRange"), xaxs="i" and do.points=FALSE.

Value

plot.summary.epidata (and plot.epidata) invisibly returns the matrix used for plotting, which
contains the evolution of the three counters.
stateplot invisibly returns the function, which was plotted, typically of class "stepfun", but
maybe of class "function", if no events have been observed for the individual in question (then
the function always returns the initial state). The vertical axis of stateplot can range from 1 to 3,
where 1 corresponds to Susceptible, 2 to Infectious and 3 to Removed.

Author(s)

Sebastian Meyer

See Also

summary.epidata for the data, on which the plots are based. animate.epidata for the animation
of epidemics.

Examples

data("hagelloch")
(s <- summary(hagelloch))

rudimentary stateplot
stateplot(s, id = "187")

evolution of the epidemic
plot(s)

epidata_summary Summarizing an Epidemic

Description

The summary method for class "epidata" gives an overview of the epidemic. Its print method
shows the type of the epidemic, the time range, the total number of individuals, the initially and
never infected individuals and the size of the epidemic. An excerpt of the returned counters data
frame is also printed (see the Value section below).

Usage

S3 method for class 'epidata'
summary(object, ...)

S3 method for class 'summary.epidata'
print(x, ...)

epidata_summary 97

Arguments

object an object inheriting from class "epidata".

x an object inheriting from class "summary.epidata", i.e. an object returned by
the function summary.epidata.

... unused (argument of the generic).

Value

A list with the following components:

type character string. Compartmental type of the epidemic, i.e. one of "SIR", "SI",
"SIS" or "SIRS".

size integer. Size of the epidemic, i.e. the number of initially susceptible individuals,
which became infected during the course of the epidemic.

initiallyInfected

factor (with the same levels as the id column in the "epidata" object). Set of
initially infected individuals.

neverInfected factor (with the same levels as the id column in the "epidata" object). Set of
never infected individuals, i.e. individuals, which were neither initially infected
nor infected during the course of the epidemic.

coordinates numeric matrix of individual coordinates with as many rows as there are individ-
uals and one column for each spatial dimension. The row names of the matrix
are the ids of the individuals.

byID data frame with time points of infection and optionally removal and re-susceptibility
(depending on the type of the epidemic) ordered by id. If an event was not ob-
served, the corresponding entry is missing.

counters data frame containing all events (S, I and R) ordered by time. The columns are
time, type (of event), corresponding id and the three counters nSusceptible,
nInfectious and nRemoved. The first row additionally shows the counters at
the beginning of the epidemic, where the type and id column contain missing
values.

Author(s)

Sebastian Meyer

See Also

as.epidata for generating objects of class "epidata".

Examples

data("hagelloch")
s <- summary(hagelloch)
s # uses the print method for summary.epidata
names(s) # components of the list 's'

98 fanplot

positions of the individuals
plot(s$coordinates)

events by id
head(s$byID)

fanplot Fan Plot of Forecast Distributions

Description

The fanplot() function in surveillance wraps functionality of the dedicated fanplot package,
employing a different default style and optionally adding point predictions and observed values.

Usage

fanplot(quantiles, probs, means = NULL, observed = NULL, start = 1,
fan.args = list(), means.args = list(), observed.args = list(),
key.args = NULL, xlim = NULL, ylim = NULL, log = "",
xlab = "Time", ylab = "No. infected", add = FALSE, ...)

Arguments

quantiles a time x probs matrix of forecast quantiles at each time point.
probs numeric vector of probabilities with values between 0 and 1.
means (optional) numeric vector of point forecasts.
observed (optional) numeric vector of observed values.
start time index (x-coordinate) of the first prediction.
fan.args a list of graphical parameters for the fan, e.g., to employ a different colorRampPalette

as fan.col, or to enable contour lines via ln.
means.args a list of graphical parameters for lines to modify the plotting style of the means.

The default is a white line within the fan.
observed.args a list of graphical parameters for lines to modify the plotting style of the

observed values.
key.args if a list, a color key (in fan()’s "boxfan"-style) is added to the fan chart. The

list may include positioning parameters start (the x-position) and ylim (the
y-range of the color key), space to modify the width of the boxfan, and rlab
to modify the labels. An alternative way of labeling the quantiles is via the
argument ln in fan.args.

xlim, ylim axis ranges.
log a character string specifying which axes are to be logarithmic, e.g., log="y"

(see plot.default).
xlab, ylab axis labels.
add logical indicating if the fan plot should be added to an existing plot.
... further arguments are passed to plot.default. For instance, panel.first

could be used to initialize the plot with grid(nx=NA, ny=NULL) lines.

https://CRAN.R-project.org/package=fanplot

farringtonFlexible 99

Value

NULL (invisibly), with the side effect of drawing a fan chart.

Author(s)

Sebastian Meyer

See Also

the underlying fan function in package fanplot. The function is used in plot.oneStepAhead and
plot.hhh4sims.

Examples

artificial data example to illustrate the graphical options
if (requireNamespace("fanplot")) {

means <- c(18, 19, 20, 25, 26, 35, 34, 25, 19)
y <- rlnorm(length(means), log(means), 0.5)
quantiles <- sapply(1:99/100, qlnorm, log(means), seq(.5,.8,length.out=length(means)))

default style with point predictions, color key and log-scale
fanplot(quantiles = quantiles, probs = 1:99/100, means = means,

observed = y, key.args = list(start = 1, space = .3), log = "y")

with contour lines instead of a key, and different colors
pal <- colorRampPalette(c("darkgreen", "gray93"))
fanplot(quantiles = quantiles, probs = 1:99/100, observed = y,

fan.args = list(fan.col = pal, ln = c(5,10,25,50,75,90,95)/100),
observed.args = list(type = "b", pch = 19))

}

farringtonFlexible Surveillance for Univariate Count Time Series Using an Improved
Farrington Method

Description

The function takes range values of the surveillance time series sts and for each time point uses
a Poisson GLM with overdispersion to predict an upper bound on the number of counts according
to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then
compared to the observed number of counts. If the observation is above the bound, then an alarm is
raised. The implementation is illustrated in Salmon et al. (2016).

Usage

farringtonFlexible(sts, control = list(
range = NULL, b = 5, w = 3,
reweight = TRUE, weightsThreshold = 2.58,

https://CRAN.R-project.org/package=fanplot

100 farringtonFlexible

verbose = FALSE, glmWarnings = TRUE,
alpha = 0.05, trend = TRUE, pThresholdTrend = 0.05,
limit54 = c(5,4), powertrans = "2/3",
fitFun = "algo.farrington.fitGLM.flexible",
populationOffset = FALSE,
noPeriods = 1, pastWeeksNotIncluded = NULL,
thresholdMethod = "delta"))

Arguments

sts object of class sts (including the observed and the state time series)

control Control object given as a list containing the following components:

range Specifies the index of all timepoints which should be tested. If range is
NULL all possible timepoints are used.

b How many years back in time to include when forming the base counts.
w Window’s half-size, i.e. number of weeks to include before and after the

current week in each year.
reweight Boolean specifying whether to perform reweighting step.
weightsThreshold Defines the threshold for reweighting past outbreaks using

the Anscombe residuals (1 in the original method, 2.58 advised in the im-
proved method).

verbose Boolean specifying whether to show extra debugging information.
glmWarnings Boolean specifying whether to print warnings from the call to

glm.
alpha An approximate (one-sided) (1 − α) · 100% prediction interval is cal-

culated unlike the original method where it was a two-sided interval. The
upper limit of this interval i.e. the (1 − α) · 100% quantile serves as an
upperbound.

trend Boolean indicating whether a trend should be included and kept in case
the conditions in the Farrington et. al. paper are met (see the results). If
false then NO trend is fit.

pThresholdTrend Threshold for deciding whether to keep trend in the model
(0.05 in the original method, 1 advised in the improved method).

limit54 Vector containing two numbers: cases and period. To avoid alarms
in cases where the time series only has about almost no cases in the specific
week the algorithm uses the following heuristic criterion (see Section 3.8
of the Farrington paper) to protect against low counts: no alarm is sounded
if fewer than cases = 5 reports were received in the past period = 4
weeks. limit54=c(cases,period) is a vector allowing the user to change
these numbers. Note: As of version 0.9-7 of the package the term "last"
period of weeks includes the current week - otherwise no alarm is sounded
for horrible large numbers if the four weeks before that are too low.

powertrans Power transformation to apply to the data if the threshold is to
be computed with the method described in Farrington et al. (1996. Use
either "2/3" for skewness correction (Default), "1/2" for variance stabilizing
transformation or "none" for no transformation.

farringtonFlexible 101

fitFun String containing the name of the fit function to be used for fitting the
GLM. The only current option is "algo.farrington.fitGLM.flexible".

populationOffset Boolean specifying whether to include a population offset
in the GLM. The slot sts@population gives the population vector.

noPeriods Number of levels in the factor allowing to use more baseline. If
equal to 1 no factor variable is created, the set of reference values is defined
as in Farrington et al (1996).

pastWeeksNotIncluded Number of past weeks to ignore in the calculation.
The default (NULL) means to use the value of control$w. Setting pastWeeksNotIncluded=26
might be preferable (Noufaily et al., 2012).

thresholdMethod Method to be used to derive the upperbound. Options are
"delta" for the method described in Farrington et al. (1996), "nbPlugin"
for the method described in Noufaily et al. (2012), and "muan" for the
method extended from Noufaily et al. (2012).

Details

The following steps are performed according to the Farrington et al. (1996) paper.

1. Fit of the initial model with intercept, time trend if trend is TRUE, seasonal factor variable
if noPeriod is bigger than 1, and population offset if populationOffset is TRUE. Initial
estimation of mean and overdispersion.

2. Calculation of the weights omega (correction for past outbreaks) if reweighting is TRUE. The
threshold for reweighting is defined in control.

3. Refitting of the model

4. Revised estimation of overdispersion

5. Omission of the trend, if it is not significant

6. Repetition of the whole procedure

7. Calculation of the threshold value using the model to compute a quantile of the predictive
distribution. The method used depends on thresholdMethod, this can either be:

"delta" One assumes that the prediction error (or a transformation of the prediction error,
depending on powertrans), is normally distributed. The threshold is deduced from a
quantile of this normal distribution using the variance and estimate of the expected count
given by GLM, and the delta rule. The procedure takes into account both the estimation
error (variance of the estimator of the expected count in the GLM) and the prediction
error (variance of the prediction error). This is the suggestion in Farrington et al. (1996).

"nbPlugin" One assumes that the new count follows a negative binomial distribution pa-
rameterized by the expected count and the overdispersion estimated in the GLM. The
threshold is deduced from a quantile of this discrete distribution. This process disregards
the estimation error, though. This method was used in Noufaily, et al. (2012).

"muan" One also uses the assumption of the negative binomial sampling distribution but
does not plug in the estimate of the expected count from the GLM, instead one uses a
quantile from the asymptotic normal distribution of the expected count estimated in the
GLM; in order to take into account both the estimation error and the prediction error.

8. Computation of exceedance score

102 farringtonFlexible

Warning: monthly data containing the last day of each month as date should be analysed with
epochAsDate=FALSE in the sts object. Otherwise February makes it impossible to find some ref-
erence time points.

Value

An object of class sts with the slots upperbound and alarm filled by appropriate output of the
algorithm. The control slot of the input sts is amended with the following matrix elements, all
with length(range) rows:

trend Booleans indicating whether a time trend was fitted for this time point.

trendVector coefficient of the time trend in the GLM for this time point. If no trend was fitted it is
equal to NA.

pvalue probability of observing a value at least equal to the observation under the null hypothesis .

expected expectation of the predictive distribution for each timepoint. It is only reported if the
conditions for raising an alarm are met (enough cases).

mu0Vector input for the negative binomial distribution to get the upperbound as a quantile (either a
plug-in from the GLM or a quantile from the asymptotic normal distribution of the estimator)

phiVector overdispersion of the GLM at each timepoint.

Author(s)

M. Salmon, M. Höhle

References

Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi:10.18637/
jss.v070.i10

See Also

algo.farrington.fitGLM,algo.farrington.threshold

Examples

data("salmonella.agona")
Create the corresponding sts object from the old disProg object
salm <- disProg2sts(salmonella.agona)

RUN THE ALGORITHMS WITH TWO DIFFERENT SETS OF OPTIONS
control1 <- list(range=282:312,

noPeriods=1,

https://doi.org/10.18637/jss.v070.i10
https://doi.org/10.18637/jss.v070.i10

find.kh 103

b=4, w=3, weightsThreshold=1,
pastWeeksNotIncluded=3,
pThresholdTrend=0.05,
alpha=0.1)

control2 <- list(range=282:312,
noPeriods=10,
b=4, w=3, weightsThreshold=2.58,
pastWeeksNotIncluded=26,
pThresholdTrend=1,
alpha=0.1)

salm1 <- farringtonFlexible(salm,control=control1)
salm2 <- farringtonFlexible(salm,control=control2)

PLOT THE RESULTS
y.max <- max(upperbound(salm1),observed(salm1),upperbound(salm2),na.rm=TRUE)
plot(salm1, ylim=c(0,y.max), main='S. Newport in Germany', legend.opts=NULL)
lines(1:(nrow(salm1)+1)-0.5,

c(upperbound(salm1),upperbound(salm1)[nrow(salm1)]),
type="s",col='tomato4',lwd=2)

lines(1:(nrow(salm2)+1)-0.5,
c(upperbound(salm2),upperbound(salm2)[nrow(salm2)]),
type="s",col="blueviolet",lwd=2)

legend("topleft",
legend=c('Alarm','Upperbound with old options',

'Upperbound with new options'),
pch=c(24,NA,NA),lty=c(NA,1,1),
bg="white",lwd=c(2,2,2),col=c('red','tomato4',"blueviolet"))

find.kh Determine the k and h values in a standard normal setting

Description

Given a specification of the average run length in the (a)cceptance and (r)ejected setting determine
the k and h values in a standard normal setting.

Usage

find.kh(ARLa = 500, ARLr = 7, sided = "one", method = "BFGS", verbose=FALSE)

Arguments

ARLa average run length in acceptance setting, aka. in control state. Specifies the
number of observations before false alarm.

ARLr average run length in rejection state, aka. out of control state. Specifies the
number of observations before an increase is detected (i.e. detection delay)

sided one-sided cusum scheme
method Which method to use in the function optim. Standard choice is BFGS, but in

some situation Nelder-Mead can be advantageous.
verbose gives extra information about the root finding process

104 findH

Details

Functions from the spc package are used in a simple univariate root finding problem.

Value

Returns a list with reference value k and decision interval h.

Examples

if (requireNamespace("spc")) {
find.kh(ARLa=500,ARLr=7,sided="one")
find.kh(ARLa=500,ARLr=3,sided="one")

}

findH Find decision interval for given in-control ARL and reference value

Description

Function to find a decision interval h* for given reference value k and desired ARL γ so that the
average run length for a Poisson or Binomial CUSUM with in-control parameter θ0, reference value
k and is approximately γ, i.e.

∣∣∣ARL(h∗)−γ
γ

∣∣∣ < ϵ, or larger, i.e. ARL(h∗) > γ.

Usage

findH(ARL0, theta0, s = 1, rel.tol = 0.03, roundK = TRUE,
distr = c("poisson", "binomial"), digits = 1, FIR = FALSE, ...)

hValues(theta0, ARL0, rel.tol=0.02, s = 1, roundK = TRUE, digits = 1,
distr = c("poisson", "binomial"), FIR = FALSE, ...)

Arguments

ARL0 desired in-control ARL γ

theta0 in-control parameter θ0
s change to detect, see details

distr "poisson" or "binomial"

rel.tol relative tolerance, i.e. the search for h* is stopped if
∣∣∣ARL(h∗)−γ

γ

∣∣∣ < rel.tol

digits the reference value k and the decision interval h are rounded to digits decimal
places

roundK passed to findK

FIR if TRUE, the decision interval that leads to the desired ARL for a FIR CUSUM
with head start h

2 is returned

... further arguments for the distribution function, i.e. number of trials n for bino-
mial cdf

findK 105

Details

The out-of-control parameter used to determine the reference value k is specified as:

θ1 = λ0 + s
√
λ0

for a Poisson variate X ∼ Po(λ)

θ1 =
sπ0

1 + (s− 1)π0

for a Binomial variate X ∼ Bin(n, π)

Value

findH returns a vector and hValues returns a matrix with elements

theta0 in-control parameter

h decision interval

k reference value

ARL ARL for a CUSUM with parameters k and h

rel.tol corresponds to
∣∣∣ARL(h)−γγ

∣∣∣
findK Find Reference Value

Description

Calculates the reference value k for a Poisson or binomial CUSUM designed to detect a shift from
θ0 to θ1

Usage

findK(theta0, theta1, distr = c("poisson", "binomial"),
roundK = FALSE, digits = 1, ...)

Arguments

theta0 in-control parameter

theta1 out-of-control parameter

distr "poisson" or "binomial"

digits the reference value k is rounded to digits decimal places

roundK For discrete data and rational reference value there is only a limited set of pos-
sible values that the CUSUM can take (and therefore there is also only a limited
set of ARLs). If roundK=TRUE, integer multiples of 0.5 are avoided when round-
ing the reference value k, i.e. the CUSUM can take more values.

... further arguments for the distribution function, i.e. number of trials n for the
binomial CDF.

106 fluBYBW

Value

Returns reference value k.

fluBYBW Influenza in Southern Germany

Description

Weekly number of influenza A & B cases in the 140 districts of the two Southern German states
Bavaria and Baden-Wuerttemberg, for the years 2001 to 2008. These surveillance data have been
analyzed originally by Paul and Held (2011) and more recently by Meyer and Held (2014).

Usage

data(fluBYBW)

Format

An sts object containing 416× 140 observations starting from week 1 in 2001.

The population slot contains the population fractions of each district at 31.12.2001, obtained from
the Federal Statistical Office of Germany.

The map slot contains an object of class "SpatialPolygonsDataFrame".

Note

Prior to surveillance version 1.6-0, data(fluBYBW) contained a redundant last row (417) filled
with zeroes only.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; Queried on 6 March 2009.

References

Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for mul-
tivariate time series of infectious disease counts. Statistics in Medicine, 30, 1118-1136.

Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

https://survstat.rki.de/
https://doi.org/10.1214/14-AOAS743

formatDate 107

Examples

data("fluBYBW")

Count time series plot
plot(fluBYBW, type = observed ~ time)

Map of disease incidence (per 100000 inhabitants) for the year 2001
plot(fluBYBW, type = observed ~ unit, tps = 1:52, total.args = list(),

population = fluBYBW@map$X31_12_01 / 100000)
the overall rate for 2001 shown in the bottom right corner is
sum(observed(fluBYBW[1:52,])) / sum(fluBYBW@map$X31_12_01) * 100000

Not run:
Generating an animation takes a while.
Here we take the first 20 weeks of 2001 (runtime: ~3 minutes).
The full animation is available in Supplement A of Meyer and Held (2014)
if (require("animation")) {

oldwd <- setwd(tempdir()) # to not clutter up the current working dir
saveHTML(animate(fluBYBW, tps = 1:20),

title="Evolution of influenza in Bayern and Baden-Wuerttemberg",
ani.width=500, ani.height=600)

setwd(oldwd)
}

End(Not run)

formatDate Convert Dates to Character (Including Quarter Strings)

Description

An extension of format.Date with additional formatting strings for quarters. Used by linelist2sts.

Usage

formatDate(x, format)

Arguments

x a "Date" object.

format a character string, see strftime for possible specifications. Further to these
base formats, formatDate implements:

"%Q" the quarter as a numeric
"%OQ" the quarter as a roman numeral
"%q" the day within the quarter

Value

a character vector representing the input date(s) x following the format specification.

108 formatPval

See Also

strftime

Examples

formatDate(as.Date("2021-10-13"), "%G/%OQ/%q")

formatPval Pretty p-Value Formatting

Description

Just YAPF – yet another p-value formatter...

It is a wrapper around format.pval, such that by default eps = 1e-4, scientific = FALSE, digits
= if (p<10*eps) 1 else 2, and nsmall = 2.

Usage

formatPval(pv, eps = 1e-4, scientific = FALSE, ...)

Arguments

pv a numeric vector (of p-values).

eps a numerical tolerance, see format.pval.

scientific see format.

... further arguments passed to format.pval (but digits and nsmall are hard-
coded internally).

Value

The character vector of formatted p-values.

Examples

formatPval(c(0.9, 0.13567, 0.0432, 0.000546, 1e-8))

glm_epidataCS 109

glm_epidataCS Fit an Endemic-Only twinstim as a Poisson-glm

Description

An endemic-only twinstim is equivalent to a Poisson regression model for the aggregated number
of events, Y[t][s],k, by time-space-type cell. The rate of the corresponding Poisson distribution is
e[t][s] ·λ([t], [s], k), where e[t][s] = |[t]||[s]| is a multiplicative offset. Thus, the glm function can be
used to fit an endemic-only twinstim. However, wrapping in glm is usually slower.

Usage

glm_epidataCS(formula, data, ...)

Arguments

formula an endemic model formula without response, comprising variables of data$stgrid
and possibly the variable type for a type-specific model.

data an object of class "epidataCS".

... arguments passed to glm. Note that family and offset are fixed internally.

Value

a glm

Author(s)

Sebastian Meyer

Examples

data("imdepi", "imdepifit")

Fit an endemic-only twinstim() and an equivalent model wrapped in glm()
fit_twinstim <- update(imdepifit, epidemic = ~0, siaf = NULL, subset = NULL,

optim.args=list(control=list(trace=0)), verbose=FALSE)
fit_glm <- glm_epidataCS(formula(fit_twinstim)$endemic, data = imdepi)

Compare the coefficients
cbind(twinstim = coef(fit_twinstim), glm = coef(fit_glm))

also compare to an equivalent endemic-only hhh4() fit

first need to aggregate imdepi into an "sts" object
load(system.file("shapes", "districtsD.RData", package="surveillance"))
imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1),

neighbourhood = NULL, tiles = districtsD,

110 ha

popcol.stgrid = "popdensity")

determine the correct offset to get an equivalent model
offset <- 2 * rep(with(subset(imdepi$stgrid, !duplicated(BLOCK)),

stop - start), ncol(imdsts)) *
sum(districtsD$POPULATION) * population(imdsts)

fit the model using hhh4()
fit_hhh4 <- hhh4(imdsts, control = list(

end = list(
f = addSeason2formula(~I(start/365-3.5), period=365, timevar="start"),
offset = offset

), family = "Poisson", subset = 1:nrow(imdsts),
data = list(start=with(subset(imdepi$stgrid, !duplicated(BLOCK)), start))))

summary(fit_hhh4)
stopifnot(all.equal(coef(fit_hhh4), coef(fit_glm), check.attributes=FALSE))

ha Hepatitis A in Berlin

Description

Number of Hepatitis A cases among adult (age>18) males in Berlin, 2001-2006. An increase is
seen during 2006.

Usage

data("ha")
data("ha.sts")

Format

ha is a disProg object containing 290×12 observations starting from week 1 in 2001 to week 30 in
2006. ha.sts was generated from ha via the converter function disProg2sts and includes a map
of Berlin’s districts.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; Queried on 25 August 2006.

Robert Koch Institut, Epidemiologisches Bulletin 33/2006, p.290.

Examples

deprecated "disProg" object
data("ha")
ha
plot(aggregate(ha))

https://survstat.rki.de/

hagelloch 111

new-style "sts" object
data("ha.sts")
ha.sts
plot(ha.sts, type = observed ~ time) # = plot(aggregate(ha.sts, by = "unit"))
plot(ha.sts, type = observed ~ unit, labels = TRUE)

hagelloch 1861 Measles Epidemic in the City of Hagelloch, Germany

Description

Data on the 188 cases in the measles outbreak among children in the German city of Hagelloch
(near Tübingen) 1861. The data were originally collected by Dr. Albert Pfeilsticker (1863) and
augmented and re-analysed by Dr. Heike Oesterle (1992). This dataset is used to illustrate the
twinSIR model class in vignette("twinSIR").

Usage

data("hagelloch")

Format

Loading data("hagelloch") gives two objects: hagelloch and hagelloch.df. The latter is the
original data.frame of 188 rows with individual information for each infected child. hagelloch
has been generated from hagelloch.df via as.epidata (see the Examples below) to obtain an
"epidata" object for use with twinSIR. It contains the entire SIR event history of the outbreak
(but not all of the covariates).

The covariate information in hagelloch.df is as follows:

PN: patient number

NAME: patient name (as a factor)

FN: family index

HN: house number

AGE: age in years

SEX: gender of the individual (factor: male, female)

PRO: Date of prodromes

ERU: Date of rash

CL: class (factor: preschool, 1st class, 2nd class)

DEAD: Date of death (with missings)

IFTO: number of patient who is the putative source of infection (0 = unknown)

SI: serial interval = number of days between dates of prodromes of infection source and infected
person

C: complications (factor: no complications, bronchopneumonia, severe bronchitis, lobar pneumo-
nia, pseudocroup, cerebral edema)

112 hagelloch

PR: duration of prodromes in days

CA: number of cases in family

NI: number of initial cases

GE: generation number of the case

TD: day of max. fever (days after rush)

TM: max. fever (degree Celsius)

x.loc: x coordinate of house (in meters). Scaling in metres is obtained by multiplying the original
coordinates by 2.5 (see details in Neal and Roberts (2004))

y.loc: y coordinate of house (in meters). See also the above description of x.loc.

tPRO: Time of prodromes (first symptoms) in days after the start of the epidemic (30 Oct 1861).

tERU: Time upon which the rash first appears.

tDEAD: Time of death, if available.

tR: Time at which the infectious period of the individual is assumed to end. This unknown time is
calculated as

tRi = min(tDEADi, tERUi + d0),

where – as in Section 3.1 of Neal and Roberts (2004) – we use d0 = 3.

tI: Time at which the individual is assumed to become infectious. Actually this time is unknown,
but we use

tIi = tPROi − d1,

where d1 = 1 as in Neal and Roberts (2004).

The time variables describe the transitions of the individual in an Susceptible-Infectious-Recovered
(SIR) model. Note that in order to avoid ties in the event times resulting from daily interval cen-
soring, the times have been jittered uniformly within the respective day. The time point 0.5 would
correspond to noon of 30 Oct 1861.

The hagelloch "epidata" object only retains some of the above covariates to save space. Apart
from the usual "epidata" event columns, hagelloch contains a number of extra variables repre-
senting distance- and covariate-based weights for the force of infection:

household: the number of currently infectious children in the same household (including the child
itself if it is currently infectious).

nothousehold: the number of currently infectious children outside the household.

c1, c2: the number of children infectious during the respective time block and being members of
class 1 and 2, respectively; but the value is 0 if the individual of the row is not herself a
member of the respective class.

Such epidemic covariates can been computed by specifying suitable f and w arguments in as.epidata
at conversion (see the code below), or at a later step via the update-method for "epidata".

Source

Thanks to Peter J. Neal, University of Manchester, for providing us with these data, which he again
became from Niels Becker, Australian National University. To cite the data, the main references are
Pfeilsticker (1863) and Oesterle (1992).

hagelloch 113

References

Pfeilsticker, A. (1863). Beiträge zur Pathologie der Masern mit besonderer Berücksichtigung der
statistischen Verhältnisse, M.D. Thesis, Eberhard-Karls-Universität Tübingen. Available as https:
//archive.org/details/beitrgezurpatho00pfeigoog.

Oesterle, H. (1992). Statistische Reanalyse einer Masernepidemie 1861 in Hagelloch, M.D. Thesis,
Eberhard-Karls-Universitäat Tübingen.

Neal, P. J. and Roberts, G. O (2004). Statistical inference and model selection for the 1861 Hagel-
loch measles epidemic, Biostatistics 5(2):249-261

See Also

data class: epidata

point process model: twinSIR

illustration with hagelloch: vignette("twinSIR")

Examples

data("hagelloch")
head(hagelloch.df) # original data documented in Oesterle (1992)
head(as.data.frame(hagelloch)) # "epidata" event history format

How the "epidata" 'hagelloch' was created from 'hagelloch.df'
stopifnot(all.equal(hagelloch,

as.epidata(
hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR",
id.col = "PN", coords.cols = c("x.loc", "y.loc"),
f = list(

household = function(u) u == 0,
nothousehold = function(u) u > 0

),
w = list(

c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i,
c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i

),
keep.cols = c("SEX", "AGE", "CL"))

))

Basic plots produced from hagelloch.df

Show case locations as in Neal & Roberts (different scaling) using
the data.frame (promoted to a SpatialPointsDataFrame)
coordinates(hagelloch.df) <- c("x.loc","y.loc")
plot(hagelloch.df, xlab="x [m]", ylab="x [m]", pch=15, axes=TRUE,

cex=sqrt(multiplicity(hagelloch.df)))

Epicurve
hist(as.numeric(hagelloch.df$tI), xlab="Time (days)", ylab="Cases", main="")

https://archive.org/details/beitrgezurpatho00pfeigoog
https://archive.org/details/beitrgezurpatho00pfeigoog

114 hepatitisA

"epidata" summary and plot methods

(s <- summary(hagelloch))
head(s$byID)
plot(s)

Not run:
Show a dynamic illustration of the spread of the infection
animate(hagelloch, time.spacing=0.1, sleep=1/100,

legend.opts=list(x="topleft"))

End(Not run)

hepatitisA Hepatitis A in Germany

Description

Weekly number of reported hepatitis A infections in Germany 2001-2004.

Usage

data(hepatitisA)

Format

A disProg object containing 208×1 observations starting from week 1 in 2001 to week 52 in 2004.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; Queried on 11-01-2005.

Examples

data(hepatitisA)
plot(hepatitisA)

https://survstat.rki.de/

hhh4 115

hhh4 Fitting HHH Models with Random Effects and Neighbourhood Struc-
ture

Description

Fits an autoregressive Poisson or negative binomial model to a univariate or multivariate time series
of counts. The characteristic feature of hhh4 models is the additive decomposition of the conditional
mean into epidemic and endemic components (Held et al, 2005). Log-linear predictors of covariates
and random intercepts are allowed in all components; see the Details below. A general introduction
to the hhh4 modelling approach and its implementation is given in the vignette("hhh4"). Meyer
et al (2017, Section 5, available as vignette("hhh4_spacetime")) describe hhh4 models for areal
time series of infectious disease counts.

Usage

hhh4(stsObj,
control = list(

ar = list(f = ~ -1, offset = 1, lag = 1),
ne = list(f = ~ -1, offset = 1, lag = 1,

weights = neighbourhood(stsObj) == 1,
scale = NULL, normalize = FALSE),

end = list(f = ~ 1, offset = 1),
family = c("Poisson", "NegBin1", "NegBinM"),
subset = 2:nrow(stsObj),
optimizer = list(stop = list(tol=1e-5, niter=100),

regression = list(method="nlminb"),
variance = list(method="nlminb")),

verbose = FALSE,
start = list(fixed=NULL, random=NULL, sd.corr=NULL),
data = list(t = stsObj@epoch - min(stsObj@epoch)),
keep.terms = FALSE

),
check.analyticals = FALSE)

Arguments

stsObj object of class "sts" containing the (multivariate) count data time series.

control a list containing the model specification and control arguments:

ar Model for the autoregressive component given as list with the following
components:
f = ~ -1 a formula specifying log(λit)

offset = 1 optional multiplicative offset, either 1 or a matrix of the same
dimension as observed(stsObj)

lag = 1 a positive integer meaning autoregression on yi,t−lag

116 hhh4

ne Model for the neighbour-driven component given as list with the following
components:
f = ~ -1 a formula specifying log(ϕit)

offset = 1 optional multiplicative offset, either 1 or a matrix of the same
dimension as observed(stsObj)

lag = 1 a non-negative integer meaning dependency on yj,t−lag
weights = neighbourhood(stsObj) == 1 neighbourhood weightswji. The

default corresponds to the original formulation by Held et al (2005),
i.e., the spatio-temporal component incorporates an unweighted sum
over the lagged cases of the first-order neighbours. See Paul et al
(2008) and Meyer and Held (2014) for alternative specifications, e.g.,
W_powerlaw. Time-varying weights are possible by specifying an array
of dim() c(nUnits, nUnits, nTime), where nUnits=ncol(stsObj)
and nTime=nrow(stsObj).

scale = NULL optional matrix of the same dimensions as weights (or
a vector of length ncol(stsObj)) to scale the weights to scale *
weights.

normalize = FALSE logical indicating if the (scaled) weights should be
normalized such that each row sums to 1.

end Model for the endemic component given as list with the following compo-
nents
f = ~ 1 a formula specifying log(νit)

offset = 1 optional multiplicative offset eit, either 1 or a matrix of the same
dimension as observed(stsObj)

family Distributional family – either "Poisson", or the Negative Binomial dis-
tribution. For the latter, the overdispersion parameter can be assumed to be
the same for all units ("NegBin1"), to vary freely over all units ("NegBinM"),
or to be shared by some units (specified by a factor of length ncol(stsObj)
such that its number of levels determines the number of overdispersion pa-
rameters). Note that "NegBinM" is equivalent to factor(colnames(stsObj),
levels = colnames(stsObj)).

subset Typically 2:nrow(obs) if model contains autoregression
optimizer a list of three lists of control arguments.

The "stop" list specifies two criteria for the outer optimization of regres-
sion and variance parameters: the relative tolerance for parameter change
using the criterion max(abs(x[i+1]-x[i])) / max(abs(x[i])), and the
maximum number niter of outer iterations.
Control arguments for the single optimizers are specified in the lists named
"regression" and "variance". method="nlminb" is the default opti-
mizer for both (taking advantage of the analytical Fisher information ma-
trices), however, the methods from optim may also be specified (as well as
"nlm" but that one is not recommended here). Especially for the variance
updates, Nelder-Mead optimization (method="Nelder-Mead") is an attrac-
tive alternative. All other elements of these two lists are passed as control
arguments to the chosen method, e.g., if method="nlminb", adding iter.max=50
increases the maximum number of inner iterations from 20 (default) to 50.

hhh4 117

For method="Nelder-Mead", the respective argument is called maxit and
defaults to 500.

verbose non-negative integer (usually in the range 0:3) specifying the amount
of tracing information to be output during optimization.

start a list of initial parameter values replacing initial values set via fe and ri.
Since surveillance 1.8-2, named vectors are matched against the coefficient
names in the model (where unmatched start values are silently ignored), and
need not be complete, e.g., start = list(fixed = c("-log(overdisp)"
= 0.5)) (default: 2) for a family = "NegBin1" model. In contrast, an un-
named start vector must specify the full set of parameters as used by the
model.

data a named list of covariates that are to be included as fixed effects (see fe)
in any of the 3 component formulae. By default, the time variable t is
available and used for seasonal effects created by addSeason2formula. In
general, covariates in this list can be either vectors of length nrow(stsObj)
interpreted as time-varying but common across all units, or matrices of the
same dimension as the disease counts observed(stsObj).

keep.terms logical indicating if the terms object used in the fit is to be kept as
part of the returned object. This is usually not necessary, since the terms
object is reconstructed by the terms-method for class "hhh4" if necessary
(based on stsObj and control, which are both part of the returned "hhh4"
object).

The auxiliary function makeControl might be useful to create such a list of
control parameters.

check.analyticals

logical (or a subset of c("numDeriv", "maxLik")), indicating if (how) the im-
plemented analytical score vector and Fisher information matrix should be checked
against numerical derivatives at the parameter starting values, using the pack-
ages numDeriv and/or maxLik. If activated, hhh4 will return a list containing
the analytical and numerical derivatives for comparison (no ML estimation will
be performed). This is mainly intended for internal use by the package develop-
ers.

Details

An endemic-epidemic multivariate time-series model for infectious disease counts Yit from units
i = 1, . . . , I during periods t = 1, . . . , T was proposed by Held et al (2005) and was later extended
in a series of papers (Paul et al, 2008; Paul and Held, 2011; Held and Paul, 2012; Meyer and Held,
2014). In its most general formulation, this so-called hhh4 (or HHH or H3 or triple-H) model
assumes that, conditional on past observations, Yit has a Poisson or negative binomial distribution
with mean

µit = λityi,t−1 + ϕit
∑
j ̸=i

wjiyj,t−1 + eitνit

In the case of a negative binomial model, the conditional variance is µit(1+ψiµit) with overdisper-
sion parameters ψi > 0 (possibly shared across different units, e.g., ψi ≡ ψ). Univariate time series
of counts Yt are supported as well, in which case hhh4 can be regarded as an extension of glm.nb
to account for autoregression. See the Examples below for a comparison of an endemic-only hhh4
model with a corresponding glm.nb.

118 hhh4

The three unknown quantities of the mean µit,

• λit in the autoregressive (ar) component,

• ϕit in the neighbour-driven (ne) component, and

• νit in the endemic (end) component,

are log-linear predictors incorporating time-/unit-specific covariates. They may also contain unit-
specific random intercepts as proposed by Paul and Held (2011). The endemic mean is usually
modelled proportional to a unit-specific offset eit (e.g., population numbers or fractions); it is
possible to include such multiplicative offsets in the epidemic components as well. The wji are
transmission weights reflecting the flow of infections from unit j to unit i. If weights vary over
time (prespecified as a 3-dimensional array (wjit)), the ne sum in the mean uses wjityj,t−1. In
spatial hhh4 applications, the “units” refer to geographical regions and the weights could be derived
from movement network data. Alternatively, the weights wji can be estimated parametrically as a
function of adjacency order (Meyer and Held, 2014), see W_powerlaw.

(Penalized) Likelihood inference for such hhh4 models has been established by Paul and Held
(2011) with extensions for parametric neighbourhood weights by Meyer and Held (2014). Supplied
with the analytical score function and Fisher information, the function hhh4 by default uses the
quasi-Newton algorithm available through nlminb to maximize the log-likelihood. Convergence
is usually fast even for a large number of parameters. If the model contains random effects, the
penalized and marginal log-likelihoods are maximized alternately until convergence.

Value

hhh4 returns an object of class "hhh4", which is a list containing the following components:

coefficients named vector with estimated (regression) parameters of the model

se estimated standard errors (for regression parameters)

cov covariance matrix (for regression parameters)

Sigma estimated variance-covariance matrix of random effects

Sigma.orig estimated variance parameters on internal scale used for optimization

Sigma.cov inverse of marginal Fisher information (on internal scale), i.e., the asymptotic
covariance matrix of Sigma.orig

call the matched call

dim vector with number of fixed and random effects in the model

loglikelihood (penalized) loglikelihood evaluated at the MLE

margll (approximate) log marginal likelihood should the model contain random effects

convergence logical. Did optimizer converge?

fitted.values fitted mean values µi,t
control control object of the fit

terms the terms object used in the fit if keep.terms = TRUE and NULL otherwise

stsObj the supplied stsObj

lags named integer vector of length two containing the lags used for the epidemic
components "ar" and "ne", respectively. The corresponding lag is NA if the
component was not included in the model.

hhh4 119

nObs number of observations used for fitting the model

nTime number of time points used for fitting the model

nUnit number of units (e.g. areas) used for fitting the model

runtime the proc.time-queried time taken to fit the model, i.e., a named numeric vector
of length 5 of class "proc_time"

Author(s)

Michaela Paul, Sebastian Meyer, Leonhard Held

References

Held, L., Höhle, M. and Hofmann, M. (2005): A statistical framework for the analysis of multi-
variate infectious disease surveillance counts. Statistical Modelling, 5 (3), 187-199. doi:10.1191/
1471082X05st098oa

Paul, M., Held, L. and Toschke, A. M. (2008): Multivariate modelling of infectious disease surveil-
lance data. Statistics in Medicine, 27 (29), 6250-6267. doi:10.1002/sim.4177

Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for
multivariate time series of infectious disease counts. Statistics in Medicine, 30 (10), 1118-1136.
doi:10.1002/sim.4177

Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance
data. Biometrical Journal, 54 (6), 824-843. doi:10.1002/bimj.201200037

Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

See the special functions fe, ri and the examples below for how to specify unit-specific effects.

Further details on the modelling approach and illustrations of its implementation can be found in
vignette("hhh4") and vignette("hhh4_spacetime").

Examples

######################
Univariate examples
######################

weekly counts of salmonella agona cases, UK, 1990-1995

data("salmonella.agona")
convert old "disProg" to new "sts" data class
salmonella <- disProg2sts(salmonella.agona)
salmonella
plot(salmonella)

https://doi.org/10.1191/1471082X05st098oa
https://doi.org/10.1191/1471082X05st098oa
https://doi.org/10.1002/sim.4177
https://doi.org/10.1002/sim.4177
https://doi.org/10.1002/bimj.201200037
https://doi.org/10.1214/14-AOAS743
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

120 hhh4

generate formula for an (endemic) time trend and seasonality
f.end <- addSeason2formula(f = ~1 + t, S = 1, period = 52)
f.end
specify a simple autoregressive negative binomial model
model1 <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1")
fit this model to the data
res <- hhh4(salmonella, model1)
summarize the model fit
summary(res, idx2Exp=1, amplitudeShift=TRUE, maxEV=TRUE)
plot(res)
plot(res, type = "season", components = "end")

weekly counts of meningococcal infections, Germany, 2001-2006

data("influMen")
fluMen <- disProg2sts(influMen)
meningo <- fluMen[, "meningococcus"]
meningo
plot(meningo)

again a simple autoregressive NegBin model with endemic seasonality
meningoFit <- hhh4(stsObj = meningo, control = list(

ar = list(f = ~1),
end = list(f = addSeason2formula(f = ~1, S = 1, period = 52)),
family = "NegBin1"

))

summary(meningoFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE)
plot(meningoFit)
plot(meningoFit, type = "season", components = "end")

########################
Multivariate examples
########################

bivariate analysis of influenza and meningococcal infections
(see Paul et al, 2008)

plot(fluMen, same.scale = FALSE)

Fit a negative binomial model with
- autoregressive component: disease-specific intercepts
- neighbour-driven component: only transmission from flu to men
- endemic component: S=3 and S=1 sine/cosine pairs for flu and men, respectively
- disease-specific overdispersion

WfluMen <- neighbourhood(fluMen)
WfluMen["meningococcus","influenza"] <- 0
WfluMen
f.end_fluMen <- addSeason2formula(f = ~ -1 + fe(1, which = c(TRUE, TRUE)),

hhh4 121

S = c(3, 1), period = 52)
f.end_fluMen
fluMenFit <- hhh4(fluMen, control = list(

ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)),
ne = list(f = ~ 1, weights = WfluMen),
end = list(f = f.end_fluMen),
family = "NegBinM"))

summary(fluMenFit, idx2Exp=1:3)
plot(fluMenFit, type = "season", components = "end", unit = 1)
plot(fluMenFit, type = "season", components = "end", unit = 2)

weekly counts of measles, Weser-Ems region of Lower Saxony, Germany

data("measlesWeserEms")
measlesWeserEms
plot(measlesWeserEms) # note the two districts with zero cases

we could fit the same simple model as for the salmonella cases above
model1 <- list(

ar = list(f = ~1),
end = list(f = addSeason2formula(~1 + t, period = 52)),
family = "NegBin1"

)
measlesFit <- hhh4(measlesWeserEms, model1)
summary(measlesFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE)

but we should probably at least use a population offset in the endemic
component to reflect heterogeneous incidence levels of the districts,
and account for spatial dependence (here just using first-order adjacency)
measlesFit2 <- update(measlesFit,

end = list(offset = population(measlesWeserEms)),
ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1))

summary(measlesFit2, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE)
plot(measlesFit2, units = NULL, hide0s = TRUE)

'measlesFit2' corresponds to the 'measlesFit_basic' model in
vignette("hhh4_spacetime"). See there for further analyses,
including vaccination coverage as a covariate,
spatial power-law weights, and random intercepts.

Not run:
last but not least, a more sophisticated (and time-consuming)
analysis of weekly counts of influenza from 140 districts in
Southern Germany (originally analysed by Paul and Held, 2011,
and revisited by Held and Paul, 2012, and Meyer and Held, 2014)

data("fluBYBW")
plot(fluBYBW, type = observed ~ time)
plot(fluBYBW, type = observed ~ unit,

mean yearly incidence per 100.000 inhabitants (8 years)

122 hhh4

population = fluBYBW@map$X31_12_01 / 100000 * 8)

For the full set of models for data("fluBYBW") as analysed by
Paul and Held (2011), including predictive model assessement
using proper scoring rules, see the (computer-intensive)
demo("fluBYBW") script:
demoscript <- system.file("demo", "fluBYBW.R", package = "surveillance")
demoscript
#file.show(demoscript)

Here we fit the improved power-law model of Meyer and Held (2014)
- autoregressive component: random intercepts + S = 1 sine/cosine pair
- neighbour-driven component: random intercepts + S = 1 sine/cosine pair
+ population gravity with normalized power-law weights
- endemic component: random intercepts + trend + S = 3 sine/cosine pairs
- random intercepts are iid but correlated between components
f.S1 <- addSeason2formula(

~-1 + ri(type="iid", corr="all"),
S = 1, period = 52)

f.end.S3 <- addSeason2formula(
~-1 + ri(type="iid", corr="all") + I((t-208)/100),
S = 3, period = 52)

for power-law weights, we need adjaceny orders, which can be
computed from the binary adjacency indicator matrix
nbOrder1 <- neighbourhood(fluBYBW)
neighbourhood(fluBYBW) <- nbOrder(nbOrder1)

full model specification
fluModel <- list(

ar = list(f = f.S1),
ne = list(f = update.formula(f.S1, ~ . + log(pop)),

weights = W_powerlaw(maxlag=max(neighbourhood(fluBYBW)),
normalize = TRUE, log = TRUE)),

end = list(f = f.end.S3, offset = population(fluBYBW)),
family = "NegBin1", data = list(pop = population(fluBYBW)),
optimizer = list(variance = list(method = "Nelder-Mead")),
verbose = TRUE)

CAVE: random effects considerably increase the runtime of model estimation
(It is usually advantageous to first fit a model with simple intercepts
to obtain reasonable start values for the other parameters.)
set.seed(1) # because random intercepts are initialized randomly
fluFit <- hhh4(fluBYBW, fluModel)

summary(fluFit, idx2Exp = TRUE, amplitudeShift = TRUE)

plot(fluFit, type = "fitted", total = TRUE)

plot(fluFit, type = "season")
range(plot(fluFit, type = "maxEV"))

plot(fluFit, type = "maps", prop = TRUE)

hhh4_formula 123

gridExtra::grid.arrange(
grobs = lapply(c("ar", "ne", "end"), function (comp)

plot(fluFit, type = "ri", component = comp, main = comp,
exp = TRUE, sub = "multiplicative effect")),

nrow = 1, ncol = 3)

plot(fluFit, type = "neweights", xlab = "adjacency order")

End(Not run)

##
An endemic-only "hhh4" model can also be estimated using MASS::glm.nb
##

weekly counts of measles, Weser-Ems region of Lower Saxony, Germany
data("measlesWeserEms")

fit an endemic-only "hhh4" model
with time covariates and a district-specific offset
hhh4fit <- hhh4(measlesWeserEms, control = list(

end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq),
offset = population(measlesWeserEms)),

ar = list(f = ~-1), ne = list(f = ~-1), family = "NegBin1",
subset = 1:nrow(measlesWeserEms)

))
summary(hhh4fit)

fit the same model using MASS::glm.nb
measlesWeserEmsData <- as.data.frame(measlesWeserEms, tidy = TRUE)
measlesWeserEmsData$t <- c(hhh4fit$control$data$t)
glmnbfit <- MASS::glm.nb(

update(formula(hhh4fit)$end, observed ~ . + offset(log(population))),
data = measlesWeserEmsData

)
summary(glmnbfit)

Note that the overdispersion parameter is parametrized inversely.
The likelihood and point estimates are all the same.
However, the variance estimates are different: in glm.nb, the parameters
are estimated conditional on the overdispersion theta.

hhh4_formula Specify Formulae in a Random Effects HHH Model

124 hhh4_formula

Description

The special functions fe and ri are used to specify unit-specific effects of covariates and random
intercept terms, respectively, in the component formulae of hhh4.

Usage

fe(x, unitSpecific = FALSE, which = NULL, initial = NULL)

ri(type = c("iid","car"), corr = c("none", "all"),
initial.fe = 0, initial.var = -.5, initial.re = NULL)

Arguments

x an expression like sin(2*pi*t/52) involving the time variable t, or just 1 for an
intercept. In general this covariate expression might use any variables contained
in the control$data argument of the parent hhh4 call.

unitSpecific logical indicating if the effect of x should be unit-specific. This is a convenient
shortcut for which = rep(TRUE, nUnits), where nUnits is the number of units
(i.e., columns of the "sts" object).

which vector of logicals indicating which unit(s) should get an unit-specific parameter.
For units with a FALSE value, the effect term for x will be zero in the log-linear
predictor. Note especially that setting a FALSE value for the intercept term of
a unit, e.g., ar = list(f = ~-1 + fe(1, which=c(TRUE, FALSE))) in a bivari-
ate hhh4 model, does not mean that the (autoregressive) model component is
omitted for this unit, but that log(λ1) = α1 and log(λ2) = 0, which is usually
not of interest. ATM, omitting an autoregressive effect for a specific unit is not
possible.
If which=NULL, the parameter is assumed to be the same for all units.

initial initial values (on internal scale!) for the fixed effects used for optimization. The
default (NULL) means to use zeroes.

type random intercepts either follow an IID or a CAR model.

corr whether random effects in different components (such as ar and end) should be
correlated or not.

initial.fe initial value for the random intercept mean.

initial.var initial values (on internal scale!) for the variance components used for optimiza-
tion.

initial.re initial values (on internal scale!) for the random effects used for optimization.
The default NULL are random numbers from a normal distribution with zero
mean and variance 0.001.

Note

These special functions are intended for use in component formulae of hhh4 models and are not
exported from the package namespace.

If unit-specific fixed or random intercepts are specified, an overall intercept must be excluded (by
-1) in the component formula.

hhh4_methods 125

See Also

addSeason2formula

hhh4 model specifications in vignette("hhh4"), vignette("hhh4_spacetime") or on the help
page of hhh4.

hhh4_methods Print, Summary and other Standard Methods for "hhh4" Objects

Description

Besides print and summary methods there are also some standard extraction methods defined for
objects of class "hhh4" resulting from a call to hhh4. The implementation is illustrated in Meyer et
al. (2017, Section 5), see vignette("hhh4_spacetime").

Usage

S3 method for class 'hhh4'
print(x, digits = max(3, getOption("digits") - 3), ...)
S3 method for class 'hhh4'
summary(object, maxEV = FALSE, ...)

S3 method for class 'hhh4'
coef(object, se = FALSE, reparamPsi = TRUE,

idx2Exp = NULL, amplitudeShift = FALSE, ...)
S3 method for class 'hhh4'
fixef(object, ...)
S3 method for class 'hhh4'
ranef(object, tomatrix = FALSE, intercept = FALSE, ...)
S3 method for class 'hhh4'
coeflist(x, ...)

S3 method for class 'hhh4'
formula(x, ...)
S3 method for class 'hhh4'
nobs(object, ...)
S3 method for class 'hhh4'
logLik(object, ...)

S3 method for class 'hhh4'
vcov(object, reparamPsi = TRUE,

idx2Exp = NULL, amplitudeShift = FALSE, ...)
S3 method for class 'hhh4'
confint(object, parm, level = 0.95,

reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...)

S3 method for class 'hhh4'
residuals(object, type = c("deviance", "response"), ...)

126 hhh4_methods

Arguments

x, object an object of class "hhh4".

digits the number of significant digits to use when printing parameter estimates.

maxEV logical indicating if the summary should contain the (range of the) dominant
eigenvalue as a measure of the importance of the epidemic components. By
default, the value is not calculated as this may take some seconds depending on
the number of time points and units in object$stsObj.

... For the print, summary, fixef, ranef, and coeflist methods: arguments
passed to coef.
For the remaining methods: unused (argument of the generic).

reparamPsi logical. If TRUE (default), the overdispersion parameter from the negative bi-
nomial distribution is transformed from internal scale (-log) to standard scale,
where zero corresponds to a Poisson distribution.

se logical switch indicating if standard errors are required

idx2Exp integer vector selecting the parameters which should be returned on exp-scale.
Alternatively, idx2Exp = TRUE will exp-transform all parameters except for those
associated with log() covariates or already affected by reparamPsi or amplitudeShift.

amplitudeShift logical switch indicating whether the parameters for sine/cosine terms modelling
seasonal patterns (see addSeason2formula) should be transformed to an ampli-
tude/shift formulation.

tomatrix logical. If FALSE (default), the vector of all random effects is returned (as used
internally). However, for random intercepts of type="car", the number of pa-
rameters is one less than the number of regions and the individual parameters
are not obviously linked to specific regions. Setting tomatrix to TRUE returns a
more useful representation of random effects in a matrix with as many rows as
there are regions and as many columns as there are random effects. Here, any
CAR-effects are transformed to region-specific effects.

intercept logical. If FALSE (default), the returned random effects represent zero-mean de-
viations around the corresponding global intercepts of the log-linear predictors.
Setting intercept=TRUE adds these global intercepts to the result (and implies
tomatrix=TRUE).

parm a vector of numbers or names, specifying which parameters are to be given
confidence intervals. If missing, all parameters are considered.

level the confidence level required.

type the type of residuals which should be returned. The alternatives are "deviance"
(default) and "response".

Value

The coef-method returns all estimated (regression) parameters from a hhh4 model. If the model
includes random effects, those can be extracted with ranef, whereas fixef returns the fixed pa-
rameters. The coeflist-method extracts the model coefficients in a list (by parameter group).

The formula-method returns the formulae used for the three log-linear predictors in a list with
elements "ar", "ne", and "end". The nobs-method returns the number of observations used for

hhh4_plot 127

model fitting. The logLik-method returns an object of class "logLik" with "df" and "nobs"
attributes. For a random effects model, the value of the penalized log-likelihood at the MLE is
returned, but degrees of freedom are not available (NA_real_). As a consequence, AIC and BIC are
only well defined for models without random effects; otherwise these functions return NA_real_.

The vcov-method returns the estimated variance-covariance matrix of the regression parameters.
The estimated variance-covariance matrix of random effects is available as object$Sigma. The
confint-method returns Wald-type confidence intervals (assuming asymptotic normality).

The residuals-method extracts raw ("response") or scaled ("deviance") residuals from the
model fit similar to residuals.glm for Poisson or NegBin GLM’s.

Author(s)

Michaela Paul and Sebastian Meyer

References

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

the plot and update methods for fitted "hhh4" models.

hhh4_plot Plots for Fitted hhh4-models

Description

There are six types of plots for fitted hhh4 models:

• Plot the "fitted" component means (of selected units) along time along with the observed
counts.

• Plot the estimated "season"ality of the three components.

• Plot the time-course of the dominant eigenvalue "maxEV".

• If the units of the corresponding multivariate "sts" object represent different regions, maps
of the fitted mean components averaged over time ("maps"), or a map of estimated region-
specific intercepts ("ri") of a selected model component can be produced.

• Plot the (estimated) neighbourhood weights ("neweights") as a function of neighbourhood
order (shortest-path distance between regions), i.e., w_ji ~ o_ji.

Spatio-temporal "hhh4" models and these plots are illustrated in Meyer et al. (2017, Section 5), see
vignette("hhh4_spacetime").

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

128 hhh4_plot

Usage

S3 method for class 'hhh4'
plot(x, type=c("fitted", "season", "maxEV", "maps", "ri", "neweights"), ...)

plotHHH4_fitted(x, units = 1, names = NULL,
col = c("grey85", "blue", "orange"),
pch = 19, pt.cex = 0.6, pt.col = 1,
par.settings = list(),
legend = TRUE, legend.args = list(),
legend.observed = FALSE,
decompose = NULL, total = FALSE, meanHHH = NULL, ...)

plotHHH4_fitted1(x, unit = 1, main = NULL,
col = c("grey85", "blue", "orange"),
pch = 19, pt.cex = 0.6, pt.col = 1, border = col,
start = x$stsObj@start, end = NULL, xaxis = NULL,
xlim = NULL, ylim = NULL, xlab = "", ylab = "No. infected",

hide0s = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL)

plotHHH4_season(..., components = NULL, intercept = FALSE,
xlim = NULL, ylim = NULL,
xlab = NULL, ylab = "", main = NULL,
par.settings = list(), matplot.args = list(),
legend = NULL, legend.args = list(),
refline.args = list(), unit = 1, period = NULL)

getMaxEV_season(x, period = x$stsObj@freq)

plotHHH4_maxEV(...,
matplot.args = list(), refline.args = list(),
legend.args = list())

getMaxEV(x)

plotHHH4_maps(x, which = c("mean", "endemic", "epi.own", "epi.neighbours"),
prop = FALSE, main = which, zmax = NULL, col.regions = NULL,
labels = FALSE, sp.layout = NULL, ...,
map = x$stsObj@map, meanHHH = NULL)

plotHHH4_ri(x, component, exp = FALSE,
at = list(n = 10), col.regions = cm.colors(100),
colorkey = TRUE, labels = FALSE, sp.layout = NULL,
gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2),
...)

plotHHH4_neweights(x, plotter = boxplot, ...,
exclude = 0, maxlag = Inf)

hhh4_plot 129

Arguments

x a fitted hhh4 object.

type type of plot: either "fitted" component means of selected units along time
along with the observed counts, or "season"ality plots of the model compo-
nents and the epidemic dominant eigenvalue (which may also be plotted along
overall time by type="maxEV", especially if the model contains time-varying
neighbourhood weights or unit-specific epidemic effects), or "maps" of the fit-
ted mean components averaged over time, or a map of estimated region-specific
random intercepts ("ri") of a specific model component. The latter two require
x$stsObj to contain a map.

... For plotHHH4_season and plotHHH4_maxEV, one or more hhh4-fits, or a single
list of these. Otherwise further arguments passed on to other functions.
For the plot-method these go to the specific plot type function.
plotHHH4_fitted passes them to plotHHH4_fitted1, which is called sequen-
tially for every unit in units.
plotHHH4_maps and plotHHH4_ri pass additional arguments to spplot, and
plotHHH4_neweights to the plotter.

units, unit integer or character vector specifying a single unit or possibly multiple units
to plot. It indexes colnames(x$stsObj).
In plotHHH4_fitted, units=NULL plots all units.
In the seasonality plot, selection of a unit is only relevant if the model contains
unit-specific intercepts or seasonality terms.

names, main main title(s) for the selected unit(s) / components. If NULL (default), plotHHH4_fitted1
will use the appropriate element of colnames(x$stsObj), whereas plotHHH4_season
uses default titles.

col, border length 3 vectors specifying the fill and border colors for the endemic, autore-
gressive, and spatio-temporal component polygons (in this order).

pch, pt.cex, pt.col
style specifications for the dots drawn to represent the observed counts. pch=NA
can be used to disable these dots.

par.settings list of graphical parameters for par. Sensible defaults for mfrow, mar and las
will be applied unless overridden or !is.list(par.settings).

legend Integer vector specifying in which of the length(units) frames the legend
should be drawn. If a logical vector is supplied, which(legend) determines the
frame selection, i.e., the default is to drawn the legend in the first (upper left)
frame only, and legend=FALSE results in no legend being drawn.

legend.args list of arguments for legend, e.g., to modify the default positioning list(x="topright",
inset=0.02).

legend.observed

logical indicating if the legend should contain a line for the dots corresponding
to observed counts.

decompose if TRUE or (a permutation of) colnames(x$stsObj), the fitted mean will be
decomposed into the contributions from each single unit and the endemic part
instead of the default endemic + AR + neighbours decomposition.

130 hhh4_plot

total logical indicating if the fitted components should be summed over all units to be
compared with the total observed counts at each time point. If total=TRUE, the
units/unit argument is ignored.

start, end time range to plot specified by vectors of length two in the form c(year,number),
see "sts".

xaxis if this is a list (of arguments for addFormattedXAxis), the time axis is nicely
labelled similar to stsplot_time. Note that in this case or if xaxis = NA, the
basic time indexes 1:nrow(x$stsObj) will be used as x coordinates, which is
different from the long-standing default (xaxis = NULL) with a real time scale.

xlim numeric vector of length 2 specifying the x-axis range. The default (NULL) is
to plot the complete time range (type="fitted") or period (type="season"),
respectively.

ylim y-axis range. For type="fitted", this defaults to c(0,max(observed(x$stsObj)[,unit])).
For type="season", ylim must be a list of length length(components) spec-
ifying the range for every component plot, or a named list to customize only
a subset of these. If only one ylim is specified, it will be recycled for all
components plots.

xlab, ylab axis labels. For plotHHH4_season, ylab specifies the y-axis labels for all
components in a list (similar to ylim). If NULL or incomplete, default mathe-
matical expressions are used. If a single name is supplied such as the default
ylab="" (to omit y-axis labels), it is used for all components.

hide0s logical indicating if dots for zero observed counts should be omitted. Especially
useful if there are too many.

meanHHH (internal) use different component means than those estimated and available
from x.

components character vector of component names, i.e., a subset of c("ar", "ne", "end"),
for which to plot the estimated seasonality. If NULL (the default), only compo-
nents which appear in any of the models in ... are plotted.
A seasonality plot of the epidemic dominant eigenvalue is also available by in-
cluding "maxEV" in components, but it only supports models without epidemic
covariates/offsets.

intercept logical indicating whether to include the global intercept. For plotHHH4_season,
the default (FALSE) means to plot seasonality as a multiplicative effect on the re-
spective component. Multiplication by the intercept only makes sense if there
are no further (non-centered) covariates/offsets in the component.

exp logical indicating whether to exp-transform the color-key axis labels to show
the multiplicative effect of the region-specific random intercept on the respec-
tive component. Axis labels are then computed using log_breaks from pack-
age scales (if that is available) or axisTicks (as a fallback) respecting the
colorkey$tick.number setting (default: 7). The default is FALSE.

at a numeric vector of breaks for the color levels (see levelplot), or a list speci-
fying the number of breaks n (default: 10) and their range (default: range of the
random effects, extended to be symmetric around 0). In the latter case, breaks
are equally spaced (on the original, non-exp scale of the random intercepts). If
exp=TRUE, custom breaks (or range) need to be given on the exp-scale.

hhh4_plot 131

matplot.args list of line style specifications passed to matplot, e.g., lty, lwd, col.

refline.args list of line style specifications (e.g., lty or col) passed to abline when drawing
the reference line (h=1) in plots of seasonal effects (if intercept=FALSE) and
of the dominant eigenvalue. The reference line is omitted if refline.args is
not a list.

period a numeric value giving the (longest) period of the harmonic terms in the model.
This usually coincides with the freq of the data (the default), but needs to be
adjusted if the model contains harmonics with a longer periodicity.

which a character vector specifying the components of the mean for which to produce
maps. By default, the overall mean and all three components are shown.

prop a logical indicating whether the component maps should display proportions of
the total mean instead of absolute numbers.

zmax a numeric vector of length length(which) (recycled as necessary) specifying
upper limits for the color keys of the maps, using a lower limit of 0. A missing
element (NA) means to use a map-specific color key only covering the range of
the values in that map (can be useful for prop = TRUE). The default zmax = NULL
means to use the same scale for the component maps and a separate scale for the
map showing the overall mean.

col.regions a vector of colors used to encode the fitted component means (see levelplot).
For plotHHH4_maps, the length of this color vector also determines the number
of levels, using 10 heat colors by default.

colorkey a Boolean indicating whether to draw the color key. Alternatively, a list speci-
fying how to draw it, see levelplot.

map an object inheriting from "SpatialPolygons" with row.names covering colnames(x).

component component for which to plot the estimated region-specific random intercepts.
Must partially match one of colnames(ranef(x, tomatrix=TRUE)).

labels determines if and how regions are labeled, see layout.labels.

sp.layout optional list of additional layout items, see spplot.

gpar.missing list of graphical parameters for sp.polygons, applied to regions with missing
random intercepts, i.e., not included in the model. Such extra regions won’t be
plotted if !is.list(gpar.missing).

plotter the (name of a) function used to produce the plot of weights (a numeric vec-
tor) as a function of neighbourhood order (a factor variable). It is called as
plotter(Weight ~ Distance, ...) and defaults to boxplot. A useful alterna-
tive is, e.g., stripplot from package lattice.

exclude vector of neighbourhood orders to be excluded from plotting (passed to factor).
By default, the neighbourhood weight for order 0 is not shown, which is usually
zero anyway.

maxlag maximum order of neighbourhood to be assumed when computing the nbOrder
matrix. This additional step is necessary iff neighbourhood(x$stsObj) only
specifies a binary adjacency matrix.

132 hhh4_plot

Value

plotHHH4_fitted1 invisibly returns a matrix of the fitted component means for the selected unit,
and plotHHH4_fitted returns these in a list for all units.
plotHHH4_season invisibly returns the plotted y-values, i.e. the multiplicative seasonality effect
within each of components. Note that this will include the intercept, i.e. the point estimate of
exp(intercept+ seasonality) is plotted and returned.
getMaxEV_season returns a list with elements "maxEV.season" (as plotted by plotHHH4_season(...,
components="maxEV"), "maxEV.const" and "Lambda.const" (the Lambda matrix and its domi-
nant eigenvalue if time effects are ignored).
plotHHH4_maxEV (invisibly) and getMaxEV return the dominant eigenvalue of the Λt matrix for all
time points t of x$stsObj.
plotHHH4_maps returns a trellis.object if length(which) == 1 (a single spplot), and other-
wise uses grid.arrange from the gridExtra package to arrange all length(which) spplots on a
single page. plotHHH4_ri returns the generated spplot, i.e., a trellis.object.
plotHHH4_neweights eventually calls plotter and thus returns whatever is returned by that func-
tion.

Author(s)

Sebastian Meyer

References

Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance
data. Biometrical Journal, 54, 824-843. doi:10.1002/bimj.201200037

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

other methods for hhh4 fits, e.g., summary.hhh4.

Examples

data("measlesWeserEms")

fit a simple hhh4 model
measlesModel <- list(

ar = list(f = ~ 1),
end = list(f = addSeason2formula(~0 + ri(type="iid"), S=1, period=52),

offset = population(measlesWeserEms)),
family = "NegBin1"
)

measlesFit <- hhh4(measlesWeserEms, measlesModel)

fitted values for a single unit
plot(measlesFit, units=2)

sum fitted components over all units

https://doi.org/10.1002/bimj.201200037
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

hhh4_plot 133

plot(measlesFit, total=TRUE)

'xaxis' option for a nicely formatted time axis
default tick locations and labels:
plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE, line=1))
an alternative with monthly ticks:
oopts <- surveillance.options(stsTickFactors = c("%m"=0.75, "%Y" = 1.5))
plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE,

xaxis.tickFreq=list("%m"=atChange, "%Y"=atChange),
xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y"))

surveillance.options(oopts)

plot the multiplicative effect of seasonality
plot(measlesFit, type="season")

alternative fit with biennial pattern, plotted jointly with original fit
measlesFit2 <- update(measlesFit,

end = list(f = addSeason2formula(~0 + ri(type="iid"), S=2, period=104)))
plotHHH4_season(measlesFit, measlesFit2, components="end", period=104)

dominant eigenvalue of the Lambda matrix (cf. Held and Paul, 2012)
getMaxEV(measlesFit) # here simply constant and equal to exp(ar.1)
plot(measlesFit, type="maxEV") # not very exciting

fitted mean components/proportions by district, averaged over time
if (requireNamespace("gridExtra")) {

plot(measlesFit, type="maps", labels=list(cex=0.6),
which=c("endemic", "epi.own"), prop=TRUE, zmax=NA,
main=c("endemic proportion", "autoregressive proportion"))

}

estimated random intercepts of the endemic component
round(nu0 <- fixef(measlesFit)["end.ri(iid)"], 4) # global intercept
round(ranefs <- ranef(measlesFit, tomatrix = TRUE), 4) # zero-mean deviations
stopifnot(all.equal(

nu0 + ranefs,
ranef(measlesFit, intercept = TRUE) # local intercepts (log-scale)

))
plot(measlesFit, type="ri", component="end",

main="deviations around the endemic intercept (log-scale)")
exp(ranef(measlesFit)) # multiplicative effects, plotted below
plot(measlesFit, type="ri", component="end", exp=TRUE,

main="multiplicative effects",
labels=list(font=3, labels="GEN"))

neighbourhood weights as a function of neighbourhood order
plot(measlesFit, type="neweights") # boring, model has no "ne" component

fitted values for the 6 regions with most cases and some customization
bigunits <- tail(names(sort(colSums(observed(measlesWeserEms)))), 6)
plot(measlesFit, units=bigunits,

names=measlesWeserEms@map@data[bigunits,"GEN"],
legend=5, legend.args=list(x="top"), xlab="Time (weekly)",

134 hhh4_predict

hide0s=TRUE, ylim=c(0,max(observed(measlesWeserEms)[,bigunits])),
start=c(2002,1), end=c(2002,26), par.settings=list(xaxs="i"))

hhh4_predict Predictions from a hhh4 Model

Description

Get fitted (component) means from a hhh4 model.

Usage

S3 method for class 'hhh4'
predict(object, newSubset=object$control$subset,

type="response", ...)

Arguments

object fitted hhh4 model (class "hhh4").

newSubset subset of time points for which to return the predictions. Defaults to the subset
used for fitting the model, and must be a subset of 1:nrow(object$stsObj).

type the type of prediction required. The default ("response" or, equivalently, "mean")
is on the scale of the response variable (mean = endemic plus epidemic com-
ponents). The alternatives are: "endemic", "epidemic", "epi.own" (i.e. the
autoregressive part), and "epi.neighbours" (i.e. the spatio-temporal part).

... unused (argument of the generic).

Value

matrix of fitted means for each time point (of newSubset) and region.

Note

Predictions for “newdata”, i.e., with modified covariates or fixed weights, can be computed manu-
ally by adjusting the control list (in a copy of the original fit), dropping the old terms, and using
the internal function meanHHH directly, see the Example.

Author(s)

Michaela Paul and Sebastian Meyer

hhh4_simulate 135

Examples

simulate simple seasonal noise with reduced baseline for t >= 60
t <- 0:100
y <- rpois(length(t), exp(3 + sin(2*pi*t/52) - 2*(t >= 60)))
obj <- sts(y)
plot(obj)

fit true model
fit <- hhh4(obj, list(end = list(f = addSeason2formula(~lock)),

data = list(lock = as.integer(t >= 60)),
family = "Poisson"))

coef(fit, amplitudeShift = TRUE, se = TRUE)

compute predictions for a subset of the time points
stopifnot(identical(predict(fit), fitted(fit)))
plot(obj)
lines(40:80, predict(fit, newSubset = 40:80), lwd = 2)

advanced: compute predictions for "newdata" (here, a modified covariate)
mod <- fit
mod$terms <- NULL # to be sure
mod$control$data$lock[t >= 60] <- 0.5
pred <- meanHHH(mod$coefficients, terms(mod))$mean
plot(fit, xaxis = NA)
lines(mod$control$subset, pred, lty = 2)

hhh4_simulate Simulate "hhh4" Count Time Series

Description

Simulates a multivariate time series of counts based on the Poisson/Negative Binomial model as
described in Paul and Held (2011).

Usage

S3 method for class 'hhh4'
simulate(object, nsim = 1, seed = NULL, y.start = NULL,

subset = 1:nrow(object$stsObj), coefs = coef(object),
components = c("ar","ne","end"), simplify = nsim>1, ...)

Arguments

object an object of class "hhh4".

nsim number of time series to simulate. Defaults to 1.

136 hhh4_simulate

seed an object specifying how the random number generator should be initialized for
simulation (via set.seed). The initial state will also be stored as an attribute
"seed" of the result. The original state of the .Random.seed will be restored at
the end of the simulation. By default (NULL), neither initialization nor recovery
will be done. This behaviour is copied from the simulate.lm method.

y.start vector or matrix (with ncol(object$stsObj) columns) with starting counts for
the epidemic components. If NULL, the observed means in the respective units
of the data in object during subset are used.

subset time period in which to simulate data. Defaults to (and cannot exceed) the whole
period defined by the underlying "sts" object.

coefs coefficients used for simulation from the model in object. Default is to use
the fitted parameters. Note that the coefs-vector must be in the same order and
scaling as coef(object), which especially means reparamPsi = TRUE (as per
default when using the coef-method to extract the parameters). The overdis-
persion parameter in coefs is the inverse of the dispersion parameter size in
rnbinom.

components character vector indicating which components of the fitted model object should
be active during simulation. For instance, a simulation with components="end"
is solely based on the fitted endemic mean.

simplify logical indicating if only the simulated counts (TRUE) or the full "sts" object
(FALSE) should be returned for every replicate. By default a full "sts" object is
returned iff nsim=1.

... unused (argument of the generic).

Details

Simulates data from a Poisson or a Negative Binomial model with mean

µit = λityi,t−1 + ϕit
∑
j ̸=i

wjiyj,t−1 + νit

where λit > 0, ϕit > 0, and νit > 0 are parameters which are modelled parametrically. The
function uses the model and parameter estimates of the fitted object to simulate the time series.

With the argument coefs it is possible to simulate from the model as specified in object, but with
different parameter values.

Value

If simplify=FALSE: an object of class "sts" (nsim = 1) or a list of those (nsim > 1).

If simplify=TRUE: an object of class "hhh4sims", which is an array of dimension c(length(subset),
ncol(object$stsObj), nsim). The originally observed counts during the simulation period, object$stsObj[subset,],
are attached for reference (used by the plot-methods) as an attribute "stsObserved", and the initial
condition y.start as attribute "initial". The [-method for "hhh4sims" takes care of subsetting
these attributes appropriately.

Author(s)

Michaela Paul and Sebastian Meyer

hhh4_simulate 137

References

Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for mul-
tivariate time series of infectious disease counts. Statistics in Medicine, 30, 1118–1136

See Also

plot.hhh4sims and scores.hhh4sims and the examples therein for nsim > 1.

Examples

data(influMen)
convert to sts class and extract meningococcal disease time series
meningo <- disProg2sts(influMen)[,2]

fit model
fit <- hhh4(meningo, control = list(

ar = list(f = ~ 1),
end = list(f = addSeason2formula(~1, period = 52)),
family = "NegBin1"))

plot(fit)

simulate from model (generates an "sts" object)
simData <- simulate(fit, seed=1234)

plot simulated data
plot(simData, main = "simulated data", xaxis.labelFormat=NULL)

use simplify=TRUE to return an array of simulated counts
simCounts <- simulate(fit, seed=1234, simplify=TRUE)
dim(simCounts) # nTime x nUnit x nsim

plot the first year of simulated counts (+ initial + observed)
plot(simCounts[1:52,,], type = "time", xaxis.labelFormat = NULL)
see help(plot.hhh4sims) for other plots, mainly useful for nsim > 1

simulate from a Poisson instead of a NegBin model
keeping all other parameters fixed at their original estimates
coefs <- replace(coef(fit), "overdisp", 0)
simData2 <- simulate(fit, seed=123, coefs = coefs)
plot(simData2, main = "simulated data: Poisson model", xaxis.labelFormat = NULL)

simulate from a model with higher autoregressive parameter
coefs <- replace(coef(fit), "ar.1", log(0.9))
simData3 <- simulate(fit, seed=321, coefs = coefs)
plot(simData3, main = "simulated data: lambda = 0.5", xaxis.labelFormat = NULL)

more sophisticated: simulate beyond initially observed time range

extend data range by one year (non-observed domain), filling with NA values
nextend <- 52
timeslots <- c("observed", "state", "alarm", "upperbound", "populationFrac")

138 hhh4_simulate_plot

addrows <- function (mat, n) mat[c(seq_len(nrow(mat)), rep(NA, n)),,drop=FALSE]
extended <- Map(function (x) addrows(slot(meningo, x), n = nextend), x = timeslots)
create new sts object with extended matrices
meningo2 <- do.call("sts", c(list(start = meningo@start, frequency = meningo@freq,

map = meningo@map), extended))

fit to the observed time range only, via the 'subset' argument
fit2 <- hhh4(meningo2, control = list(

ar = list(f = ~ 1),
end = list(f = addSeason2formula(~1, period = 52)),
family = "NegBin1",
subset = 2:(nrow(meningo2) - nextend)))

the result is the same as before
stopifnot(all.equal(fit, fit2, ignore = c("stsObj", "control")))

long-term probabilistic forecast via simulation for non-observed time points
meningoSim <- simulate(fit2, nsim = 100, seed = 1,

subset = seq(nrow(meningo)+1, nrow(meningo2)),
y.start = tail(observed(meningo), 1))

apply(meningoSim, 1:2, function (ysim) quantile(ysim, c(0.1, 0.5, 0.9)))
three plot types are available for "hhh4sims", see also ?plot.hhh4sims
plot(meningoSim, type = "time", average = median)
plot(meningoSim, type = "size", observed = FALSE)
if (requireNamespace("fanplot"))

plot(meningoSim, type = "fan", means.args = list(),
fan.args = list(ln = c(.1,.9), ln.col = 8))

hhh4_simulate_plot Plot Simulations from "hhh4" Models

Description

Arrays of simulated counts from simulate.hhh4 can be visualized as final size boxplots, individual
or average time series, or fan charts (using the fanplot package). An aggregate-method is also
available.

Usage

S3 method for class 'hhh4sims'
plot(x, ...)
S3 method for class 'hhh4sims'
aggregate(x, units = TRUE, time = FALSE, ..., drop = FALSE)

as.hhh4simslist(x, ...)
S3 method for class 'hhh4simslist'
plot(x, type = c("size", "time", "fan"), ...,

groups = NULL, par.settings = list())
S3 method for class 'hhh4simslist'
aggregate(x, units = TRUE, time = FALSE, ..., drop = FALSE)

https://CRAN.R-project.org/package=fanplot

hhh4_simulate_plot 139

plotHHH4sims_size(x, horizontal = TRUE, trafo = NULL, observed = TRUE,
names = base::names(x), ...)

plotHHH4sims_time(x, average = mean, individual = length(x) == 1,
conf.level = if (individual) 0.95 else NULL,
matplot.args = list(), initial.args = list(), legend = length(x) > 1,
xlim = NULL, ylim = NULL, add = FALSE, ...)

plotHHH4sims_fan(x, which = 1,
fan.args = list(), observed.args = list(), initial.args = list(),
means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL,
add = FALSE, xaxis = list(), ...)

Arguments

x an object of class "hhh4sims" (as resulting from the simulate-method for
"hhh4" models if simplify = TRUE was set), or an "hhh4simslist", i.e., a list
of such simulations potentially obtained from different model fits (using the
same simulation period).

type a character string indicating the summary plot to produce.

... further arguments passed to methods.

groups an optional factor to produce stratified plots by groups of units. The special
setting groups = TRUE is a convenient shortcut for one plot by unit.

par.settings a list of graphical parameters for par. Sensible defaults for mfrow, mar and las
will be applied unless overridden or !is.list(par.settings).

horizontal a logical indicating if the boxplots of the final size distributions should be hori-
zontal (the default).

trafo an optional transformation function from the scales package, e.g., sqrt_trans.

observed a logical indicating if a line and axis value for the observed size of the epidemic
should be added to the plot. Alternatively, a list with graphical parameters can
be specified to modify the default values.

names a character vector of names for x.

average scalar-valued function to apply to the simulated counts at each time point.

individual a logical indicating if the individual simulations should be shown as well.

conf.level a scalar in (0,1), which determines the level of the pointwise quantiles obtained
from the simulated counts at each time point. A value of NULL disables the
confidence interval.

matplot.args a list of graphical parameters for matlines.

initial.args if a list (of graphical parameters for lines), a bar for the initial number of cases
is added to the plot.

legend a logical, a character vector (providing names for x), or a list of parameters for
legend.

xlim, ylim vectors of length 2 determining the axis limits.

140 hhh4_simulate_plot

add a logical indicating if the (mean) simulated time series or the fan chart, respec-
tively, should be added to an existing plot.

which a single integer or a character string selecting the model in x for which to pro-
duce the fan chart. This is only relevant if x is a "hhh4simslist" of simulations
from multiple models. Defaults to the first model.

fan.args a list of graphical parameters for the fan, e.g., to employ a different colorRampPalette
as fan.col, or to enable contour lines via ln.

observed.args if a list (of graphical parameters for lines), the originally observed counts are
added to the plot.

means.args if a list (of graphical parameters for lines), the point forecasts are added to the
plot (by default as a white line within the fan).

key.args if a list, a color key (in fan’s "boxfan"-style) is added to the fan chart. The
list may include positioning parameters start (the x-position) and ylim (the
y-range of the color key), space to modify the width of the boxfan, and rlab to
modify the labels. The color key is disabled by default. An alternative way of
labeling the quantiles is via the argument ln in fan.args, see the Examples.

xaxis if a list of arguments for addFormattedXAxis, that function is used to draw the
time axis, otherwise a default x-axis is drawn.

units a logical indicating aggregation over units. Can also be a factor (or something
convertible to a factor using as.factor) to aggregate groups of units.

time a logical indicating if the counts should be summed over the whole simulation
period.

drop a logical indicating if the unit dimension and the "hhh4sims" (or "hhh4simslist")
class should be dropped after aggregating over (groups of) units.

Author(s)

Sebastian Meyer

Examples

univariate example
data("salmAllOnset")

fit a hhh4 model to the first 13 years
salmModel <- list(end = list(f = addSeason2formula(~1 + t)),

ar = list(f = ~1), family = "NegBin1", subset = 2:678)
salmFit <- hhh4(salmAllOnset, salmModel)

simulate the next 20 weeks ahead
salmSims <- simulate(salmFit, nsim = 300, seed = 3, subset = 678 + seq_len(20),

y.start = observed(salmAllOnset)[678,])

compare final size distribution to observed value
summary(aggregate(salmSims, time = TRUE)) # summary of simulated values
plot(salmSims, type = "size")

individual and average simulated time series with a confidence interval

hhh4_simulate_plot 141

plot(salmSims, type = "time", main = "20-weeks-ahead simulation")

fan chart based on the quantiles of the simulated counts at each time point
point forecasts are represented by a white line within the fan
if (requireNamespace("fanplot")) {

plot(salmSims, type = "fan", main = "20-weeks-ahead simulation",
fan.args = list(ln = 1:9/10), means.args = list())

}

multivariate example
data("measlesWeserEms")

fit a hhh4 model to the first year
measlesModel <- list(

end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)),
ar = list(f = ~1),
ne = list(f = ~1 + log(pop),

weights = W_powerlaw(maxlag = 5, normalize = TRUE)),
family = "NegBin1", subset = 2:52,
data = list(pop = population(measlesWeserEms)))

measlesFit1 <- hhh4(measlesWeserEms, control = measlesModel)

use a Poisson distribution instead (just for comparison)
measlesFit2 <- update(measlesFit1, family = "Poisson")

simulate realizations from these models during the second year
measlesSims <- lapply(X = list(NegBin = measlesFit1, Poisson = measlesFit2),

FUN = simulate, nsim = 50, seed = 1, subset = 53:104,
y.start = observed(measlesWeserEms)[52,])

final size of the first model
plot(measlesSims[[1]])

stratified by groups of districts
mygroups <- factor(substr(colnames(measlesWeserEms), 4, 4))
apply(aggregate(measlesSims[[1]], time = TRUE, units = mygroups), 1, summary)
plot(measlesSims[[1]], groups = mygroups)

a class and plot-method for a list of simulations from different models
measlesSims <- as.hhh4simslist(measlesSims)
plot(measlesSims)

simulated time series
plot(measlesSims, type = "time", individual = TRUE, ylim = c(0, 80))

fan charts
if (requireNamespace("fanplot")) {

opar <- par(mfrow = c(2,1))
plot(measlesSims, type = "fan", which = 1, ylim = c(0, 80), main = "NegBin",

key.args = list())
plot(measlesSims, type = "fan", which = 2, ylim = c(0, 80), main = "Poisson")
par(opar)

142 hhh4_simulate_scores

}

hhh4_simulate_scores Proper Scoring Rules for Simulations from hhh4 Models

Description

Calculate proper scoring rules based on simulated predictive distributions.

Usage

S3 method for class 'hhh4sims'
scores(x, which = "rps", units = NULL, ..., drop = TRUE)
S3 method for class 'hhh4simslist'
scores(x, ...)

Arguments

x an object of class "hhh4sims" (as resulting from the simulate-method for
"hhh4" models if simplify = TRUE was set), or an "hhh4simslist", i.e., a list
of such simulations potentially obtained from different model fits (using the
same simulation period).

which a character vector indicating which proper scoring rules to compute. By default,
only the ranked probability score ("rps") is calculated. Other options include
"logs" and "dss".

units if non-NULL, an integer or character vector indexing the columns of x for which
to compute the scores.

drop a logical indicating if univariate dimensions should be dropped (the default).

... unused (argument of the generic).

Details

This implementation can only compute univariate scores, i.e., independently for each time point.

The logarithmic score is badly estimated if the domain is large and there are not enough samples
to cover the underlying distribution in enough detail (the score becomes infinite when an observed
value does not occur in the samples). An alternative is to use kernel density estimation as imple-
mented in the R package scoringRules.

Author(s)

Sebastian Meyer

https://CRAN.R-project.org/package=scoringRules

hhh4_update 143

Examples

data("salmAllOnset")

fit a hhh4 model to the first 13 years
salmModel <- list(end = list(f = addSeason2formula(~1 + t)),

ar = list(f = ~1), family = "NegBin1", subset = 2:678)
salmFit <- hhh4(salmAllOnset, salmModel)

simulate the next 20 weeks ahead (with very small 'nsim' for speed)
salmSims <- simulate(salmFit, nsim = 500, seed = 3, subset = 678 + seq_len(20),

y.start = observed(salmAllOnset)[678,])
if (requireNamespace("fanplot"))

plot(salmSims, "fan")

calculate scores at each time point

using empirical distribution of simulated counts as forecast distribution
scores(salmSims, which = c("rps", "logs", "dss"))
observed count sometimes not covered by simulations -> infinite log-score
=> for a more detailed forecast, either considerably increase 'nsim', or:

1. use continuous density() of simulated counts as forecast distribution
fi <- apply(salmSims, 1, function (x) approxfun(density(x)))
logs_kde <- mapply(function (f, y) -log(f(y)),

f = fi, y = observed(attr(salmSims,"stsObserved")))
cbind("empirical" = scores(salmSims, "logs"), "density" = logs_kde)
a similar KDE approach is implemented in scoringRules::logs_sample()

2. average conditional predictive NegBin's of simulated trajectories,
currently only implemented in HIDDA.forecasting::dhhh4sims()

produce a PIT histogram

using empirical distribution of simulated counts as forecast distribition
pit(x = observed(attr(salmSims, "stsObserved")),

pdistr = apply(salmSims, 1:2, ecdf))
long-term forecast is badly calibrated (lower tail is unused, see fan above)
we also get a warning for the same reason as infinite log-scores

hhh4_update update a fitted "hhh4" model

Description

Re-fit a "hhh4" model with a modified control list.

144 hhh4_update

Usage

S3 method for class 'hhh4'
update(object, ..., S = NULL, subset.upper = NULL,

use.estimates = object$convergence, evaluate = TRUE)

Arguments

object a fitted "hhh4" model. Non-convergent fits can be updated as well.

... components modifying the original control list for hhh4. Modifications are per-
formed by modifyList(object$control, list(...)).

S a named list of numeric vectors serving as argument for addSeason2formula,
or NULL (meaning no modification of seasonal terms). This argument provides
a convenient way of changing the number of harmonics in the formulae of the
model components "ar", "ne" and "end" (to be used as names of the list).
Non-specified components are not touched. Updating the i’th component’s
formula works by first dropping all sine and cosine terms and then applying
addSeason2formula with arguments S = S[[i]] and period = object$stsObj@freq.
Note that this step of updating seasonality is processed after modification of the
control list by the ... arguments.

subset.upper if a scalar value, refit the model to the data up to the time index given by
subset.upper. The lower time index remains unchanged, i.e., control$subset[1]:subset.upper
is used as the new subset. This argument is used by oneStepAhead.

use.estimates logical specifying if coef(object) should be used as starting values for the
new fit (which is the new default since surveillance 1.8-2, in case the original
fit has converged). This works by matching names against the coefficients of
the new model. Extra coefficients no longer in the model are silently ignored.
Setting use.estimates = FALSE means to re-use the previous start specification
object$control$start.
Note that coefficients can also receive initial values from an extra start argu-
ment in the update call (as in hhh4), which then takes precedence over coef(object).

evaluate logical indicating if the updated model should be fitted directly (defaults to
TRUE). Otherwise, the updated control list is returned.

Value

If evaluate = TRUE the re-fitted object, otherwise the updated control list for hhh4.

Author(s)

Sebastian Meyer

See Also

hhh4

hhh4_validation 145

Examples

data("salmonella.agona")
convert to sts class
salmonella <- disProg2sts(salmonella.agona)

fit a basic model
fit0 <- hhh4(salmonella,

list(ar = list(f = ~1), end = list(f = addSeason2formula(~t))))

update: Poisson -> NegBin1, component seasonality
fit1 <- update(fit0, family = "NegBin1", S = list(end=2, ar=2))

compare fits
AIC(fit0, fit1)
opar <- par(mfrow=c(2,2))
plot(fit0, type="fitted", names="fit0", par.settings=NULL)
plot(fit1, type="fitted", names="fit1", par.settings=NULL)
plot(fit0, fit1, type="season", components=c("end", "ar"), par.settings=NULL)
par(opar)

hhh4_validation Predictive Model Assessment for hhh4 Models

Description

The function oneStepAhead computes successive one-step-ahead predictions for a (random effects)
HHH model fitted by hhh4. These can be inspected using the quantile, confint or plot methods.
The associated scores-method computes a number of (strictly) proper scoring rules based on such
one-step-ahead predictions; see Paul and Held (2011) for details. There are also calibrationTest
and pit methods for oneStepAhead predictions.

Scores, calibration tests and PIT histograms can also be computed for the fitted values of an hhh4
model (i.e., in-sample/training data evaluation).

Usage

oneStepAhead(result, tp, type = c("rolling", "first", "final"),
which.start = c("current", "final"),
keep.estimates = FALSE, verbose = type != "final",
cores = 1)

S3 method for class 'oneStepAhead'
quantile(x, probs = c(2.5, 10, 50, 90, 97.5)/100, ...)
S3 method for class 'oneStepAhead'
confint(object, parm, level = 0.95, ...)
S3 method for class 'oneStepAhead'
plot(x, unit = 1, probs = 1:99/100,

start = NULL, means.args = NULL, ...)

146 hhh4_validation

assessment of "oneStepAhead" predictions
S3 method for class 'oneStepAhead'
scores(x, which = c("logs", "rps", "dss", "ses"),

units = NULL, sign = FALSE, individual = FALSE, reverse = FALSE, ...)
S3 method for class 'oneStepAhead'
calibrationTest(x, units = NULL, ...)
S3 method for class 'oneStepAhead'
pit(x, units = NULL, ...)

assessment of the "hhh4" model fit (in-sample predictions)
S3 method for class 'hhh4'
scores(x, which = c("logs", "rps", "dss", "ses"),

subset = x$control$subset, units = seq_len(x$nUnit), sign = FALSE, ...)
S3 method for class 'hhh4'
calibrationTest(x,

subset = x$control$subset, units = seq_len(x$nUnit), ...)
S3 method for class 'hhh4'
pit(x, subset = x$control$subset, units = seq_len(x$nUnit), ...)

Arguments

result fitted hhh4 model (class "hhh4").

tp numeric vector of length 2 specifying the time range in which to compute one-
step-ahead predictions (for the time points tp[1]+1, . . . , tp[2]+1). If a single
time index is specified, it is interpreted as tp[1], and tp[2] is set to the penul-
timate time point of result$control$subset.

type The default "rolling" procedure sequentially refits the model up to each time
point in tp and computes the one-step-ahead predictions for the respective next
time point. The alternative types are no true one-step-ahead predictions but
much faster: "first" will refit the model for the first time point tp[1] only
and use this specific fit to calculate all subsequent predictions, whereas "final"
will just use result to calculate these. The latter case thus gives nothing else
than a subset of result$fitted.values if the tp’s are part of the fitted subset
result$control$subset.

which.start Which initial parameter values should be used when successively refitting the
model to subsets of the data (up to time point tp[1], up to tp[1]+1, ...) if
type="rolling"? Default ("current") is to use the parameter estimates from
the previous time point, and "final" means to always use the estimates from
result as initial values. Alternatively, which.start can be a list of start
values as expected by hhh4, which then replace the corresponding estimates
from result as initial values. This argument is ignored for “non-rolling” types.

keep.estimates logical indicating if parameter estimates and log-likelihoods from the successive
fits should be returned.

verbose non-negative integer (usually in the range 0:3) specifying the amount of tracing
information to output. During hhh4 model updates, the following verbosity is
used: 0 if cores > 1, otherwise verbose-1 if there is more than one time point
to predict, otherwise verbose.

hhh4_validation 147

cores the number of cores to use when computing the predictions for the set of time
points tp in parallel (with mclapply). Note that parallelization is not possi-
ble in the default setting type="rolling" and which.start="current" (use
which.start="final" for this to work).

object an object of class "oneStepAhead".

parm unused (argument of the generic).

level required confidence level of the prediction interval.

probs numeric vector of probabilities with values in [0,1].

unit single integer or character selecting a unit for which to produce the plot.

start x-coordinate of the first prediction. If start=NULL (default), this is derived from
x.

means.args if a list (of graphical parameters for lines), the point predictions (from x$pred)
are added to the plot.

x an object of class "oneStepAhead" or "hhh4".

which character vector determining which scores to compute. The package surveil-
lance implements the following proper scoring rules: logarithmic score ("logs"),
ranked probability score ("rps"), Dawid-Sebastiani score ("dss"), and squared
error score ("ses"). The normalized SES ("nses") is also available but it is
improper and hence not computed by default.
It is possible to name own scoring rules in which. These must be functions of
(x, mu, size), vectorized in all arguments (time x unit matrices) except that
size is NULL in case of a Poisson model. See the available scoring rules for
guidance, e.g., dss.

subset subset of time points for which to calculate the scores (or test calibration, or
produce the PIT histogram, respectively). Defaults to the subset used for fitting
the model.

units integer or character vector indexing the units for which to compute the scores
(or the calibration test or the PIT histogram, respectively). By default, all units
are considered.

sign logical indicating if the function should also return sign(x-mu), i.e., the sign of
the difference between the observed counts and corresponding predictions. This
does not really make sense when averaging over multiple units with individual=FALSE.

individual logical indicating if the individual scores of the units should be returned. By
default (FALSE), the individual scores are averaged over all units.

reverse logical indicating if the rows (time points) should be reversed in the result. The
long-standing but awkward default was to do so for the oneStepAhead-method.
This has changed in version 1.16.0, so time points are no longer reversed by
default.

... Unused by the quantile, confint and scores methods.
The plot-method passes further arguments to the fanplot function, e.g., fan.args,
observed.args, and key.args can be used to modify the plotting style.
For the calibrationTest-method, further arguments are passed to calibrationTest.default,
e.g., which to select a scoring rule.
For the pit-methods, further arguments are passed to pit.default.

148 hhh4_validation

Value

oneStepAhead returns a list (of class "oneStepAhead") with the following components:

pred one-step-ahead predictions in a matrix, where each row corresponds to one of the
time points requested via the argument tp, and which has ncol(result$stsObj)
unit-specific columns. The rownames indicate the predicted time points and the
column names are identical to colnames(result$stsObj).

observed matrix with observed counts at the predicted time points. It has the same dimen-
sions and names as pred.

psi in case of a negative-binomial model, a matrix of the estimated overdisper-
sion parameter(s) at each time point on the internal -log-scale (1 column if
"NegBin1", ncol(observed) columns if "NegBinM" or shared overdispersion).
For a "Poisson" model, this component is NULL.

allConverged logical indicating if all successive fits converged.

If keep.estimates=TRUE, there are the following additional elements:

coefficients matrix of estimated regression parameters from the successive fits.

Sigma.orig matrix of estimated variance parameters from the successive fits.

logliks matrix with columns "loglikelihood" and "margll" with their obvious mean-
ings.

The quantile-method computes quantiles of the one-step-ahead forecasts. If there is only one unit,
it returns a tp x prob matrix, otherwise a tp x unit x prob array. The confint-method is a convenient
wrapper with probs set according to the required confidence level.

The function scores computes the scoring rules specified in the argument which. If multiple units
are selected and individual=TRUE, the result is an array of dimensions c(nrow(pred),length(units),5+sign)
(up to surveillance 1.8-0, the first two dimensions were collapsed to give a matrix). Otherwise, the
result is a matrix with nrow(pred) rows and 5+sign columns. If there is only one predicted time
point, the first dimension is dropped in both cases.

The calibrationTest- and pit-methods are just convenient wrappers around the respective de-
fault methods.

Author(s)

Sebastian Meyer and Michaela Paul

References

Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. Biomet-
rics, 65 (4), 1254-1261. doi:10.1111/j.15410420.2009.01191.x

Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for
multivariate time series of infectious disease counts. Statistics in Medicine, 30 (10), 1118-1136.
doi:10.1002/sim.4177

See Also

vignette("hhh4") and vignette("hhh4_spacetime")

https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.1002/sim.4177

hhh4_validation 149

Examples

univariate salmonella agona count time series

data("salmonella.agona")
convert from old "disProg" to new "sts" class
salmonella <- disProg2sts(salmonella.agona)

generate formula for temporal and seasonal trends
f.end <- addSeason2formula(~1 + t, S=1, period=52)
model <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1")
fit the model
result <- hhh4(salmonella, model)

do sequential one-step-ahead predictions for the last 5 weeks
pred <- oneStepAhead(result, nrow(salmonella)-5, type="rolling",

which.start="final", verbose=FALSE)
pred
quantile(pred)
confint(pred)

simple plot of the 80% one-week-ahead prediction interval
and point forecasts
if (requireNamespace("fanplot"))

plot(pred, probs = c(.1,.9), means.args = list())

note: oneStepAhead(..., type="final") just means fitted values
stopifnot(identical(

unname(oneStepAhead(result, nrow(salmonella)-5, type="final")$pred),
unname(tail(fitted(result), 5))))

compute scores of the one-step-ahead predictions
(sc <- scores(pred))

the above uses the scores-method for "oneStepAhead" predictions,
which is a simple wrapper around the default method:
scores(x = pred$observed, mu = pred$pred, size = exp(pred$psi))

scores with respect to the fitted values are similar
(scFitted <- scores(result, subset = nrow(salmonella)-(4:0)))

test if the one-step-ahead predictions are calibrated
calibrationTest(pred) # p = 0.8746

the above uses the calibrationTest-method for "oneStepAhead" predictions,
which is a simple wrapper around the default method:
calibrationTest(x = pred$observed, mu = pred$pred, size = exp(pred$psi))

150 hhh4_W

we can also test calibration of the fitted values
using the calibrationTest-method for "hhh4" fits
calibrationTest(result, subset = nrow(salmonella)-(4:0))

plot a (non-randomized) PIT histogram for the predictions
pit(pred)

the above uses the pit-method for "oneStepAhead" predictions,
which is a simple wrapper around the default method:
pit(x = pred$observed, pdistr = "pnbinom", mu = pred$pred, size = exp(pred$psi))

multivariate measles count time series
(omitting oneStepAhead forecasts here to keep runtime low)

data("measlesWeserEms")

simple hhh4 model with random effects in the endemic component
measlesModel <- list(

end = list(f = addSeason2formula(~0 + ri(type="iid"))),
ar = list(f = ~1),
family = "NegBin1")

measlesFit <- hhh4(measlesWeserEms, control = measlesModel)

assess overall (in-sample) calibration of the model, i.e.,
if the observed counts are from the fitted NegBin distribution
calibrationTest(measlesFit) # default is DSS (not suitable for low counts)
calibrationTest(measlesFit, which = "logs") # p = 0.7238

to assess calibration in the second year for a specific district
calibrationTest(measlesFit, subset = 53:104, units = "03452", which = "rps")
pit(measlesFit, subset = 53:104, units = "03452")

For a more sophisticated multivariate analysis of
areal time series of influenza counts - data("fluBYBW") -
see the (computer-intensive) demo("fluBYBW") script:
demoscript <- system.file("demo", "fluBYBW.R", package = "surveillance")
#file.show(demoscript)

hhh4_W Power-Law and Nonparametric Neighbourhood Weights for hhh4-
Models

Description

Set up power-law or nonparametric weights for the neighbourhood component of hhh4-models as
proposed by Meyer and Held (2014). Without normalization, power-law weights are wji = o−dji

hhh4_W 151

(if oji > 0, otherwise wji = 0), where oji (= oij) is the adjacency order between regions i and
j, and the decay parameter d is to be estimated. In the nonparametric formulation, unconstrained
log-weights will be estimated for each of the adjacency orders 2:maxlag (the first-order weight is
fixed to 1 for identifiability). Both weight functions can be modified to include a 0-distance weight,
which enables hhh4 models without a separate autoregressive component.

Usage

W_powerlaw(maxlag, normalize = TRUE, log = FALSE,
initial = if (log) 0 else 1, from0 = FALSE)

W_np(maxlag, truncate = TRUE, normalize = TRUE,
initial = log(zetaweights(2:(maxlag+from0))),
from0 = FALSE, to0 = truncate)

Arguments

maxlag a single integer specifying a limiting order of adjacency. If spatial dependence
is not to be truncated at some high order, maxlag should be set to the maxi-
mum adjacency order in the network of regions. The smallest possible value for
maxlag is 2 if from0=FALSE and 1 otherwise.

truncate, to0 W_np represents order-specific log-weights up to order maxlag. Higher orders
are by default (truncate=TRUE) assumed to have zero weight (similar to W_powerlaw).
Alternatively, truncate=FALSE requests that the weight at order maxlag should
be carried forward to higher orders. truncate has previously been called to0
(deprecated).

normalize logical indicating if the weights should be normalized such that the rows of the
weight matrix sum to 1 (default). Note that normalization does not work with
islands, i.e., regions without neighbours.

log logical indicating if the decay parameter d should be estimated on the log-scale
to ensure positivity.

initial initial value of the parameter vector.

from0 logical indicating if these parametric weights should include the 0-distance (au-
toregressive) case. In the default setting (from0 = FALSE), adjacency order 0
has zero weight, which is suitable for hhh4 models with a separate autoregres-
sive component. With from0 = TRUE (Meyer and Held, 2017), the power law
is based on (oji + 1), and nonparametric weights are estimated for adjacency
orders 1:maxlag, respectively, where the 0-distance weight is wjj = 1 (without
normalization). Note that the corresponding hhh4 model should then exclude a
separate autoregressive component (controlarf = ~ -1).

Details

hhh4 will take adjacency orders from the neighbourhood slot of the "sts" object, so these must
be prepared before fitting a model with parametric neighbourhood weights. The function nbOrder
can be used to derive adjacency orders from a binary adjacency matrix.

152 hhh4_W

Value

a list which can be passed as a specification of parametric neighbourhood weights in the controlneweights
argument of hhh4.

Author(s)

Sebastian Meyer

References

Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

Meyer, S. and Held, L. (2017): Incorporating social contact data in spatio-temporal models for
infectious disease spread. Biostatistics, 18 (2), 338-351. doi:10.1093/biostatistics/kxw051

See Also

nbOrder to determine adjacency orders from a binary adjacency matrix.

getNEweights and coefW to extract the estimated neighbourhood weight matrix and coefficients
from an hhh4 model.

Examples

data("measlesWeserEms")

data contains adjaceny orders as required for parametric weights
plot(measlesWeserEms, type = observed ~ unit, labels = TRUE)
neighbourhood(measlesWeserEms)[1:6,1:6]
max(neighbourhood(measlesWeserEms)) # max order is 5

fit a power-law decay of spatial interaction
in a hhh4 model with seasonality and random intercepts in the endemic part
measlesModel <- list(

ar = list(f = ~ 1),
ne = list(f = ~ 1, weights = W_powerlaw(maxlag=5)),
end = list(f = addSeason2formula(~-1 + ri(), S=1, period=52)),
family = "NegBin1")

fit the model
set.seed(1) # random intercepts are initialized randomly
measlesFit <- hhh4(measlesWeserEms, measlesModel)
summary(measlesFit) # "neweights.d" is the decay parameter d
coefW(measlesFit)

plot the spatio-temporal weights o_ji^-d / sum_k o_jk^-d
as a function of adjacency order
plot(measlesFit, type = "neweights", xlab = "adjacency order")
normalization => same distance does not necessarily mean same weight.
to extract the whole weight matrix W: getNEweights(measlesFit)

https://doi.org/10.1214/14-AOAS743
https://doi.org/10.1093/biostatistics/kxw051

hhh4_W_utils 153

visualize contributions of the three model components
to the overall number of infections (aggregated over all districts)
plot(measlesFit, total = TRUE)
little contribution from neighbouring districts

if (surveillance.options("allExamples")) {

simpler model with autoregressive effects captured by the ne component
measlesModel2 <- list(

ne = list(f = ~ 1, weights = W_powerlaw(maxlag=5, from0=TRUE)),
end = list(f = addSeason2formula(~-1 + ri(), S=1, period=52)),
family = "NegBin1")

measlesFit2 <- hhh4(measlesWeserEms, measlesModel2)
omitting the separate AR component simplifies model extensions/selection
and interpretation of covariate effects (only two predictors left)

plot(measlesFit2, type = "neweights", exclude = NULL, xlab = "adjacency order")
strong decay, again mostly within-district transmission
(one could also try a purely autoregressive model)
plot(measlesFit2, total = TRUE,

legend.args = list(legend = c("epidemic", "endemic")))
almost the same RMSE as with separate AR and NE effects
c(rmse1 = sqrt(mean(residuals(measlesFit, "response")^2)),

rmse2 = sqrt(mean(residuals(measlesFit2, "response")^2)))

}

hhh4_W_utils Extract Neighbourhood Weights from a Fitted hhh4 Model

Description

The getNEweights function extracts the (fitted) weight matrix/array from a "hhh4" object, after
scaling and normalization. The coefW function extracts the coefficients of parametric neighbour-
hood weights from a hhh4 fit (or directly from a corresponding coefficient vector), i.e., coefficients
whose names begin with “neweights”.

Usage

getNEweights(object, pars = coefW(object),
scale = ne$scale, normalize = ne$normalize)

coefW(object)

Arguments

object an object of class "hhh4". coefW also works with the coefficient vector.

pars coefficients for parametric neighbourhood weights, such as for models using
W_powerlaw. Defaults to the corresponding point estimates in object.

154 husO104Hosp

scale, normalize
parameters of the ne component of hhh4.

Author(s)

Sebastian Meyer

husO104Hosp Hospitalization date for HUS cases of the STEC outbreak in Germany,
2011

Description

Data contain the date of hospitalization for 630 hemolytic-uremic syndrome (HUS) cases during the
large STEC outbreak in Germany, 2011. Note: Only HUS cases which ultimately had a hospitaliza-
tion date available/reported are included in the data set. The total number of HUS cases during the
outbreak was 855 – see Höhle and an der Heiden (2014) as well as Frank et al. (2011) for details.

For each HUS case the attribute dHosp contains the date of hospitalization and the attribute dReport
contains the date of first arrival of this hospitalization date at the Robert Koch Institute (RKI). As
described in Höhle and an der Heiden (2014) the mechanisms of the delay were complicated and
should be interpreted with care. For example, the case report could have arrived earlier, but without
information about the hospitalization date.

The resulting reporting triangle corresponds to Fig. 1 of the Web appendix of Höhle and an der
Heiden (2014). This means that the reports which arrived with a delay longer than 15 days are set
to have have arrived after 15 days. Altogether, this gives small discrepancies when compared with
the results of the paper. However, as mentioned in the paper, longer delays were not very relevant
for the nowcasting.

Usage

data(husO104Hosp)

Format

A data.frame object.

Source

Data were collected during the outbreak as part of the mandatory reporting of notifiable diseases
in Germany (Faensen et al., 2006). Here, reports are transmitted from the local health authorities
via the state health authorities to the Robert Koch Institute, Berlin. The resulting reporting triangle
corresponds to Fig. 1 of the Web appendix of Höhle and an der Heiden (2014).

imdepi 155

References

Höhle M and an der Heiden, M (2014). Bayesian Nowcasting during the STEC O104:H4 Outbreak
in Germany, 2011, In revision for Biometrics.

Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R,
Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buch-
holz U, Stark K, Krause G; HUS Investigation Team (2011). Epidemic Profile of Shiga-Toxin Pro-
ducing Escherichia coli O104:H4 Outbreak in Germany, N Engl J Med. 2011 Nov 10;365(19):1771-
80.

Faensen D, Claus H, Benzler J, Ammon A, Pfoch T, Breuer T, Krause G (2014). SurvNet@RKI - a
multistate electronic reporting system for communicable diseases, Euro Surveillance, 2006;11(4):100-
103.

imdepi Occurrence of Invasive Meningococcal Disease in Germany

Description

imdepi contains data on the spatio-temporal location of 636 cases of invasive meningococcal dis-
ease (IMD) caused by the two most common meningococcal finetypes in Germany, ‘B:P1.7-2,4:F1-5’
(of serogroup B) and ‘C:P1.5,2:F3-3’ (of serogroup C).

Usage

data("imdepi")

Format

imdepi is an object of class "epidataCS" (a list with components events, stgrid, W and qmatrix).

Details

The imdepi data is a simplified version of what has been analyzed by Meyer et al. (2012). Simplifi-
cation is with respect to the temporal resolution of the stgrid (see below) to be used in twinstim’s
endemic model component. In what follows, we describe the elements events, stgrid, W, and
qmatrix of imdepi in greater detail.

imdepi$events is a "SpatialPointsDataFrame" object (ETRS89 projection, i.e. EPSG code
3035, with unit ‘km’) containing 636 events, each with the following entries:

time: Time of the case occurrence measured in number of days since origin. Note that a U(0,1)-
distributed random number has been subtracted from each of the original event times (days)
to break ties (using untie(imdepi_tied, amount=list(t=1))).

tile: Tile ID in the spatio-temporal grid (stgrid) of endemic covariates, where the event is con-
tained in. This corresponds to one of the 413 districts of Germany.

type: Event type, a factor with levels "B" and "C".

eps.t: Maximum temporal interaction range for the event. Here set to 30 days.

156 imdepi

eps.s: Maximum spatial interaction range for the event. Here set to 200 km.

sex: Sex of the case, i.e. a factor with levels "female" and "male". Note: for some cases this
information is not available (NA).

agegrp: Factor giving the age group of the case, i.e. 0-2, 3-18 or >=19. Note: for one case this
information is not available (NA).

BLOCK, start: Block ID and start time (in days since origin) of the cell in the spatio-temporal
endemic covariate grid, which the event belongs to.

popdensity: Population density (per square km) at the location of the event (corresponds to popu-
lation density of the district where the event is located).

There are further auxiliary columns attached to the events’ data the names of which begin with a .
(dot): These are created during conversion to the "epidataCS" class and are necessary for fitting the
data with twinstim, see the description of the "epidataCS"-class. With coordinates(imdepi$events)
one obtains the (x,y) locations of the events.

The district identifier in tile is indexed according to the German official municipality key (“Amtlicher
Gemeindeschlüssel”). See https://de.wikipedia.org/wiki/Amtlicher_Gemeindeschl%C3%BCssel
for details.

The data component stgrid contains the spatio-temporal grid of endemic covariate information. In
addition to the usual bookkeeping variables this includes:

area: Area of the district tile in square kilometers.

popdensity: Population density (inhabitants per square kilometer) computed from DESTATIS (Fed-
eral Statistical Office) information (Date: 31.12.2008) on communities level (LAU2) aggre-
gated to district level (NUTS3).

We have actually not included any time-dependent covariates here, we just established this grid
with a (reduced -> fast) temporal resolution of monthly intervals so that we can model endemic
time trends and seasonality (in this discretized time).

The entry W contains the observation window as a "SpatialPolygons" object, in this case the
boundaries of Germany (stateD). It was obtained as the “UnaryUnion” of Germany’s districts
(districtsD) as at 2009-01-01, simplified by the “modified Visvalingam” algorithm (level 6.6%)
available at https://MapShaper.org (v. 0.1.17). The objects districtsD and stateD are con-
tained in system.file("shapes", "districtsD.RData", package="surveillance").

The entry qmatrix is a 2 × 2 identity matrix indicating that no transmission between the two
finetypes can occur.

Source

IMD case reports: German Reference Centre for Meningococci at the Department of Hygiene
and Microbiology, Julius-Maximilians-Universität Würzburg, Germany (https://www.hygiene.
uni-wuerzburg.de/meningococcus/). Thanks to Dr. Johannes Elias and Prof. Dr. Ulrich Vogel
for providing the data.

Shapefile of Germany’s districts as at 2009-01-01: German Federal Agency for Cartography and
Geodesy, Frankfurt am Main, Germany, https://gdz.bkg.bund.de/.

https://de.wikipedia.org/wiki/Amtlicher_Gemeindeschl%C3%BCssel
https://MapShaper.org
https://www.hygiene.uni-wuerzburg.de/meningococcus/
https://www.hygiene.uni-wuerzburg.de/meningococcus/
https://gdz.bkg.bund.de/

imdepi 157

References

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

See Also

the data class "epidataCS", and function twinstim for model fitting.

Examples

data("imdepi")

Basic information
print(imdepi, n=5, digits=2)

What is an epidataCS-object?
str(imdepi, max.level=4)
names(imdepi$events@data)
=> events data.frame has hidden columns
sapply(imdepi$events@data, class)
marks and print methods ignore these auxiliary columns

look at the B type only
imdepiB <- subset(imdepi, type == "B")
#<- subsetting applies to the 'events' component
imdepiB

select only the last 10 events
tail(imdepi, n=10) # there is also a corresponding 'head' method

Access event marks
str(marks(imdepi))

there is an update-method which assures that the object remains valid
when changing parameters like eps.s, eps.t or qmatrix
update(imdepi, eps.t = 20)

Summary
s <- summary(imdepi)
s
str(s)

Step function of number of infectives
plot(s$counter, xlab = "Time [days]",

ylab = "Number of infectious individuals",
main = "Time series of IMD assuming 30 days infectious period")

distribution of number of potential sources of infection
opar <- par(mfrow=c(1,2), las=1)
for (type in c("B","C")) {

plot(100*prop.table(table(s$nSources[s$eventTypes==type])),
xlim=range(s$nSources), xlab = "Number of potential epidemic sources",

https://doi.org/10.1111/j.1541-0420.2011.01684.x

158 imdepifit

ylab = "Proportion of events [%]")
}
par(opar)

a histogram of the number of events along time (using the
plot-method for the epidataCS-class, see ?plot.epidataCS)
opar <- par(mfrow = c(2,1))
plot(imdepi, "time", subset = type == "B", main = "Finetype B")
plot(imdepi, "time", subset = type == "C", main = "Finetype C")
par(opar)

Plot the spatial distribution of the events in W
plot(imdepi, "space", points.args = list(col=c("indianred", "darkblue")))

or manually (no legends, no account for tied locations)
plot(imdepi$W, lwd=2, asp=1)
plot(imdepi$events, pch=c(3,4)[imdepi$events$type], cex=0.8,

col=c("indianred", "darkblue")[imdepi$events$type], add=TRUE)

Not run:
Show a dynamic illustration of the spatio-temporal dynamics of the
spread during the first year of type B with a step size of 7 days
animate(imdepiB, interval=c(0,365), time.spacing=7, sleep=0.1)

End(Not run)

imdepifit Example twinstim Fit for the imdepi Data

Description

data("imdepifit") is a twinstim model fitted to the imdepi data.

Usage

data("imdepifit")

Format

an object of class "twinstim" obtained from the following call using data(imdepi):

twinstim(endemic = addSeason2formula(~offset(log(popdensity)) +
I(start/365 - 3.5), S = 1,
period = 365, timevar = "start"),
epidemic = ~type + agegrp,
siaf = siaf.gaussian(),
data = imdepi, subset = !is.na(agegrp),
optim.args = list(control = list(reltol = sqrt(.Machine$double.eps))),
model = FALSE, cumCIF = FALSE)

influMen 159

See Also

common methods for "twinstim" fits, exemplified using imdepifit, e.g., summary.twinstim,
plot.twinstim, and simulate.twinstim

Examples

data("imdepi", "imdepifit")

how this fit was obtained
imdepifit$call

influMen Influenza and meningococcal infections in Germany, 2001-2006

Description

Weekly counts of new influenza and meningococcal infections in Germany 2001-2006.

Usage

data(influMen)

Format

A disProg object containing 312×2 observations starting from week 1 in 2001 to week 52 in 2006.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/. Queried on 25 July 2007.

Examples

data(influMen)
plot(influMen, as.one=FALSE, same.scale=FALSE)

https://survstat.rki.de/

160 intersectPolyCircle

intensityplot Plot Paths of Point Process Intensities

Description

Generic function for plotting paths of point process intensities. Methods currently defined in pack-
age surveillance are for classes "twinSIR" and "simEpidata" (temporal), as well as "twinstim"
and "simEpidataCS" (spatio-temporal).

Usage

intensityplot(x, ...)

Arguments

x An object for which an intensityplot method is defined.

... Arguments passed to the corresponding method.

See Also

The methods intensityplot.twinSIR and intensityplot.twinstim.

intersectPolyCircle Intersection of a Polygonal and a Circular Domain

Description

This is a unifying wrapper around functionality of various packages dealing with spatial data. It
computes the intersection of a circular domain and a polygonal domain (whose class defines the
specific method).

Currently the only supported class is "owin" from package spatstat.geom.

Usage

intersectPolyCircle(object, center, radius, ...)

S3 method for class 'owin'
intersectPolyCircle(object, center, radius, npoly = 32, ...)

Arguments

object a polygonal domain of one of the supported classes.
center, radius, npoly

see discpoly.

... potential further arguments (from the generic).

https://CRAN.R-project.org/package=spatstat.geom

isoWeekYear 161

Value

a polygonal domain of the same class as the input object.

Author(s)

Sebastian Meyer

See Also

discpoly to generate a polygonal approximation to a disc

Examples

letterR <- surveillance:::LETTERR # an "owin" (internally used for checks)
plot(letterR, axes = TRUE)
plot(intersectPolyCircle(letterR, center = c(-1, 2), radius = 2),

add = TRUE, col = 4, lwd = 3)

isoWeekYear Find ISO Week and Year of Date Objects

Description

The function isoWeekYear extracts the year and week of a Date according to the ISO 8601 speci-
fication.

Usage

isoWeekYear(Y, M, D)

Arguments

Y year(s) or a Date/POSIXt object. Can be a vector.

M month(s), only used if Y is not a Date/POSIXt object.

D day(s), only used if Y is not a Date/POSIXt object.

Value

A list with entries ISOYear and ISOWeek containing the corresponding results.

Note

As from surveillance 1.17.0, this function simply calls strftime with format strings "%G" and
"%V", respectively, as this is nowadays (R >= 3.1.0) also supported on Windows.

162 knox

Examples

dates <- as.Date(c("2002-12-31","2003-01-01","2003-01-06"))
isoWeekYear(dates)

the same using numeric inputs:
isoWeekYear(Y = c(2002, 2003, 2003), M = c(12, 1, 1), D = c(31, 1, 6))

knox Knox Test for Space-Time Interaction

Description

Given temporal and spatial distances as well as corresponding critical thresholds defining what
“close” means, the function knox performs Knox (1963, 1964) test for space-time interaction. The
corresponding p-value can be calculated either by the Poisson approximation or by a Monte Carlo
permutation approach (Mantel, 1967) with support for parallel computation via plapply. There
is a simple plot-method showing a truehist of the simulated null distribution together with the
expected and observed values. This implementation of the Knox test is due to Meyer et al. (2016).

Usage

knox(dt, ds, eps.t, eps.s, simulate.p.value = TRUE, B = 999, ...)

S3 method for class 'knox'
plot(x, ...)

Arguments

dt, ds numeric vectors containing temporal and spatial distances, respectively. Logical
vectors indicating temporal/spatial closeness may also be supplied, in which
case eps.t/eps.s is ignored. To test for space-time interaction in a single point
pattern of n events, these vectors should be of length n ∗ (n− 1)/2 and contain
the pairwise event distances (e.g., the lower triangle of the distance matrix, such
as in "dist" objects). Note that there is no special handling of matrix input,
i.e., if dt or ds are matrices, all elements are used (but a warning is given if a
symmetric matrix is detected).

eps.t, eps.s Critical distances defining closeness in time and space, respectively. Distances
lower than or equal to the critical distance are considered “"close"”.

simulate.p.value

logical indicating if a Monte Carlo permutation test should be performed (as per
default). Do not forget to set the .Random.seed via an extra .seed argument if
reproducibility is required (see the . . . arguments below). If simulate.p.value
= FALSE, the Poisson approximation is used (but see the note below).

B number of permutations for the Monte Carlo approach.

knox 163

... arguments configuring plapply: .parallel, .seed, and .verbose. By default,
no parallelization is performed (.parallel = 1), and a progress bar is shown
(.verbose = TRUE).
For the plot-method, further arguments passed to truehist.

x an object of class "knox" as returned by the knox test.

Value

an object of class "knox" (inheriting from "htest"), which is a list with the following components:

method a character string indicating the type of test performed, and whether the Poisson
approximation or Monte Carlo simulation was used.

data.name a character string giving the supplied dt and ds arguments.

statistic the number of close pairs.

parameter if simulate.p.value = TRUE, the number B of permutations, otherwise the lambda
parameter of the Poisson distribution, i.e., the same as null.value.

p.value the p-value for the test. In case simulate.p.value = TRUE, the p-value from
the Poisson approximation is still attached as an attribute "Poisson".

alternative the character string "greater" (this is a one-sided test).

null.value the expected number of close pairs in the absence of space-time interaction.

table the contingency table of dt <= eps.t and ds <= eps.s.

The plot-method invisibly returns NULL.

A toLatex-method exists, which generates LaTeX code for the contingency table associated with
the Knox test.

Note

The Poisson approximation works well if the proportions of close pairs in both time and space are
small (Kulldorff and Hjalmars, 1999), otherwise the Monte Carlo permutation approach is recom-
mended.

Author(s)

Sebastian Meyer

References

Knox, G. (1963): Detection of low intensity epidemicity: application to cleft lip and palate. British
Journal of Preventive & Social Medicine, 17, 121-127.

Knox, E. G. (1964): The detection of space-time interactions. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 13, 25-30.

Kulldorff, M. and Hjalmars, U. (1999): The Knox method and other tests for space-time interaction.
Biometrics, 55, 544-552.

Mantel, N. (1967): The detection of disease clustering and a generalized regression approach. Can-
cer Research, 27, 209-220.

164 ks.plot.unif

Meyer, S., Warnke, I., Rössler, W. and Held, L. (2016): Model-based testing for space-time inter-
action using point processes: An application to psychiatric hospital admissions in an urban area.
Spatial and Spatio-temporal Epidemiology, 17, 15-25. doi:10.1016/j.sste.2016.03.002. Eprint:
https://arxiv.org/abs/1512.09052.

See Also

The function mantel.randtest in package ade4 implements Mantel’s (1967) space-time interac-
tion test, i.e., using the Pearson correlation between the spatial and temporal distances of all event
pairs as the test statistic, and assessing statistical significance using a Monte Carlo permutation
approach as with simulate.p.value here in the knox function. To combine information from
different scales eps.t and eps.s while also handling edge effects, the space-time K-function test
available via stKtest can be used. Function epitest tests epidemicity in a "twinstim" point
process model.

Examples

data("imdepi")
imdepiB <- subset(imdepi, type == "B")

Perform the Knox test using the Poisson approximation
knoxtest <- knox(

dt = dist(imdepiB$events$time), eps.t = 30,
ds = dist(coordinates(imdepiB$events)), eps.s = 50,
simulate.p.value = FALSE

)
knoxtest
The Poisson approximation works well for these data since
the proportion of close pairs is rather small (204/56280).

contingency table in LaTeX
toLatex(knoxtest)

Obtain the p-value via a Monte Carlo permutation test,
where the permutations can be computed in parallel
(using forking on Unix-alikes and a cluster on Windows, see ?plapply)
knoxtestMC <- knox(

dt = dist(imdepiB$events$time), eps.t = 30,
ds = dist(coordinates(imdepiB$events)), eps.s = 50,
simulate.p.value = TRUE, B = 99, # limited here for speed
.parallel = 2, .seed = 1, .verbose = FALSE

)
knoxtestMC
plot(knoxtestMC)

ks.plot.unif Plot the ECDF of a uniform sample with Kolmogorov-Smirnov bounds

https://doi.org/10.1016/j.sste.2016.03.002
https://arxiv.org/abs/1512.09052

ks.plot.unif 165

Description

This plot function takes a univariate sample that should be tested for a U(0,1) distribution, plots
its empirical cumulative distribution function (ecdf), and adds a confidence band by inverting the
corresponding Kolmogorov-Smirnov test (ks.test). The uniform distribution is rejected if the
ECDF is not completely inside the confidence band.

Usage

ks.plot.unif(U, conf.level = 0.95, exact = NULL,
col.conf = "gray", col.ref = "gray",
xlab = expression(u[(i)]), ylab = "Cumulative distribution")

Arguments

U numeric vector containing the sample. Missing values are (silently) ignored.

conf.level confidence level for the K-S-test (defaults to 0.95), can also be a vector of mul-
tiple levels.

exact see ks.test.

col.conf colour of the confidence lines.

col.ref colour of the diagonal reference line.

xlab, ylab axis labels.

Value

NULL (invisibly).

Author(s)

Michael Höhle and Sebastian Meyer.

The code re-uses fragments from the ks.test source file https://svn.R-project.org/R/trunk/
src/library/stats/R/ks.test.R, with Copyright (C) 1995-2022 The R Core Team, available
under GPL-2 (or later), and C functionality from the source file https://svn.R-project.org/
R/trunk/src/library/stats/src/ks.c, partially based on code published in Marsaglia et al.
(2003), with Copyright (C) 1999-2022 The R Core Team, also available under GPL-2 (or later).

References

George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003): Evaluating Kolmogorov’s distri-
bution. Journal of Statistical Software, 8 (18). doi:10.18637/jss.v008.i18

See Also

ks.test for the Kolmogorov-Smirnov test, as well as checkResidualProcess, which makes use
of this plot function.

https://svn.R-project.org/R/trunk/src/library/stats/R/ks.test.R
https://svn.R-project.org/R/trunk/src/library/stats/R/ks.test.R
https://svn.R-project.org/R/trunk/src/library/stats/src/ks.c
https://svn.R-project.org/R/trunk/src/library/stats/src/ks.c
https://doi.org/10.18637/jss.v008.i18

166 layout.labels

Examples

samp <- runif(99)
ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=TRUE)
ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=FALSE)

layout.labels Layout Items for spplot

Description

Generate sp.layout items for use by spplot or plot these items directly in the traditional graph-
ics system. Function layout.labels draws labels at the coordinates of the spatial object, and
layout.scalebar returns a labeled scale bar.

Usage

layout.labels(obj, labels = TRUE, plot = FALSE)

layout.scalebar(obj, corner = c(0.05, 0.95), scale = 1,
labels = c(0, scale), height = 0.05,
pos = 3, ..., plot = FALSE)

Arguments

obj an object inheriting from a "Spatial" class.

labels specification of the labels. For layout.labels:

• a FALSE or NULL value omits labels (NULL is returned),
• labels = TRUE uses row.names(obj),
• a character or numeric index for a column of obj@data which contains

suitable labels,
• a vector of length length(obj) with labels,
• or a list of arguments for panel.text, where the optional labels compo-

nent follows the same rules as above.

For layout.scalebar, a character vector of length two giving the labels to be
put above the left and right ends of the scale bar.

corner the location of the scale bar in the unit square, where c(0,0) refers to the bottom
left corner. By default, the scale bar is placed in the top left corner (with a small
buffer).

scale the width of the scale bar in the units of proj4string(obj). If identical(FALSE,
is.projected(obj)) (i.e., obj has longlat coordinates), scale is interpreted in
kilometres.

height the height of the scale bar, see layout.scale.bar.

pos a position specifier for the labels (see text). By default, the labels are plotted
above the scale bar.

layout.labels 167

... further arguments for panel.text (if plot = FALSE) or text (if plot = TRUE)
to change the style of the labels, e.g., cex, col, and font.

plot logical indicating if the layout item should be plotted using the traditional graph-
ics system. By default (FALSE), a list for subsequent use by spplot is returned.

Value

For layout.labels, a single sp.layout item, which is a list with first element "panel.text" and
subsequent elements being arguments to that function based on the labels specification.

For layout.scalebar, a list of sp.layout items comprising the polygonal scale bar and the labels.

If these layout functions are called with plot = TRUE, the item is plotted directly using traditional
graphics functions and NULL is returned.

Author(s)

Sebastian Meyer

Examples

if (requireNamespace("sf")) { # required by recent 'sp'

districts in the Regierungsbezirk Weser-Ems (longlat coordinates)
data("measlesWeserEms")
mapWE <- measlesWeserEms@map
li1 <- layout.labels(mapWE, labels = list(font=2, labels="GEN"))
li2 <- layout.scalebar(mapWE, corner = c(0.05, 0.05), scale = 20,

labels = c("0", "20 km"))
spplot(mapWE, zcol = "AREA", sp.layout = c(list(li1), li2),

col.regions = rev(heat.colors(100)), scales = list(draw = TRUE))

districts in Bavaria (projected coordinates)
load(system.file("shapes", "districtsD.RData", package = "surveillance"))
bavaria <- districtsD[substr(row.names(districtsD), 1, 2) == "09",]
sb <- layout.scalebar(bavaria, corner = c(0.75,0.9), scale = 50,

labels = c("0", "50 km"), cex = 0.8)
spplot(bavaria, zcol = "POPULATION", sp.layout = sb,

xlab = "x [km]", ylab = "y [km]", scales = list(draw = TRUE),
col.regions = rev(heat.colors(100)))

these layout functions also work in the traditional graphics system
par(mar = c(0,0,0,0))
plot(bavaria, col = "lavender")
layout.scalebar(bavaria, corner = c(0.75, 0.9), scale = 50,

labels = c("0", "50 km"), plot = TRUE)
layout.labels(bavaria, labels = list(cex = 0.8,

labels = substr(bavaria$GEN, 1, 3)), plot = TRUE)

}

168 linelist2sts

linelist2sts Convert Dates of Individual Case Reports into a Time Series of Counts

Description

The function is used to convert an individual line list of cases to an aggregated time series of counts
based on event date information of the cases.

Usage

linelist2sts(linelist,dateCol,
aggregate.by=c("1 day", "1 week", "7 day", "1 week",

"1 month", "3 month", "1 year"),
dRange=NULL,
epochInPeriodStr=switch(aggregate.by, "1 day"="1",

"1 week"="%u", "1 month"="%d","3 month"="%q","1 year"="%j"),
startYearFormat=switch(aggregate.by,"1 day"="%Y",

"7 day"="%G", "1 week"="%G","1 month"="%Y","3 month"="%Y","1 year"="%Y"),
startEpochFormat=switch(aggregate.by,"1 day"="%j",

"7 day"="%V", "1 week"="%V", "1 month"="%m", "3 month"="%Q", "1 year"="1")
)

Arguments

linelist A data.frame containing the line list of cases.

dateCol A character string stating the column name in linelist which contains the
event occurrence information (as a vector of Dates) which are to be temporally
aggregated.

aggregate.by Temporal aggregation level given as a string, see the by variable of the seq.Date
function for further details.

dRange A vector containing the minimum and maximum date for doing the aggregation.
If not specified these dates are extracted automatically by taking range(D[,dateCol])
and adjust these according to aggregate.by (e.g. always first of a month).

epochInPeriodStr

strptime compatible format string to use for determining how a date is placed
within the epoch. This is, e.g., used to move the dRange epochs to the beginning
of the period. Example: In case of weekly aggregation the "%u" determines
which day within the week (Monday is day 1) we have. See strptime for
further details.

startYearFormat

strptime compatible format string to use for determining how the start entry
of the sts object is generated. Usually the provided defaults are sufficient.

startEpochFormat

strptime compatible format string to use for determining how the start entry
of the sts object is generated. Usually the provided defaults are sufficient.

LRCUSUM.runlength 169

Details

The date range is automatically extended such that the starting and ending dates are always the first
epoch within the period, i.e. for aggregation by week it is moved to Mondays. This is controlled by
the epochInPeriodStr parameter.

Please note that the formatting strings are implemented by the formatDate function, which uses
strptime formatting strings as well as formatting of quarters via "%Q", "%OQ" and "%q".

Value

The function returns an object of class "sts". The freq slot might not be appropriate.

Author(s)

Michael Höhle

See Also

seq.Date, strptime, formatDate

Examples

#Load O104 outbreak data
data("husO104Hosp")

#Convert line list to an sts object
sts <- linelist2sts(husO104Hosp, dateCol="dHosp", aggregate.by="1 day")

#Check that the number of cases is correct
all.equal(sum(observed(sts)),nrow(husO104Hosp))

#Plot the result
plot(sts,xaxis.tickFreq=list("%d"=atChange,"%m"=atChange),

xaxis.labelFreq=list("%d"=at2ndChange),
xaxis.labelFormat="%d %b",
xlab="",las=2,cex.axis=0.8)

LRCUSUM.runlength Run length computation of a CUSUM detector

Description

Compute run length for a count data or categorical CUSUM. The computations are based on a
Markov representation of the likelihood ratio based CUSUM.

Usage

LRCUSUM.runlength(mu, mu0, mu1, h, dfun, n, g=5, outcomeFun=NULL, ...)

170 LRCUSUM.runlength

Arguments

mu k − 1 × T matrix with true proportions, i.e. equal to mu0 or mu1 if one wants
to compute e.g. ARL0 or ARL1.

mu0 k − 1× T matrix with in-control proportions

mu1 k − 1× T matrix with out-of-control proportion

h The threshold h which is used for the CUSUM.

dfun The probability mass function or density used to compute the likelihood ratios
of the CUSUM. In a negative binomial CUSUM this is dnbinom, in a binomial
CUSUM dbinom and in a multinomial CUSUM dmultinom.

n Vector of length T containing the total number of experiments for each time
point.

g The number of levels to cut the state space into when performing the Markov
chain approximation. Sometimes also denoted M . Note that the quality of
the approximation depends very much on g. If T is greater than, say, 50 it’s
necessary to increase the value of g.

outcomeFun A hook function (k,n) to compute all possible outcome states to compute the
likelihood ratio for. If NULL then the internal default function surveillance:::outcomeFunStandard
is used. This function uses the Cartesian product of 0:n for k components.

... Additional arguments to send to dfun.

Details

Brook and Evans (1972) formulated an approximate approach based on Markov chains to determine
the PMF of the run length of a time-constant CUSUM detector. They describe the dynamics of the
CUSUM statistic by a Markov chain with a discretized state space of size g + 2. This is adopted
to the time varying case in Höhle (2010) and implemented in R using the . . . notation such that it
works for a very large class of distributions.

Value

A list with five components

P An array of g+2×g+2 transition matrices of the approximation Markov chain.

pmf Probability mass function (up to length T) of the run length variable.

cdf Cumulative density function (up to length T) of the run length variable.

arl If the model is time homogeneous (i.e. if T == 1) then the ARL is computed
based on the stationary distribution of the Markov chain. See the eqns in the
reference for details. Note: If the model is not time homogeneous then the
function returns NA and the ARL has to be approximated manually from the
output. One could use sum(1:length(pmf) * pmf), which is an approximation
because of using a finite support for a sum which should be from 1 to infinity.

Author(s)

M. Höhle

LRCUSUM.runlength 171

References

Höhle, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and
G. Tutz (Eds.), Statistical Modelling and Regression Structures - Festschrift in Honour of Lud-
wig Fahrmeir, Physica-Verlag, pp. 377-397. Preprint available as https://staff.math.su.se/
hoehle/pubs/hoehle2010-preprint.pdf

Höhle, M. and Mazick, A. (2010): Aberration detection in R illustrated by Danish mortality moni-
toring. In: T. Kass-Hout and X. Zhang (Eds.), Biosurveillance: A Health Protection Priority, CRC-
Press. Preprint available as https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.
pdf

Brook, D. and Evans, D. A. (1972): An approach to the probability distribution of cusum run length.
Biometrika 59(3):539-549.

See Also

categoricalCUSUM

Examples

##
#Run length of a time constant negative binomial CUSUM
##

#In-control and out of control parameters
mu0 <- 10
alpha <- 1/2
kappa <- 2

#Density for comparison in the negative binomial distribution
dY <- function(y,mu,log=FALSE, alpha, ...) {

dnbinom(y, mu=mu, size=1/alpha, log=log)
}

#In this case "n" is the maximum value to investigate the LLR for
#It is assumed that beyond n the LLR is too unlikely to be worth
#computing.
LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=5,

dfun = dY, n=rep(100,length(mu0)), alpha=alpha)

h.grid <- seq(3,6,by=0.3)
arls <- sapply(h.grid, function(h) {

LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=h,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)$arl

})
plot(h.grid, arls,type="l",xlab="threshold h",ylab=expression(ARL[0]))

##
#Run length of a time varying negative binomial CUSUM
##

mu0 <- matrix(5*sin(2*pi/52 * 1:150) + 10,ncol=1)

https://staff.math.su.se/hoehle/pubs/hoehle2010-preprint.pdf
https://staff.math.su.se/hoehle/pubs/hoehle2010-preprint.pdf
https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf
https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf

172 m1

rl <- LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=2,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)

plot(1:length(mu0),rl$pmf,type="l",xlab="t",ylab="PMF")
plot(1:length(mu0),rl$cdf,type="l",xlab="t",ylab="CDF")

##
Further examples contain the binomial, beta-binomial
and multinomial CUSUMs. Hopefully, these will be added
in the future.
##

#dfun function for the multinomial distribution (Note: Only k-1 categories are specified).
dmult <- function(y, size,mu, log = FALSE) {

return(dmultinom(c(y,size-sum(y)), size = size, prob=c(mu,1-sum(mu)), log = log))
}

#Example for the time-constant multinomial distribution
#with size 100 and in-control and out-of-control parameters as below.
n <- 100
pi0 <- as.matrix(c(0.5,0.3,0.2))
pi1 <- as.matrix(c(0.38,0.46,0.16))

#ARL_0
LRCUSUM.runlength(mu=pi0[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE],

h=5,dfun=dmult, n=n, g=15)$arl
#ARL_1
LRCUSUM.runlength(mu=pi1[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE],

h=5,dfun=dmult, n=n, g=15)$arl

m1 RKI SurvStat Data

Description

14 datasets for different diseases beginning in 2001 to the 3rd Quarter of 2004 including their
defined outbreaks.

• m1 ’Masern’ in the ’Landkreis Nordfriesland’ (Germany, Schleswig-Holstein)

• m2 ’Masern’ in the ’Stadt- und Landkreis Coburg’ (Germany, Bayern)

• m3 ’Masern’ in the ’Kreis Leer’ (Germany, Niedersachsen)

• m4 ’Masern’ in the ’Stadt- und Landkreis Aachen’ (Germany, Nordrhein-Westfalen)

• m5 ’Masern’ in the ’Stadt Verden’ (Germany, Niedersachsen)

• q1_nrwh ’Q-Fieber’ in the ’Hochsauerlandkreis’ (Germany, Westfalen) and in the ’Landkreis
Waldeck-Frankenberg’ (Germany, Hessen)

magic.dim 173

• q2 ’Q-Fieber’ in ’München’ (Germany, Bayern)

• s1 ’Salmonella Oranienburg’ in Germany

• s2 ’Salmonella Agona’ in 12 ’Bundesländern’ of Germany

• s3 ’Salmonella Anatum’ in Germany

• k1 ’Kryptosporidiose’ in Germany, ’Baden-Württemberg’

• n1 ’Norovirus’ in ’Stadtkreis Berlin Mitte’ (Germany, Berlin)

• n2 ’Norovirus’ in ’Torgau-Oschatz’ (Germany, Sachsen)

• h1_nrwrp ’Hepatitis A’ in ’Oberbergischer Kreis, Olpe, Rhein-Sieg-kreis’ (Germany, Nordrhein-
Westfalen) and ’Siegenwittgenstein Altenkirchen’ (Germany, Rheinland-Pfalz)

Usage

data(m1)

Format

disProg objects each containing 209 observations (weekly on 52 weeks)

observed Number of counts in the corresponding week

state Boolean whether there was an outbreak.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; m1 and m3 were queried on 10
November 2004. The rest during September 2004.

Examples

data(k1)
survResObj <- algo.rki1(k1, control=list(range=27:192))
plot(survResObj, "RKI 1", "k1")

magic.dim Compute Suitable k1 x k2 Layout for Plotting

Description

For a given number k, magic.dim provides a vector containing two elements, the number of rows
(k1) and columns (k2), respectively, which can be used to set the dimension of a single graphic
device so that k1*k2 plots can be drawn by row (or by column) on the device.

Usage

magic.dim(k)

https://survstat.rki.de/

174 makeControl

Arguments

k an integer

Value

numeric vector with two elements

See Also

primeFactors and bestCombination which are internally used to complete the task.

n2mfrow is a similar function from package grDevices.

makeControl Generate control Settings for an hhh4 Model

Description

Generate control Settings for an hhh4 Model

Usage

makeControl(f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...)

Arguments

f, S, period arguments for addSeason2formula defining each of the three model formulae
in the order (ar, ne, end). Recycled if necessary within mapply.

offset multiplicative component offsets in the order (ar, ne, end).

... further elements for the hhh4 control list. The family parameter is set to "NegBin1"
by default.

Value

a list for use as the control argument in hhh4.

Examples

makeControl()

a simplistic model for the fluBYBW data
(first-order transmission only, no district-specific intercepts)
data("fluBYBW")
mycontrol <- makeControl(

f = list(~1, ~1, ~t), S = c(1, 1, 3),
offset = list(population(fluBYBW)), # recycled -> in all components
ne = list(normalize = TRUE),
verbose = TRUE)

marks 175

str(mycontrol)

if (surveillance.options("allExamples"))
fit this model
fit <- hhh4(fluBYBW, mycontrol)

marks Import from package spatstat.geom

Description

The generic function marks is imported from package spatstat.geom. See spatstat.geom::marks
for spatstat.geom’s own methods, and marks.epidataCS for the "epidataCS"-specific method.

measles.weser Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-
2002

Description

Weekly counts of new measles cases for the 17 administrative districts (NUTS-3 level) of the
“Weser-Ems” region of Lower Saxony, Germany, during 2001 and 2002, as reported to the Robert
Koch institute according to the Infection Protection Act (“Infektionsschutzgesetz”, IFSG).
data("measlesWeserEms") is a corrected version of data("measles.weser") (see Format sec-
tion below). These data are illustrated and analyzed in Meyer et al. (2017, Section 5), see vignette("hhh4_spacetime").

Usage

data("measles.weser")
data("measlesWeserEms")

Format

data("measles.weser") is an object of the old "disProg" class, whereas data("measlesWeserEms")
is of the new class "sts".

Furthermore, the following updates have been applied for data("measlesWeserEms"):

• it includes the two districts “SK Delmenhorst” (03401) and “SK Wilhemshaven” (03405) with
zero counts, which are ignored in data("measles.weser").

• it corrects the time lag error for year 2002 caused by a redundant pseudo-week “0” with 0
counts only (the row measles.weser$observed[53,] is nonsense).

• it has one more case attributed to “LK Oldenburg” (03458) during 2001/W17, i.e., 2 cases in-
stead of 1. This reflects the official data as of “Jahrbuch 2005”, whereas data("measles.weser")
is as of “Jahrbuch 2004”.

176 measles.weser

• it contains a map of the region (as a "SpatialPolygonsDataFrame") with the following vari-
ables:

GEN district label.
AREA district area in m^2.
POPULATION number of inhabitants (as of 31/12/2003).
vaccdoc.2004 proportion with a vaccination card among screened abecedarians (2004).
vacc1.2004 proportion with at least one vaccination against measles among abecedarians

presenting a vaccination card (2004).
vacc2.2004 proportion of doubly vaccinated abecedarians among the ones presenting their

vaccination card at school entry in the year 2004.

• it uses the correct format for the official district keys, i.e., 5 digits (initial 0).

• its attached neighbourhood matrix is more general: a distance matrix (neighbourhood orders)
instead of just an adjacency indicator matrix (special case nbOrder == 1).

• population fractions represent data as of 31/12/2003 (LSN, 2004, document “A I 2 - hj 2 /
2003”). There are only minor differences to the ones used for data("measles.weser").

Source

Measles counts were obtained from the public SurvStat database of the Robert Koch institute:
https://survstat.rki.de/.

A shapefile of Germany’s districts as of 01/01/2009 was obtained from the German Federal Agency
for Cartography and Geodesy (https://gdz.bkg.bund.de/). The map of the 17 districts of the
“Weser-Ems” region (measlesWeserEms@map) is a simplified subset of this shapefile using a 30%
reduction via the Douglas-Peucker reduction method as implemented at https://MapShaper.org.

Population numbers were obtained from the Federal Statistical Office of Lower Saxony (LSN).

Vaccination coverage was obtained from the public health department of Lower Saxony (NLGA,
“Impfreport”).

References

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

Examples

old "disProg" object
data("measles.weser")
measles.weser
plot(measles.weser, as.one=FALSE)

new "sts" object (with corrections)
data("measlesWeserEms")
measlesWeserEms
plot(measlesWeserEms)

https://survstat.rki.de/
https://gdz.bkg.bund.de/
https://MapShaper.org
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

measlesDE 177

measlesDE Measles in the 16 states of Germany

Description

Weekly number of measles cases in the 16 states (Bundeslaender) of Germany for years 2005 to
2007.

Usage

data(measlesDE)

Format

An "sts" object containing 156× 16 observations starting from week 1 in 2005.

The population slot contains the population fractions of each state at 31.12.2006, obtained from
the Federal Statistical Office of Germany.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; Queried on 14 October 2009.

References

Herzog, S. A., Paul, M. and Held, L. (2011): Heterogeneity in vaccination coverage explains the
size and occurrence of measles epidemics in German surveillance data. Epidemiology and Infection,
139, 505-515. doi:10.1017/S0950268810001664

See Also

MMRcoverageDE

Examples

data(measlesDE)
plot(measlesDE)

aggregate to bi-weekly intervals
measles2w <- aggregate(measlesDE, nfreq = 26)
plot(measles2w, type = observed ~ time)

use a date index for nicer x-axis plotting
epoch(measles2w) <- seq(as.Date("2005-01-03"), by = "2 weeks",

length.out = nrow(measles2w))
plot(measles2w, type = observed ~ time)

https://survstat.rki.de/
https://doi.org/10.1017/S0950268810001664

178 MMRcoverageDE

meningo.age Meningococcal infections in France 1985-1997

Description

Monthly counts of meningococcal infections in France 1985-1997. Here, the data is split into 4 age
groups (<1, 1-5, 5-20, >20).

Usage

data(meningo.age)

Format

An object of class disProg with 156 observations in each of 4 age groups.

week Month index

observed Matrix with number of counts in the corresponding month and age group

state Boolean whether there was an outbreak – dummy not implemented

neighbourhood Neighbourhood matrix, all age groups are adjacent

populationFrac Population fractions

Source

??

Examples

data(meningo.age)
plot(meningo.age, title="Meningococcal infections in France 1985-97")
plot(meningo.age, as.one=FALSE)

MMRcoverageDE MMR coverage levels in the 16 states of Germany

Description

Coverage levels at school entry for the first and second dose of the combined measles-mumps-
rubella (MMR) vaccine in 2006, estimated from children presenting vaccination documents at
school entry examinations.

Usage

data(MMRcoverageDE)

momo 179

Format

A data.frame containing 19 rows and 5 columns with variables

state Names of states: the 16 federal states are followed by the total of Germany, as well as the
total of West and East Germany.

nOfexaminedChildren Number of children examined.

withVaccDocument Percentage of children who presented vaccination documents.

MMR1 Percentage of children with vaccination documents, who received at least 1 dose of MMR
vaccine.

MMR2 Percentage of children with vaccination documents, who received at least 2 doses of MMR
vaccine.

Coverage levels were derived from vaccination documents presented at medical examinations,
which are conducted by local health authorities at school entry each year. Records include infor-
mation about the receipt of 1st and 2nd doses of MMR, but no information about dates. Note that
information from children who did not present a vaccination document on the day of the medical
examination, is not included in the estimated coverage.

Source

Robert Koch-Institut (2008) Zu den Impfquoten bei den Schuleingangsuntersuchungen in Deutsch-
land 2006. Epidemiologisches Bulletin, 7, 55-57

References

Herzog, S.A., Paul, M. and Held, L. (2011) Heterogeneity in vaccination coverage explains the size
and occurrence of measles epidemics in German surveillance data. Epidemiology and Infection,
139, 505–515.

See Also

measlesDE

momo Danish 1994-2008 all-cause mortality data for eight age groups

Description

Weekly number of all cause mortality from 1994-2008 in each of the eight age groups <1, 1-4, 5-14,
15-44, 45-64, 65-74, 75-84 and 85+ years, see Höhle and Mazick (2010).

Usage

data(momo)

180 momo

Format

An object of class "sts" containing the weekly number of all-cause deaths in Denmark, 1994-2008
(782 weeks), for each of the eight age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85+
years. A special feature of the EuroMOMO data is that weeks follow the ISO 8601 standard, which
can be handled by the "sts" class.

The population slot of the momo object contains the population size in each of the eight age groups.
These are yearly data obtained from the StatBank Denmark.

Source

European monitoring of excess mortality for public health action (EuroMOMO) project. https:
//www.euromomo.eu/.

Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark StatBank Denmark,
Statistics Denmark, https://www.statistikbanken.dk/

References

Höhle, M. and Mazick, A. (2010). Aberration detection in R illustrated by Danish mortality moni-
toring. In T. Kass-Hout and X. Zhang (eds.), Biosurveillance: A Health Protection Priority, chapter
12. Chapman & Hall/CRC.
Preprint available at https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.
pdf

Examples

data("momo")
momo

show the period 2000-2008 with customized x-axis annotation
(this is Figure 1 in Hoehle and Mazick, 2010)
oopts <- surveillance.options("stsTickFactors" = c("%G" = 1.5, "%Q"=.75))
plot(momo[year(momo) >= 2000,], ylab = "", xlab = "Time (weeks)",

par.list = list(las = 1), col = c(gray(0.5), NA, NA),
xaxis.tickFreq = list("%G"=atChange, "%Q"=atChange),
xaxis.labelFreq = list("%G"=atChange), xaxis.labelFormat = "%G")

surveillance.options(oopts)

if (surveillance.options("allExamples")) {

stratified monitoring from 2007-W40 using the Farrington algorithm
phase2 <- which(epoch(momo) >= "2007-10-01")
momo2 <- farrington(momo, control = list(range=phase2, alpha=0.01, b=5, w=4))
print(colSums(alarms(momo2)))
plot(momo2, col = c(8, NA, 4), same.scale = FALSE)

stripchart of alarms (Figure 5 in Hoehle and Mazick, 2010)
plot(momo2, type = alarm ~ time, xlab = "Time (weeks)", main = "",

alarm.symbol = list(pch=3, col=1, cex=1.5))

https://www.euromomo.eu/
https://www.euromomo.eu/
https://www.statistikbanken.dk/
https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf
https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf

multiplicity 181

}

multiplicity Import from package spatstat.geom

Description

The generic function multiplicity is imported from package spatstat.geom. See spatstat.geom::multiplicity
for spatstat.geom’s own methods, and multiplicity.Spatial for the added method for "Spatial"
objects.

multiplicity.Spatial Count Number of Instances of Points

Description

The generic function multiplicity defined in spatstat.geom is intended to count the number of
duplicates of each element of an object. spatstat.geom already offers methods for point patterns,
matrices and data frames, and here we add a method for Spatial objects from the sp package. It is
a wrapper for the default method, which effectively computes the distance matrix of the points, and
then just counts the number of zeroes in each row.

Usage

S3 method for class 'Spatial'
multiplicity(x)

Arguments

x a "Spatial" object (we only need a coordinates-method), e.g. of class "SpatialPoints".

Value

an integer vector containing the number of instances of each point of the object.

See Also

multiplicity in package spatstat.geom. See the Examples of the hagelloch data for a specific
use of multiplicity.

182 nbOrder

Examples

foo <- SpatialPoints(matrix(c(1,2,
2,3,
1,2,
4,5), 4, 2, byrow=TRUE))

multiplicity(foo)

the following function determines the multiplicities in a matrix
or data frame and returns unique rows with appended multiplicity
countunique <- function(x) unique(cbind(x, count=multiplicity(x)))
countunique(coordinates(foo))

nbOrder Determine Neighbourhood Order Matrix from Binary Adjacency Ma-
trix

Description

Given a square binary adjacency matrix, the function nbOrder determines the integer matrix of
neighbourhood orders (shortest-path distance).

Usage

nbOrder(neighbourhood, maxlag = Inf)

Arguments

neighbourhood a square, numeric or logical, and usually symmetric matrix with finite entries
(and usually zeros on the diagonal) which indicates vertex adjacencies, i.e., first-
order neighbourhood (interpreted as neighbourhood == 1, not >0).

maxlag positive scalar integer specifying an upper bound for the neighbourhood order.
The default (Inf) means no truncation (but orders cannot be larger than the
number of regions minus 1), whereas maxlag = 1 just returns the input neigh-
bourhood matrix (converted to binary integer mode).

Value

An integer matrix of neighbourhood orders, i.e., the shortest-path distance matrix of the vertices.
The dimnames of the input neighbourhood matrix are preserved.

Author(s)

Sebastian Meyer

See Also

nblag from the spdep package

nowcast 183

Examples

generate adjacency matrix
set.seed(1)
n <- 6
adjmat <- matrix(0, n, n)
adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE)
adjmat <- adjmat + t(adjmat)
adjmat

determine neighbourhood order matrix
nblags <- nbOrder(adjmat)
nblags

nowcast Adjust a univariate time series of counts for observed but-not-yet-
reported events

Description

Nowcasting can help to obtain up-to-date information on trends during a situation where reports
about events arrive with delay. For example in public health reporting, reports about important
indicators (such as occurrence of cases) are prone to be delayed due to for example manual quality
checking and reporting system hierarchies. Altogether, the delays are subject to a delay distribution,
which may, or may not, vary over time.

Usage

nowcast(now, when, data, dEventCol="dHospital", dReportCol="dReport",
method=c("bayes.notrunc", "bayes.notrunc.bnb", "lawless",

"bayes.trunc", "unif", "bayes.trunc.ddcp"),
aggregate.by="1 day",
D=15,
m=NULL, m.interpretation=c("hoehle_anderheiden2014", "lawless1994"),
control=list(

dRange=NULL, alpha=0.05, nSamples=1e3,
N.tInf.prior=c("poisgamma","pois","unif"),
N.tInf.max=300, gd.prior.kappa=0.1,
ddcp=list(ddChangepoint=NULL,

cp_order=c("zero","one"),
Wextra=NULL,
logLambda=c("iidLogGa","tps","rw1","rw2"),
responseDistr=c("poisson", "negbin"),
mcmc=c(burnin=2500, sample=10000, thin=1, adapt=1000,

store.samples=FALSE)),
score=FALSE, predPMF=FALSE))

184 nowcast

Arguments

now an object of class Date denoting the day at which to do the nowcast. This corre-
sponds to T in the notation of Höhle and an der Heiden (2014).

when a vector of Date objects denoting the day(s) for which the projections are to be
done. One needs to ensure that each element in when is smaller or equal to now.

data A data frame with one row per case – for each case on needs information on the
day of the event (e.g. hospitalization) and the day of report of this event.

dEventCol The name of the column in data which contains the date of the event, e.g. hos-
pitalization. Default: "dHospital".

dReportCol Name of the column in data containing the date at which the report arrives at
the respective register. Default: "dReport".

method A vector of strings denoting the different methods for doing the nowcasting.
Note that results of the first name in this list are officially returned by the func-
tion. However, it is possible to specify several methods here, e.g., in order to
compare score evaluations. Details of the methods are described in Höhle and
an der Heiden (2014).

"unif"

"bayes.notrunc" A Bayesian procedure ignoring truncation.
"bayes.notrunc.bnb" A fast Bayesian procedure ignoring truncation and which

calculates the adjustment per-time (i.e. ignoring other delays) using the
negative binomial.

"lawless" A discretized version of the Gaussian predictive distribution sug-
gested in Lawless (1994).

"bayes.trunc" Bayesian method based on the generalized Dirichlet distribu-
tion, which is the conjugate prior-posterior for the delay distribution PMF
under right-truncated sampling as shown in HadH (2014).

"bayes.trunc.ddcp" Fully Bayesian method allowing for change-points in
the delay distribution, e.g., due to speed-ups in the reporting process. A
discrete-survival model is used for the delay distribution. Details of the
methods are described in HadH (2014). Note: This method requires that
the JAGS program is installed on the system.

aggregate.by Time scale used for the temporal aggregation of the records in the data data.
See linelist2sts and seq.Date for further information.

D Maximum possible or maximum relevant delay (unit: aggregate.by). Default:
15.

m Size of the moving window for the estimation of the delay distribution. Default:
NULL, i.e. take all values at all times. Otherwise: a positive integer equal to or
greater than D such that only values from a sliding window are used. The shape
of the window depends on the value of m.interpretation.

m.interpretation

This parameter controls the interpretation of the sliding window used to estimate
the delay distribution. If m.interpretation="hoehle_anderheiden2014" (De-
fault) then the sliding window is defined as a horizontal cut in the reporting tri-
angle, i.e. the values for the delay estimation originate from reports occurring

nowcast 185

during (now-m):now. This means that the estimation of long delays is based
on fewer observations than the estimation of the short delays, hence, the long
delay estimates are subject to more variability. If for example m = D then the
estimate for a delay of d = D is based on only one observation. The advantage
of this choice is that one explicitly knows which time period all observations
originate from. For details see Section 3 of Höhle and an der Heiden (2014).
Alternatively, when m.interpretation="lawless1994", the cut in the reporting
triangle is made such that each delay d is estimated based on the same number of
observations (m+ 1). This means that in order to estimate the delay for d days,
a sliding rectangle of lengthm+1 containing the reports which occurred during
(now-m-d):now. See Fig. 2 in Lawless (1994) for details. Note: A warning is
given is method="lawless", but m.interpretation is not.

control A list with named arguments controlling the functionality of the nowcasting.

dRange Default: NULL. In this case the dEventCol column is used to extract
the first and last available in data.

alpha Equal tailed (1-α)*100% prediction intervals are calculated. Default:
0.05.

nSamples Number of PMF samples in the bayes.* procedures. Note: En-
tire vectors containing the PMF on the grid from 0 to N.tInf.max are
drawn and which are then combined. The argument does not apply to the
bayes.trunc.ddcp method.

N.tInf.prior Prior distribution ofN(t,∞). Applies only to the bayes.* except
bayes.bayes.ddcp methods. See example on how to control the distribu-
tion parameters.

N.tInf.max Limit of the support ofN(t,∞). The value needs to be high enough
such that at this limit only little of the predictive distribution is right-truncated.
Default: 300.

gd.prior.kappa Concentration parameter for the Dirichlet prior for the delay
distribution on 0, ..., D. Default: 0.1. Note: The procedure is quite sensitive
to this parameter in case only few cases are available.

ddcp A list specifying the change point model for the delay distribution. This
method should only be used if detailed information about changes in the
delay distribution are available as, e.g., in the case of the STEC O104:H4
outbreak. The components are as follows:
ddChangepoint Vector of Date objects corresponding to the changepoints
cp_order Either "zero" (Default) or "one". This is the degree of the TPS

spline for the baseline hazard, which is formed by the changepoints.
Order zero corresponds to the dummy variables of the change-points
being simply zero or one. In case a 1st order polynomial is chosen, this
allows the delay distribution to change towards faster or slow reporting
as time progresses (until the next change-point). The later can be help-
ful in very dynamic epidemic situations where a lot of cases suddenly
appear overwhelming the surveillance system infrastructure.

Wextra An additional design matrix part to be joined onto the part orig-
inating from the change-points. Altogether, the column bind of these
two quantities will be Wt,d. This allows one to include, e.g., day of the
week effects or holidays.

186 nowcast

logLambda Prior on the spline. One of c("iidLogGa","tps","rw1","rw2").
respDistr Response distribution of nt,d in the reporting triangle. Default

is "poisson". An experimental alternative is to use "negbin".
tau.gamma

eta.mu Vector of coefficients describing the mean of the prior normal dis-
tribution of the regression effects in the discrete time survival model.

eta.prec A precision matrix for the regression effects in the discrete time
survival model.

mcmc A named vector of length 5 containing burn-in (default: 2500), num-
ber of samples (10000), thinning (1) and adaptation (1000) for the three
MCMC chains which are ran. The values are passed on to run.jags.
The fifth argument store.samples denotes if the output of the JAGS
sampling should be included as part of the returned stsNC object. Warn-
ing: If TRUE (Default: FALSE) the size of the returned object might
increase substantially.

score Compute scoring rules. Default: FALSE. The computed scores are found
in the SR slot of the result.

predPMF Boolean whether to return the probability mass functions of the in-
dividual forecasts (Default: FALSE). The result can be found in the control
slot of the return object.

Details

The methodological details of the nowcasting procedures are described in Höhle M and an der
Heiden M (2014).

Value

nowcast returns an object of "stsNC". The upperbound slot contains the median of the method
specified at the first position the argument method. The slot pi (for prediction interval) contains the
equal tailed (1-α)*100% prediction intervals, which are calculated based on the predictive distribu-
tions in slot predPMF. Furthermore, slot truth contains an sts object containing the true number
of cases (if possible to compute it is based on the data in data). Finally, slot SR contains the results
for the proper scoring rules (requires truth to be calculable).

Note

Note: The bayes.trunc.ddcp uses the JAGS software together with the R package runjags to
handle the parallelization of the MCMC using the "rjparallel" method of run.jags, which
additionally requires the rjags package. You need to manually install JAGS on your computer
for the package to work – see https://mcmc-jags.sourceforge.io/ and the documentation of
runjags for details.

Note: The function is still under development and might change in the future. Unfortunately, little
emphasis has so far been put on making the function easy to understand and use.

Author(s)

Michael Höhle

https://mcmc-jags.sourceforge.io/

nowcast 187

References

Höhle, M. and an der Heiden, M. (2014): Bayesian nowcasting during the STEC O104:H4 outbreak
in Germany, 2011. Biometrics 70(4):993-1002. doi:10.1111/biom.12194.
A preprint is available as https://staff.math.su.se/hoehle/pubs/hoehle_anderheiden2014-preprint.
pdf.

Günther, F. and Bender, A. and Katz, K. and Küchenhoff, H. and Höhle, M. (2020): Nowcasting
the COVID-19 pandemic in Bavaria. Biometrical Journal. doi:10.1002/bimj.202000112
Preprint available at doi:10.1101/2020.06.26.20140210.

Examples

data("husO104Hosp")

#Extract the reporting triangle at a specific day
t.repTriangle <- as.Date("2011-07-04")

#Use 'void' nowcasting procedure (we just want the reporting triangle)
nc <- nowcast(now=t.repTriangle,when=t.repTriangle,

dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp,
D=15,method="unif")

#Show reporting triangle
reportingTriangle(nc)

#Perform Bayesian nowcasting assuming the delay distribution is stable over time
nc.control <- list(N.tInf.prior=structure("poisgamma",

mean.lambda=50,var.lambda=3000),
nSamples=1e2)

t.repTriangle <- as.Date("2011-06-10")
when <- seq(t.repTriangle-3,length.out=10,by="-1 day")
nc <- nowcast(now=t.repTriangle,when=when,

dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp,
D=15,method="bayes.trunc",control=nc.control)

#Show time series and posterior median forecast/nowcast
plot(nc,xaxis.tickFreq=list("%d"=atChange,"%m"=atChange),

xaxis.labelFreq=list("%d"=at2ndChange),xaxis.labelFormat="%d-%b",
xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2))

Not run:
Using runjags to do a Bayesian model with changepoint(s)
-- this might take a while
nc.control.ddcp <- modifyList(nc.control,

list(gd.prior.kappa=0.1,
ddcp=list(ddChangepoint=as.Date(c("2011-05-23")),

logLambda="tps",
tau.gamma=1,
mcmc=c(burnin=1000,sample=1000,thin=1,

adapt=1000,store.samples=FALSE))))

https://doi.org/10.1111/biom.12194
https://staff.math.su.se/hoehle/pubs/hoehle_anderheiden2014-preprint.pdf
https://staff.math.su.se/hoehle/pubs/hoehle_anderheiden2014-preprint.pdf
https://doi.org/10.1002/bimj.202000112
https://doi.org/10.1101/2020.06.26.20140210

188 pairedbinCUSUM

nc.ddcp <- nowcast(now=t.repTriangle,when=when,
dEventCol="dHosp",dReportCol="dReport",
data=husO104Hosp, aggregate.by="1 day",
method="bayes.trunc.ddcp", D=15,

control=nc.control.ddcp)

plot(nc.ddcp,legend.opts=NULL,
xaxis.tickFreq=list("%d"=atChange,"%m"=atChange),
xaxis.labelFreq=list("%d"=at2ndChange),xaxis.labelFormat="%d-%b",
xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2))

lambda <- attr(delayCDF(nc.ddcp)[["bayes.trunc.ddcp"]],"model")$lambda
showIdx <- seq(which(max(when) == epoch(nc.ddcp))) #seq(ncol(lambda))
matlines(showIdx,t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2))
legend(x="topright",c(expression(lambda(t)),"95% CI"),col="gray",lwd=c(2,1),lty=c(1,2))

End(Not run)

pairedbinCUSUM Paired binary CUSUM and its run-length computation

Description

CUSUM for paired binary data as described in Steiner et al. (1999).

Usage

pairedbinCUSUM(stsObj, control = list(range=NULL,theta0,theta1,
h1,h2,h11,h22))

pairedbinCUSUM.runlength(p,w1,w2,h1,h2,h11,h22, sparse=FALSE)

Arguments

stsObj Object of class sts containing the paired responses for each of the, say n, pa-
tients. The observed slot of stsObj is thus a n× 2 matrix.

control Control object as a list containing several parameters.

range Vector of indices in the observed slot to monitor.
theta0 In-control parameters of the paired binary CUSUM.
theta1 Out-of-control parameters of the paired binary CUSUM.
h1 Primary control limit (=threshold) of 1st CUSUM.
h2 Primary control limit (=threshold) of 2nd CUSUM.
h11 Secondary limit for 1st CUSUM.
h22 Secondary limit for 2nd CUSUM.

p Vector giving the probability of the four different possible states, i.e. c((death=0,near-
miss=0),(death=1,near-miss=0), (death=0,near-miss=1),(death=1,near-miss=1)).

w1 The parameters w1 and w2 are the sample weights vectors for the two CUSUMs,
see eqn. (2) in the paper. We have that w1 is equal to deaths

pairedbinCUSUM 189

w2 As for w1

h1 decision barrier for 1st individual cusums

h2 decision barrier for 2nd cusums

h11 together with h22 this makes up the joing decision barriers

h22 together with h11 this makes up the joing decision barriers

sparse Boolean indicating whether to use sparse matrix computations from the Matrix
library (usually much faster!). Default: FALSE.

Details

For details about the method see the Steiner et al. (1999) reference listed below. Basically, two
individual CUSUMs are run each based on a logistic regression model. The combined CUSUM not
only signals if one of its two individual CUSUMs signals, but also if the two CUSUMs simultane-
ously cross the secondary limits.

Value

An sts object with observed, alarm, etc. slots trimmed to the control$range indices.

Author(s)

S. Steiner and M. Höhle

References

Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes
using cumulative sum charts, Statistics in Medicine, 18, pp. 69–86.

See Also

categoricalCUSUM

Examples

#Set in-control and out-of-control parameters as in paper
theta0 <- c(-2.3,-4.5,2.5)
theta1 <- c(-1.7,-2.9,2.5)

#Small helper function to compute the paired-binary likelihood
#of the length two vector yz when the true parameters are theta
dPBin <- function(yz,theta) {

exp(dbinom(yz[1],size=1,prob=plogis(theta[1]),log=TRUE) +
dbinom(yz[2],size=1,prob=plogis(theta[2]+theta[3]*yz[1]),log=TRUE))

}

#Likelihood ratio for all four possible configurations
p <- c(dPBin(c(0,0), theta=theta0), dPBin(c(0,1), theta=theta0),

dPBin(c(1,0), theta=theta0), dPBin(c(1,1), theta=theta0))
if (surveillance.options("allExamples"))
#Compute ARL using slow, non-sparse matrix operations

190 pairedbinCUSUM

pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,
h11=38,h22=17)

#Sparse computations can be considerably (!) faster
pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,

h11=38,h22=17,sparse=TRUE)

#Use paired binary CUSUM on the De Leval et al. (1994) arterial switch
#operation data on 104 newborn babies
data("deleval")

#Switch between death and near misses
observed(deleval) <- observed(deleval)[,c(2,1)]

#Run paired-binary CUSUM without generating alarms.
pb.surv <- pairedbinCUSUM(deleval,control=list(theta0=theta0,

theta1=theta1,h1=Inf,h2=Inf,h11=Inf,h22=Inf))

plot(pb.surv, xaxis.labelFormat=NULL, ylab="CUSUM Statistic")

##
#Scale the plots so they become comparable to the plots in Steiner et
#al. (1999). To this end a small helper function is defined.
##

##
#Log LR for conditional specification of the paired model
##
LLR.pairedbin <- function(yz,theta0, theta1) {

#In control
alphay0 <- theta0[1] ; alphaz0 <- theta0[2] ; beta0 <- theta0[3]
#Out of control
alphay1 <- theta1[1] ; alphaz1 <- theta1[2] ; beta1 <- theta1[3]
#Likelihood ratios
llry <- (alphay1-alphay0)*yz[1]+log(1+exp(alphay0))-log(1+exp(alphay1))
llrz <- (alphaz1-alphaz0)*yz[2]+log(1+exp(alphaz0+beta0*yz[1]))-

log(1+exp(alphaz1+beta1*yz[1]))
return(c(llry=llry,llrz=llrz))

}

val <- expand.grid(0:1,0:1)
table <- t(apply(val,1, LLR.pairedbin, theta0=theta0, theta1=theta1))
w1 <- min(abs(table[,1]))
w2 <- min(abs(table[,2]))
S <- upperbound(pb.surv) / cbind(rep(w1,nrow(observed(pb.surv))),w2)

#Show results
opar <- par(mfcol=c(2,1))
plot(1:nrow(deleval),S[,1],type="l",main="Near Miss",xlab="Patient No.",

ylab="CUSUM Statistic")

permutationTest 191

lines(c(0,1e99), c(32,32),lty=2,col=2)
lines(c(0,1e99), c(17,17),lty=2,col=3)

plot(1:nrow(deleval),S[,2],type="l",main="Death",xlab="Patient No.",
ylab="CUSUM Statistic")
lines(c(0,1e99), c(70,70),lty=2,col=2)
lines(c(0,1e99), c(38,38),lty=2,col=3)

par(opar)

##
Run the CUSUM with thresholds as in Steiner et al. (1999).
After each alarm the CUSUM statistic is set to zero and
monitoring continues from this point. Triangles indicate alarm
in the respective CUSUM (nearmiss or death). If in both
simultaneously then an alarm is caused by the secondary limits.
##
pb.surv2 <- pairedbinCUSUM(deleval,control=list(theta0=theta0,

theta1=theta1,h1=70*w1,h2=32*w2,h11=38*w1,h22=17*w2))

plot(pb.surv2, xaxis.labelFormat=NULL)

permutationTest Monte Carlo Permutation Test for Paired Individual Scores

Description

The difference between mean scores from model 1 and mean scores from model 2 is used as the
test statistic. Under the null hypothesis of no difference, the actually observed difference between
mean scores should not be notably different from the distribution of the test statistic under permu-
tation. As the computation of all possible permutations is only feasible for small datasets, a random
sample of permutations is used to obtain the null distribution. The resulting p-value thus depends
on the .Random.seed.

Usage

permutationTest(score1, score2, nPermutation = 9999,
plot = FALSE, verbose = FALSE)

Arguments

score1, score2 numeric vectors of scores from models 1 and 2, respectively.

nPermutation number of Monte Carlo replicates.

plot logical indicating if a truehist of the nPermutation permutation test statistics
should be plotted with a vertical line marking the observed difference of the
means. To customize the histogram, plot can also be a list of arguments for
truehist replacing internal defaults.

verbose logical indicating if the results should be printed in one line.

192 pit

Details

For each permutation, we first randomly assign the membership of the n individual scores to either
model 1 or 2 with probability 0.5. We then compute the respective difference in mean for model 1
and 2 in this permuted set of scores. The Monte Carlo p-value is then given by (1 + #{permuted
differences larger than observed difference (in absolute value)}) / (1 + nPermutation).

Value

a list of the following elements:

diffObs observed difference in mean scores, i.e., mean(score1) - mean(score2)

pVal.permut p-value of the permutation test

pVal.t p-value of the corresponding t.test(score1, score2, paired=TRUE)

Author(s)

Michaela Paul with contributions by Sebastian Meyer

References

Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for
multivariate time series of infectious disease counts. Statistics in Medicine, 30 (10), 1118-1136.
doi:10.1002/sim.4177

See Also

Package coin for a comprehensive permutation test framework.

Examples

permutationTest(rnorm(50, 1.5), rnorm(50, 1), plot = TRUE)

pit Non-Randomized Version of the PIT Histogram (for Count Data)

Description

See Czado et al. (2009).

Usage

pit(x, ...)
Default S3 method:
pit(x, pdistr, J = 10, relative = TRUE, ..., plot = list())

https://doi.org/10.1002/sim.4177
https://CRAN.R-project.org/package=coin

pit 193

Arguments

x numeric vector representing the observed counts.

pdistr either a list of predictive cumulative distribution functions for the observations x,
or (the name of) a single predictive CDF used for all x (with potentially varying
arguments ...). It is checked that the predictive CDF returns 0 at x=-1. The
name of its first argument can be different from x, e.g., pdistr="pnbinom" is
possible.
If pdistr is a single function and no additional ... arguments are supplied,
pdistr is assumed to be vectorized, i.e., it is simply called as pdistr(x) and
pdistr(x-1). Otherwise, the predictive CDF is called sequentially and does
not need to be vectorized.

J the number of bins of the histogram.

relative logical indicating if relative frequency or the density should be plotted. Due to
a historical bug, relative=TRUE (the default) actually plots a density histogram
while relative=FALSE plots relative frequencies.

... ignored if pdistr is a list. Otherwise, such additional arguments are used in
sequential calls of pdistr via mapply(pdistr, x, ...).

plot a list of arguments for plot.histogram. Otherwise, no plot will be produced.

Value

an object of class "pit", which inherits from class "histogram" (see hist). It is returned invisibly
if a plot is produced.

Author(s)

Michaela Paul and Sebastian Meyer

References

Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. Biomet-
rics, 65 (4), 1254-1261. doi:10.1111/j.15410420.2009.01191.x

Examples

Simulation example of Czado et al. (2009, Section 2.4)
set.seed(100)
x <- rnbinom(200, mu = 5, size = 2)
pdistrs <- list("NB(5,0)" = function (x) ppois(x, lambda=5),

"NB(5,1/2)" = function (x) pnbinom(x, mu=5, size=2),
"NB(5,1)" = function (x) pnbinom(x, mu=5, size=1))

Reproduce Figure 1
op <- par(mfrow = c(1,3))
for (i in seq_along(pdistrs)) {

pit(x, pdistr = pdistrs[[i]], J = 10,
plot = list(ylim = c(0,2.75), main = names(pdistrs)[i]))

box()
}

https://doi.org/10.1111/j.1541-0420.2009.01191.x

194 plapply

par(op)

Alternative call using ... arguments for pdistr (less efficient)
stopifnot(identical(pit(x, "pnbinom", mu = 5, size = 2, plot = FALSE),

pit(x, pdistrs[[2]], plot = FALSE)))

plapply Verbose and Parallel lapply

Description

Verbose and parallelized version of lapply wrapping around mclapply and parLapply in the base
package parallel. This wrapper can take care of the .Random.seed and print progress information
(not for cluster-based parallelization). With the default arguments it equals lapply enriched by a
progress bar.

Usage

plapply(X, FUN, ...,
.parallel = 1, .seed = NULL, .verbose = TRUE)

Arguments

X, FUN, ... see lapply.
.parallel the number of processes to use in parallel operation, or a "cluster" object (see

makeCluster). If a number, mclapply (forking) is used on Unix-alikes, whereas
on Windows parLapply is used on a newly created cluster of the specified size,
which is stopped when exiting the function. By default (.parallel = 1), the
basic lapply is used.

.seed If set (non-NULL), results involving random number generation become repro-
ducible. If using a cluster (see the .parallel argument), clusterSetRNGStream
is called with the specified .seed before running parLapply. Otherwise, set.seed(.seed)
is called and the RNGkind is changed to "L'Ecuyer-CMRG" if .parallel > 1
(see the section on random numbers in the documentation of mcparallel in
package parallel). If .seed is non-NULL, the original .Random.seed will be
restored on.exit of the function.

.verbose if and how progress information should be displayed, i.e., what to do on each
exit of FUN. This is unsupported and ignored for cluster-based parallelization
and primitive FUNctions. The default (TRUE) will show a txtProgressBar (if
.parallel = 1 in an interactive R session) or cat(".") (otherwise). Other
choices for the dot are possible by specifying the desired symbol directly as
the .verbose argument. Alternatively, .verbose may be any custom call or
expression to be executed on.exit of FUN and may thus involve any objects
from the local evaluation environment.

Value

a list of the results of calling FUN on each value of X.

plot.atwins 195

Author(s)

Sebastian Meyer

See Also

mclapply and parLapply

Examples

example inspired by help("lapply")
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))

if neither parallel nor verbose then this simply equals lapply()
plapply(x, quantile, probs = 1:3/4, .verbose = FALSE)

verbose lapply() -- not really useful for such fast computations
res <- plapply(x, quantile, probs = 1:3/4, .verbose = TRUE)
res <- plapply(x, quantile, probs = 1:3/4, .verbose = "|")
res <- plapply(x, quantile, probs = 1:3/4,

.verbose = quote(cat("length(x) =", length(x), "\n")))

setting the seed for reproducibility of results involving the RNG
samp <- plapply(as.list(1:3), runif, .seed = 1)

parallel lapply()
res <- plapply(x, quantile, probs = 1:3/4, .parallel = 2, .verbose = FALSE)

using a predefined cluster
library("parallel")
cl <- makeCluster(getOption("cl.cores", 2))
res <- plapply(x, quantile, probs = 1:3/4, .parallel = cl)
stopCluster(cl)

plot.atwins Plots for Fitted algo.twins Models

Description

Plot results of fitting a twins model using MCMC output. Plots similar to those in the Held et al.
(2006) paper are generated.

Usage

S3 method for class 'atwins'
plot(x, which=c(1,4,6,7), ask=TRUE, ...)

196 poly2adjmat

Arguments

x An object of class "atwins" as returned by algo.twins.

which a vector containing the different plot types to show

1 A plot of the observed time series Z is shown together with posterior means
for the number of endemic cases (X) and number of epidemic cases (Y).

2 This plot shows trace plots of the gamma parameters over all MCMC samples.
3 This shows a trace plot of psi, which controls the overdispersion in the model.
4 Autocorrelation functions for K and psi are shown in order to judge whether

the MCMC sampler has converged.
5 Shows a plot of the posterior mean of the seasonal model nu[t] together with

95% credibility intervals based on the quantiles of the posterior.
6 Histograms illustrating the posterior density for K and psi. The first one cor-

responds to Fig. 4(f) in the paper.
7 Histograms illustrating the predictive posterior density for the next observed

number of cases Z[n+1]. Compare with Fig.5 in the paper.

ask Boolean indicating whether to ask for a newline before showing the next plot
(only if multiple are shown).

... Additional arguments for stsplot_time, used for plot type 1.

Details

For details see the plots in the paper. Basically MCMC output is visualized. This function is
experimental, as is algo.twins.

Author(s)

M. Hofmann and M. Höhle

References

Held, L., Hofmann, M., Höhle, M. and Schmid V. (2006) A two-component model for counts of
infectious diseases, Biostatistics, 7, pp. 422–437.

See Also

algo.twins (with an example)

poly2adjmat Derive Adjacency Structure of "SpatialPolygons"

Description

Wrapping around functionality of the spdep package, this function computes the symmetric, binary
(0/1), adjacency matrix from a "SpatialPolygons" object. It essentially applies nb2mat(poly2nb(SpP,
...), style="B", zero.policy=zero.policy).

polyAtBorder 197

Usage

poly2adjmat(SpP, ..., zero.policy = TRUE)

Arguments

SpP an object inheriting from "SpatialPolygons".

... arguments passed to poly2nb. Its snap argument might be particularly useful to
handle maps with sliver polygons.

zero.policy logical indicating if islands are allowed, see nb2mat.

Value

a symmetric numeric indicator matrix of size length(SpP)^2 representing polygon adjacencies.

Author(s)

(of this wrapper) Sebastian Meyer

See Also

poly2nb in package spdep

Examples

if (requireNamespace("spdep")) {
generate adjacency matrix for districts of Bayern and Baden-Wuerttemberg
data("fluBYBW")
adjmat <- poly2adjmat(fluBYBW@map)

same as already stored in the neighbourhood slot (in different order)
stopifnot(all.equal(adjmat,

neighbourhood(fluBYBW)[rownames(adjmat),colnames(adjmat)]))

a visual check of the district-specific number of neighbours
plot(fluBYBW@map)
text(coordinates(fluBYBW@map), labels=rowSums(adjmat==1), font=2, col=2)

}

polyAtBorder Indicate Polygons at the Border

Description

Determines which polygons of a "SpatialPolygons" object are at the border, i.e. have coordinates
in common with the spatial union of all polygons (constructed using unionSpatialPolygons).

198 primeFactors

Usage

polyAtBorder(SpP, snap = sqrt(.Machine$double.eps),
method = "sf", ...)

Arguments

SpP an object of class "SpatialPolygons".

snap tolerance used to consider coordinates as identical.

method method to use for unionSpatialPolygons. Defaults to sf, since polyclip uses
integer arithmetic, which causes rounding errors usually requiring tuning of (i.e.,
increasing) the tolerance parameter snap (see example below).

... further arguments passed to the chosen method.

Value

logical vector of the same length as SpP also inheriting its row.names.

Author(s)

Sebastian Meyer

Examples

Load districts of Germany
load(system.file("shapes", "districtsD.RData", package = "surveillance"))

Determine districts at the border and check the result on the map
if (requireNamespace("sf")) {

atBorder <- polyAtBorder(districtsD, method = "sf")
if (interactive()) plot(districtsD, col = atBorder)
table(atBorder)

}

For method = "polyclip", a higher snapping tolerance is required
to obtain the correct result
if (requireNamespace("polyclip")) {

atBorder <- polyAtBorder(districtsD, snap = 1e-6, method = "polyclip")
if (interactive()) plot(districtsD, col = atBorder)
table(atBorder)

}

primeFactors Prime Number Factorization

Description

Computes the prime number factorization of an integer.

print.algoQV 199

Usage

primeFactors(x)

Arguments

x an integer

Value

vector with prime number factorization of x

print.algoQV Print Quality Value Object

Description

Print a single quality value object in a nicely formatted way

Usage

S3 method for class 'algoQV'
print(x,...)

Arguments

x Quality Values object generated with quality

... Further arguments (not really used)

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

Compute the quality values in a nice formatted way
algo.quality(survResObj)

200 R0

R0 Computes reproduction numbers from fitted models

Description

The S3 generic function R0 defined in package surveillance is intended to compute reproduction
numbers from fitted epidemic models. The package currently defines a method for the "twinstim"
class, which computes expected numbers of infections caused by infected individuals depending on
the event type and marks attached to the individual, which contribute to the infection pressure in the
epidemic predictor of that class. There is also a method for simulated "epidataCS" (just a wrapper
for the "twinstim"-method).

Usage

R0(object, ...)

S3 method for class 'twinstim'
R0(object, newevents, trimmed = TRUE, newcoef = NULL, ...)
S3 method for class 'simEpidataCS'
R0(object, trimmed = TRUE, ...)

simpleR0(object, eta = coef(object)[["e.(Intercept)"]],
eps.s = NULL, eps.t = NULL, newcoef = NULL)

Arguments

object A fitted epidemic model object for which an R0 method exists.
newevents an optional data.frame of events for which the reproduction numbers should

be calculated. If omitted, it is calculated for the original events from the fit. In
this case, if trimmed = TRUE (the default), the result is just object$R0; however,
if trimmed = FALSE, the model environment is required, i.e. object must have
been fitted with model = TRUE.
For the twinstim method, newevents must at least contain the following columns:
the event time (only for trimmed = TRUE) and type (only for multi-type epi-
demics), the maximum interaction ranges eps.t and eps.s, as well as columns
for the marks and stgrid variables used in the epidemic component of the fitted
"twinstim" object as stored in formula(object)$epidemic. For trimmed
R0 values, newevents must additionally contain the components .influenceRegion
and, if using the Fcircle trick in the siaf specification, also .bdist (cf. the
hidden columns in the events component of class "epidataCS").

trimmed logical indicating if the individual reproduction numbers should be calculated by
integrating the epidemic intensities over the observation period and region only
(trimmed = TRUE) or over the whole time-space domain R+ x R^2 (trimmed =
FALSE). By default, if newevents is missing, the trimmed R0 values stored in
object are returned. Trimming means that events near the (spatial or tempo-
ral) edges of the observation domain have lower reproduction numbers (ceteris
paribus) because events outside the observation domain are not observed.

R0 201

newcoef the model parameters to use when calculating reproduction numbers. The de-
fault (NULL) is to use the MLE coef(object). This argument mainly serves the
construction of Monte Carlo confidence intervals by evaluating R0 for parame-
ter vectors sampled from the asymptotic multivariate normal distribution of the
MLE, see Examples.

... additional arguments passed to methods. Currently unused for the twinstim
method.

eta a value for the epidemic linear predictor, see details.

eps.s, eps.t the spatial/temporal radius of interaction. If NULL (the default), the original value
from the data is used if this is unique and an error is thrown otherwise.

Details

For the "twinstim" class, the individual-specific expected number µj of infections caused by indi-
vidual (event) j inside its theoretical (untrimmed) spatio-temporal range of interaction given by its
eps.t (ϵ) and eps.s (δ) values is defined as follows (cf. Meyer et al, 2012):

µj = eηj ·
∫
b(0,δ)

f(s)ds ·
∫ ϵ

0

g(t)dt.

Here, b(0, δ) denotes the disc centred at (0,0)’ with radius δ, ηj is the epidemic linear predictor, g(t)
is the temporal interaction function, and f(s) is the spatial interaction function. For a type-specific
twinstim, there is an additional factor for the number of event types which can be infected by the
type of event j and the interaction functions may be type-specific as well.

Alternatively to the equation above, the trimmed (observed) reproduction numbers are obtain by
integrating over the observed infectious domains of the individuals, i.e. integrate f over the inter-
section of the influence region with the observation region W (i.e. over {W ∩ b(sj , δ)} − sj) and g
over the intersection of the observed infectious period with the observation period (t0;T] (i.e. over
(0;min(T − tj , ϵ)]).

The function simpleR0 computes

exp(η) ·
∫
b(0,δ)

f(s)ds ·
∫ ϵ

0

g(t)dt,

where η defaults to γ0 disregarding any epidemic effects of types and marks. It is thus only suitable
for simple epidemic twinstim models with epidemic = ~1, a diagonal (or secondary diagonal)
qmatrix, and type-invariant interaction functions. simpleR0 mainly exists for use by epitest.

(Numerical) Integration is performed exactly as during the fitting of object, for instance object$control.siaf
is queried if necessary.

Value

For the R0 methods, a numeric vector of estimated reproduction numbers from the fitted model
object corresponding to the rows of newevents (if supplied) or the original fitted events including
events of the prehistory.

For simpleR0, a single number (see details).

202 R0

Author(s)

Sebastian Meyer

References

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

Examples

load the 'imdepi' data and a model fit
data("imdepi", "imdepifit")

calculate individual and type-specific reproduction numbers
R0s <- R0(imdepifit)
tapply(R0s, imdepi$events@data[names(R0s), "type"], summary)

untrimmed R0 for specific event settings
refevent <- data.frame(agegrp = "[0,3)", type = "B", eps.s = Inf, eps.t = 30)
setting2 <- data.frame(agegrp = "[3,19)", type = "C", eps.s = Inf, eps.t = 14)
newevents <- rbind("ref" = refevent, "event2" = setting2)
(R0_examples <- R0(imdepifit, newevents = newevents, trimmed = FALSE))
stopifnot(all.equal(R0_examples[["ref"]],

simpleR0(imdepifit)))

compute a Monte Carlo confidence interval

use a simpler model with constant 'siaf' for speed
simplefit <- update(imdepifit, epidemic=~type, siaf=NULL, subset=NULL)

we'd like to compute the mean R0's by event type
meanR0ByType <- function (newcoef) {

R0events <- R0(simplefit, newcoef=newcoef)
tapply(R0events, imdepi$events@data[names(R0events),"type"], mean)

}
(meansMLE <- meanR0ByType(newcoef=NULL))

sample B times from asymptotic multivariate normal of the MLE
B <- 5 # CAVE: toy example! In practice this has to be much larger
set.seed(123)
parsamples <- MASS::mvrnorm(B, mu=coef(simplefit), Sigma=vcov(simplefit))

for each sample compute the 'meanR0ByType'
meansMC <- apply(parsamples, 1, meanR0ByType)

get the quantiles and print the result
cisMC <- apply(cbind(meansMLE, meansMC), 1, quantile, probs=c(0.025,0.975))
print(rbind(MLE=meansMLE, cisMC))

R0 for a simple epidemic model

https://doi.org/10.1111/j.1541-0420.2011.01684.x

ranef 203

without epidemic covariates, i.e., all individuals are equally infectious

mepi1 <- update(simplefit, epidemic = ~1, subset = type == "B",
model = TRUE, verbose = FALSE)

using the default spatial and temporal ranges of interaction
(R0B <- simpleR0(mepi1)) # eps.s=200, eps.t=30
stopifnot(identical(R0B, R0(mepi1, trimmed = FALSE)[[1]]))
assuming smaller interaction ranges (but same infection intensity)
simpleR0(mepi1, eps.s = 50, eps.t = 15)

ranef Import from package nlme

Description

The generic functions ranef and fixef are imported from package nlme. See nlme::ranef for
nlme’s own description, and ranef.hhh4 or fixef.hhh4 for the added methods for "hhh4" models.

refvalIdxByDate Compute indices of reference value using Date class

Description

The reference values are formed based on computations of seq for Date class arguments.

Usage

refvalIdxByDate(t0, b, w, epochStr, epochs)

Arguments

t0 A Date object describing the time point
b Number of years to go back in time
w Half width of window to include reference values for
epochStr One of "1 month", "1 week" or "1 day"

epochs Vector containing the epoch value of the sts/disProg object

Details

Using the Date class the reference values are formed as follows: Starting from t0 go i, i= 1,...,b
years back in time. For each year, go w epochs back and include from here to w epochs after t0.

In case of weeks we always go back to the closest Monday of this date. In case of months we also
go back in time to closest 1st of month.

Value

a vector of indices in epochs which match

204 residualsCT

residualsCT Extract Cox-Snell-like Residuals of a Fitted Point Process

Description

Extract the “residual process” (cf. Ogata, 1988) of a fitted point process model specified through the
conditional intensity function, for instance a model of class "twinSIR" or "twinstim" (and also
"simEpidataCS"). The residuals are defined as the fitted cumulative intensities at the event times,
and are generalized residuals similar to those discussed in Cox and Snell (1968).

Usage

S3 method for class 'twinSIR'
residuals(object, ...)
S3 method for class 'twinstim'
residuals(object, ...)
S3 method for class 'simEpidataCS'
residuals(object, ...)

Arguments

object an object of one of the aforementioned model classes.

... unused (argument of the generic).

Details

For objects of class twinstim, the residuals may already be stored in the object as component
object$tau if the model was fitted with cumCIF = TRUE (and they always are for "simEpidataCS").
In this case, the residuals method just extracts these values. Otherwise, the residuals have to be
calculated, which is only possible with access to the model environment, i.e. object must have
been fitted with model = TRUE. The calculated residuals are then also appended to object for future
use. However, if cumCIF and model were both set to true in the object fit, then it is not possible to
calculate the residuals and the method returns an error.

Value

Numeric vector of length the number of events of the corresponding point process fitted by object.
This is the observed residual process.

Author(s)

Sebastian Meyer

rotaBB 205

References

Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point pro-
cesses. Journal of the American Statistical Association, 83, 9-27

Cox, D. R. & Snell, E. J. (1968) A general definition of residuals. Journal of the Royal Statistical
Society. Series B (Methodological), 30, 248-275

See Also

checkResidualProcess to graphically check the goodness-of-fit of the underlying model.

rotaBB Rotavirus cases in Brandenburg, Germany, during 2002-2013 strati-
fied by 5 age categories

Description

Monthly reported number of rotavirus infections in the federal state of Brandenburg stratified by
five age categories (00-04, 05-09, 10-14, 15-69, 70+) during 2002-2013.

Usage

data(rotaBB)

Format

A sts object.

Source

The data were queried on 19 Feb 2014 from the Survstat@RKI database of the German Robert
Koch Institute (https://survstat.rki.de/).

salmAllOnset Salmonella cases in Germany 2001-2014 by data of symptoms onset

Description

A dataset containing the reported number of cases of Salmonella in Germany 2001-2014 aggregated
by data of disease onset. The slot control contains a matrix reportingTriangle$n with the
reporting triangle as described in Salmon et al. (2015).

Usage

data(salmAllOnset)

https://survstat.rki.de/

206 salmNewport

Format

A sts-object

References

Salmon, M., Schumacher, D., Stark, K., Höhle, M. (2015): Bayesian outbreak detection in the
presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067.

salmHospitalized Hospitalized Salmonella cases in Germany 2004-2014

Description

Reported number of cases of Salmonella in Germany 2004-2014 (early 2014) that were hospi-
talized. The corresponding total number of cases is indicated in the slot populationFrac and
multinomialTS is TRUE.

Usage

data(salmHospitalized)

Format

An "sts" object.

Source

The data are queried from the Survstat@RKI database of the German Robert Koch Institute (https:
//survstat.rki.de/).

salmNewport Salmonella Newport cases in Germany 2004-2013

Description

Reported number of cases of the Salmonella Newport serovar in the 16 German federal states 2004-
2013.

Usage

data(salmNewport)

Format

A sts object.

https://survstat.rki.de/
https://survstat.rki.de/

salmonella.agona 207

Source

The data were queried from the SurvStat@RKI database of the German Robert Koch Institute
(https://survstat.rki.de/). A detailed description of the 2011 outbreak can be found in the
publication

Bayer, C., Bernard, H., Prager, R., Rabsch, W., Hiller, P., Malorny, B., Pfefferkorn, B., Frank,
C., de Jong, A., Friesema, I., Start, K., Rosner, B.M. (2014), An outbreak of Salmonella Newport
associated with mung bean sprouts in Germany and the Netherlands, October to November 2011,
Eurosurveillance 19(1):pii=20665.

salmonella.agona Salmonella Agona cases in the UK 1990-1995

Description

Reported number of cases of the Salmonella Agona serovar in the UK 1990-1995. Note however
that the counts do not correspond exactly to the ones used by Farrington et. al (1996).

Usage

data(salmonella.agona)

Format

A disProg object with 312 observations starting from week 1 in 1990.

Source

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563.

scores Proper Scoring Rules for Poisson or Negative Binomial Predictions

Description

Proper scoring rules for Poisson or negative binomial predictions of count data are described in
Czado et al. (2009). The following scores are implemented: logarithmic score (logs), ranked
probability score (rps), Dawid-Sebastiani score (dss), squared error score (ses).

https://survstat.rki.de/

208 scores

Usage

scores(x, ...)

Default S3 method:
scores(x, mu, size = NULL,

which = c("logs", "rps", "dss", "ses"),
sign = FALSE, ...)

logs(x, mu, size = NULL)
rps(x, mu, size = NULL, k = 40, tolerance = sqrt(.Machine$double.eps))
dss(x, mu, size = NULL)
ses(x, mu, size = NULL)

Arguments

x the observed counts. All functions are vectorized and also accept matrices or
arrays. Dimensions are preserved.

mu the means of the predictive distributions for the observations x.

size either NULL (default), indicating Poisson predictions with mean mu, or dispersion
parameters of negative binomial forecasts for the observations x, parametrized
as in dnbinom with variance mu*(1+mu/size).

which a character vector specifying which scoring rules to apply. By default, all four
proper scores are calculated. The normalized squared error score ("nses") is
also available but it is improper and hence not computed by default.

sign a logical indicating if the function should also return sign(x-mu), i.e., the sign
of the difference between the observed counts and corresponding predictions.

... unused (argument of the generic).

k scalar argument controlling the finite sum approximation for the rps with trun-
cation at max(x, ceiling(mu + k*sd)).

tolerance absolute tolerance for the finite sum approximation employed in the rps calcu-
lation. A warning is produced if the approximation with k summands is insuf-
ficient for the specified tolerance. In this case, increase k for higher precision
(or use a larger tolerance).

Value

The scoring functions return the individual scores for the predictions of the observations in x (main-
taining their dimension attributes).

The default scores-method applies the selected (which) scoring functions (and calculates sign(x-mu))
and returns the results in an array (via simplify2array), where the last dimension corresponds to
the different scores.

Author(s)

Sebastian Meyer and Michaela Paul

shadar 209

References

Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. Biomet-
rics, 65 (4), 1254-1261. doi:10.1111/j.15410420.2009.01191.x

See Also

The R package scoringRules implements the logarithmic score and the (continuous) ranked proba-
bility score for many distributions.

Examples

mu <- c(0.1, 1, 3, 6, 3*pi, 100)
size <- 0.5
set.seed(1)
y <- rnbinom(length(mu), mu = mu, size = size)
scores(y, mu = mu, size = size)
scores(y, mu = mu, size = 1) # ses ignores the variance
scores(y, mu = 1, size = size)

apply a specific scoring rule
scores(y, mu = mu, size = size, which = "rps")
rps(y, mu = mu, size = size)

rps() gives NA (with a warning) if the NegBin is too wide
rps(1e5, mu = 1e5, size = 1e-5)

shadar Salmonella Hadar cases in Germany 2001-2006

Description

Number of salmonella hadar cases in Germany 2001-2006. An increase is seen during 2006.

Usage

data(shadar)

Format

A disProg object containing 295×1 observations starting from week 1 in 2001 to week 35 in 2006.

Source

Robert Koch-Institut: SurvStat: https://survstat.rki.de/; Queried on September 2006.
Robert Koch Institut, Epidemiologisches Bulletin 31/2006.

Examples

data(shadar)
plot(shadar)

https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://CRAN.R-project.org/package=scoringRules
https://survstat.rki.de/

210 sim.pointSource

sim.pointSource Simulate Point-Source Epidemics

Description

Simulation of epidemics which were introduced by point sources. The basis of this programme is
a combination of a Hidden Markov Model (to get random timepoints for outbreaks) and a simple
model (compare sim.seasonalNoise) to simulate the baseline.

Usage

sim.pointSource(p = 0.99, r = 0.01, length = 400, A = 1,
alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K)

Arguments

p probability to get a new outbreak at time i if there was one at time i-1, default
0.99.

r probability to get no new outbreak at time i if there was none at time i-1, default
0.01.

length number of weeks to model, default 400. length is ignored if state is given. In
this case the length of state is used.

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

frequency factor to determine the oscillation-frequency, default = 1.

state use a state chain to define the status at this timepoint (outbreak or not). If not
given a Markov chain is generated by the programme, default NULL.

K additional weight for an outbreak which influences the distribution parameter
mu, default = 0.

Value

a disProg (disease progress) object including a list of the observed, the state chain and nearly all
input parameters.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.seasonalNoise

sim.seasonalNoise 211

Examples

set.seed(123)
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 2)

plot(disProgObj)

with predefined state chain
state <- rep(c(0,0,0,0,0,0,0,0,1,1), 20)
disProgObj <- sim.pointSource(state = state, K = 1.2)
plot(disProgObj)

simulate epidemic, send to RKI 1 system, plot, and compute quality values
testSim <- function (..., K = 0, range = 200:400) {

disProgObj <- sim.pointSource(..., K = K)
survResults <- algo.call(disProgObj,
control = list(list(funcName = "rki1", range = range)))

plot(survResults[[1]], "RKI 1", "Simulation")
algo.compare(survResults)

}
testSim(K = 2)
testSim(r = 0.5, K = 5) # larger and more frequent outbreaks

sim.seasonalNoise Generation of Background Noise for Simulated Timeseries

Description

Generation of a cyclic model of a Poisson distribution as background data for a simulated timevec-
tor.

The mean of the Poisson distribution is modelled as:

µ = exp(A sin(frequency · ω · (t+ ϕ)) + α+ β ∗ t+K ∗ state)

Usage

sim.seasonalNoise(A = 1, alpha = 1, beta = 0, phi = 0,
length, frequency = 1, state = NULL, K = 0)

Arguments

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

length number of weeks to model.

212 stcd

frequency factor to determine the oscillation-frequency, default = 1.

state if a state chain is entered the outbreaks will be additional weighted by K.

K additional weight for an outbreak which influences the distribution parameter
mu, default = 0.

Value

an object of class seasonNoise which includes the modelled timevector, the parameter mu and all
input parameters.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.pointSource

Examples

season <- sim.seasonalNoise(length = 300)
plot(season$seasonalBackground,type = "l")

use a negative timetrend beta
season <- sim.seasonalNoise(beta = -0.003, length = 300)
plot(season$seasonalBackground,type = "l")

stcd Spatio-temporal cluster detection

Description

Shiryaev-Roberts based prospective spatio-temporal cluster detection as in Assuncao & Correa
(2009).

Usage

stcd(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold, cusum=FALSE)

Arguments

x Vector containing spatial x coordinate of the events.

y Vector containing spatial y coordinate of the events.

t Vector containing the time points of the events. It is assumed that the vector is
sorted (early->last).

radius Radius of the cluster to detect.

stcd 213

epsilon Relative change of event-intensity within the cluster to detect. See reference
paper for an explicit definition.

areaA Area of the observation region A (single number) – This argument is currently
ignored!

areaAcapBk Area of A \ B(s_k,rho) for all k=1,. . . ,n (vector). This argument is currently
ignored!

threshold Threshold limit for the alarm and should be equal to the desired Average-Run-
Length (ARL) of the detector.

cusum (logical) If FALSE (default) then the Shiryaev-Roberts detector is used as in
the original article by Assuncao & Correa (2009), i.e. Rn =

∑n
k=1 Λk,n,

where Λk,n denotes the likelihood ratio between the in-control and out-of con-
trol model. If TRUE, CUSUM test statistic is used instead. Here,

Rn = max
1≤k≤n

Λk,n

. Note that this has implications on what threshold will sound the alarm (CUSUM
threshold needs to be smaller).

Details

Shiryaev-Roberts based spatio-temporal cluster detection based on the work in Assuncao and Correa
(2009). The implementation is based on C++ code originally written by Marcos Oliveira Prates,
UFMG, Brazil and provided by Thais Correa, UFMG, Brazil during her research stay in Munich.
This stay was financially supported by the Munich Center of Health Sciences.

Note that the vectors x, y and t need to be of the same length. Furthermore, the vector t needs to
be sorted (to improve speed, the latter is not verified within the function).

The current implementation uses a call to a C++ function to perform the actual computations of
the test statistic. The function is currently experimental – data type and results may be subject to
changes.

Value

A list with three components

R A vector of the same length as the input containing the value of the test statistic
for each observation.

idxFA Index in the x,y,t vector causing a possible alarm. If no cluster was detected,
then a value of -1 is returned here.

idxCC index in the x,y,t vector of the event containing the cluster. If no cluster was
detected, then a value of -1 is returned here.

Author(s)

M. O. Prates, T. Correa and M. Höhle

References

Assuncao, R. and Correa, T. (2009), Surveillance to detect emerging space-time clusters, Computa-
tional Statistics & Data Analysis, 53(8):2817-2830.

214 stK

Examples

if (require("splancs")) {
load the data from package "splancs"
data(burkitt, package="splancs")

order the times
burkitt <- burkitt[order(burkitt$t),]

#Parameters for the SR detection
epsilon <- 0.5 # relative change within the cluster
radius <- 20 # radius
threshold <- 161 # threshold limit

res <- stcd(x=burkitt$x,
y=burkitt$y,
t=burkitt$t,
radius=radius,
epsilon=epsilon,
areaA=1,
areaAcapBk=1,
threshold=threshold)

#Index of the event
which.max(res$R >= threshold)

}

stK Diggle et al (1995) K-function test for space-time clustering

Description

The function stKtest wraps functions in package splancs to perform the K-function based Monte
Carlo permutation test for space-time clustering (Diggle et al, 1995) for "epidataCS". The imple-
mentation is due to Meyer et al. (2016).

Usage

stKtest(object, eps.s = NULL, eps.t = NULL, B = 199,
cores = 1, seed = NULL, poly = object$W)

S3 method for class 'stKtest'
plot(x, which = c("D", "R", "MC"),

args.D = list(), args.D0 = args.D, args.R = list(), args.MC = list(),
mfrow = sort(n2mfrow(length(which))), ...)

Arguments

object an object of class "epidataCS".

stK 215

eps.s, eps.t numeric vectors defining the spatial and temporal grids of critical distances over
which to evaluate the test. The default (NULL) uses equidistant values from 0 to
the smallest eps.s/eps.t value in object$events, but not larger than half the
observed spatial/temporal domain.

B the number of permutations.

cores the number of parallel processes over which to distribute the requested number
of permutations.

seed argument for set.seed to initialize the random number generator such that re-
sults become reproducible (also if cores > 1, see plapply).

poly the polygonal observation region of the events (as an object handled by xylist).
The default object$W might not work since package splancs does not support
multi-polygons. In this case, the poly argument can be used to specify a substi-
tute.

x an "stKtest".

which a character vector indicating which diagnostic plots to produce. The full set is
c("D", "D0", "R", "MC"). The special value which = "stdiagn" means to call
the associated splancs function stdiagn.

args.D, args.D0, args.R, args.MC
argument lists for the plot functions persp (for "D" and "D0"), plot.default
("R"), and truehist ("MC"), respectively, to modify the default settings. Ig-
nored if which = "stdiagn".

mfrow par-setting to layout the plots. Ignored for which = "stdiagn" and if set to
NULL.

... ignored (argument of the generic).

Value

an object of class "stKtest" (inheriting from "htest"), which is a list with the following compo-
nents:

method a character string indicating the type of test performed.

data.name a character string naming the supplied object.

statistic the sum U of the standardized residuals R(s, t).

parameter the number B of permutations.

p.value the p-value for the test.

pts the coordinate matrix of the event locations (for stdiagn.

stK the estimated K-function as returned by stkhat.

seD the standard error of the estimated D(s, t) as returned by stsecal.

mctest the observed and permutation values of the test statistic as returned by stmctest.

The plot-method invisibly returns NULL.

Author(s)

Sebastian Meyer

216 sts-class

References

Diggle, P. J.; Chetwynd, A. G.; Häggkvist, R. and Morris, S. E. (1995): Second-order analysis of
space-time clustering Statistical Methods in Medical Research, 4, 124-136.

Meyer, S., Warnke, I., Rössler, W. and Held, L. (2016): Model-based testing for space-time inter-
action using point processes: An application to psychiatric hospital admissions in an urban area.
Spatial and Spatio-temporal Epidemiology, 17, 15-25. doi:10.1016/j.sste.2016.03.002. Eprint:
https://arxiv.org/abs/1512.09052.

See Also

the simple knox test and function epitest for testing "twinstim" models.

Examples

if (requireNamespace("splancs")) {
data("imdepi")
imdepiB <- subset(imdepi, type == "B")
mainpoly <- coordinates(imdepiB$W@polygons[[1]]@Polygons[[5]])
SGRID <- c(10, 25, 50, 100, 150)
TGRID <- c(1, 7, 14, 21)
B <- 19 # limited here for speed

imdBstKtest <- stKtest(imdepiB, eps.s = SGRID, eps.t = TGRID, B = B,
cores = 2, seed = 1, poly = list(mainpoly))

print(imdBstKtest)
plot(imdBstKtest)

}

sts-class Class "sts" – surveillance time series

Description

This is a lightweight S4 class to implement (multivariate) time series of counts, typically from
public health surveillance. The "sts" class supersedes the informal "disProg" class used in early
versions of package surveillance. Converters are available, see disProg2sts.

The constructor function sts can be used to setup an "sts" object. For areal time series, it can
also capture a map of the regions, where the counts originate from. See Section “Slots” below for a
description of all class components, and Section “Methods” for a list of extraction, conversion and
visualization methods.

Usage

sts(observed, start = c(2000, 1), frequency = 52,
epoch = NULL, population = NULL, map = NULL, ...)

https://doi.org/10.1016/j.sste.2016.03.002
https://arxiv.org/abs/1512.09052

sts-class 217

Arguments

observed a vector (for a single time series) or matrix (one time series per column) of
counts. A purely numeric data frame will also do (transformed via as.matrix).
This argument sets the observed slot, which is the core element of the resulting
"sts" object. It determines the dimensions and colnames for several other slots.
The columns (“units”) typically correspond to different regions, diseases, or age
groups.

start, frequency
basic characteristics of the time series data just like for simple "ts" objects. The
(historical) default values correspond to weekly data starting in the first week of
2000. The epoch and epochInYear methods use the ISO 8601 specification
when converting between week numbers and dates, see isoWeekYear.

epoch observation times, either as an integer sequence (default) or as a Date vector (in
which case epochAsDate is automatically set to TRUE).

population a vector of length the number of columns in observed or a matrix of the same
dimension as observed. Especially for multivariate time series, the population
numbers (or fractions) underlying the counts in each unit are relevant for visu-
alization and statistical inference. The population argument is an alias for the
corresponding slot populationFrac. The default NULL value sets equal popula-
tion fractions across all units.

map optional spatial data representing the regions, either of class "SpatialPolygons"
(or "SpatialPolygonsDataFrame") or of class "sf" (requires package sf).

... further named arguments with names corresponding to slot names (see the list
below). For instance, in the public health surveillance context, the state slot
is used to indicate outbreaks (default: FALSE for all observations). For areal
time series data, the map and neighbourhood slots are used to store the spatial
structure of the observation region.

Slots

epoch: a numeric vector specifying the time of observation, typically a week index. Depending on
the freq slot, it could also index days or months. Furthermore, if epochAsDate=TRUE then
epoch is the integer representation of Dates giving the exact date of the observation.

freq: number of observations per year, e.g., 52 for weekly data, 12 for monthly data.

start: vector of length two denoting the year and the sample number (week, month, etc.) of the
first observation.

observed: matrix of size length(epoch) times the number of regions containing the weekly/monthly
number of counts in each region. The colnames of the matrix should match the ID values of
the shapes in the map slot.

state: matrix with the same dimensions as observed containing Booleans whether at the specific
time point there was an outbreak in the region.

alarm: matrix with the same dimensions as observed specifying whether an outbreak detection
algorithm declared a specific time point in the region as having an alarm.

upperbound: matrix with upper-bound values.

https://CRAN.R-project.org/package=sf

218 sts-class

neighbourhood: symmetric matrix of size (numberofregions)2 describing the neighbourhood
structure. It may either be a binary adjacency matrix or contain neighbourhood orders (see the
Examples for how to infer the latter from the map).

populationFrac: matrix of population fractions or absolute numbers (see multinomialTS be-
low) with dimensions dim(observed).

map: object of class "SpatialPolygons" (or "SpatialPolygonsDataFrame") providing a shape
of the areas which are monitored or modelled.

control: list of settings; this is a rather free data type to be returned by the surveillance algo-
rithms.

epochAsDate: a Boolean indicating if the epoch slot corresponds to Dates.

multinomialTS: a Boolean stating whether to interpret the object as observed out of population,
i.e. a multinomial interpretation instead of a count interpretation.

Methods

Extraction of slots: There is an extraction (and replacement) method for almost every slot. The
name of the method corresponds to the slot name, with two exceptions: the populationFrac slot
is addressed by a population method, and the alarm slot is addressed by an alarms method.

epoch signature(x = "sts"): extract the epoch slot. If the sts object is indexed by dates
(epochAsDate = TRUE), the returned vector is of class Date, otherwise numeric (usually the
integer sequence 1:nrow(x)).
By explicitly requesting epoch(x, as.Date = TRUE), dates can also be extracted if the sts
object is not internally indexed by dates but has a standard frequency of 12 (monthly) or 52
(weekly). The transformation is based on start and freq and will return the first day of each
month (freq=12) and the Monday of each week (freq=52), respectively.

observed signature(x = "sts"): extract the observed slot.
alarms signature(x = "sts"): extract the alarm slot.
upperbound signature(x = "sts"): extract the upperbound slot.
neighbourhood signature(x = "sts"): extract the neighbourhood slot.
population signature(x = "sts"): extract the populationFrac slot.
control signature(x = "sts"): extract the control slot.
multinomialTS signature(x = "sts"): extract the multinomialTS slot.

Other extraction methods:

dim signature(x = "sts"): extract matrix dimensions of observed. This method also enables
nrow(x) and ncol(x).

dimnames signature(x = "sts"): extract the dimnames of the observed matrix. This method
also enables rownames(x) and colnames(x).

year signature(x = "sts"): extract the corresponding year of each observation.
epochInYear signature(x = "sts"): extract the epoch number within the year.
[signature(x = "sts"): subset rows (time points) and/or columns (units), see help("[,sts-method").

Transformation methods:

aggregate signature(x = "sts"): see aggregate.sts.

sts-class 219

as.data.frame signature(x = "sts"): the default as.data.frame call will collect the follow-
ing slots into a data frame: observed, epoch, state, alarm, upperbound, and populationFrac.
Additional columns will be created for freq (potentially varying by year for weekly or daily
data if x@epochAsDate is TRUE) and epochInPeriod (the epoch fraction within the current
year).
Calling the as.data.frame method with the argument tidy = TRUE will return tidy.sts(x),
which reshapes multivariate sts objects to the “long” format (one row per epoch and obser-
vational unit). The tidy format is particularly useful for standard regression models and
customized plotting.

coerce signature(from="sts", to="ts") and signature(from="ts", to="sts"), to be called
via as(stsObj, "ts") (or as.ts(stsObj)) and as(tsObj, "sts"), respectively.

as.xts convert to the xts package format.

Visualization methods:
plot signature(x = "sts", y = "missing"): entry point to a collection of plot variants. The

type of plot is specified using a formula, see plot.sts for details.
autoplot a ggplot2 variant of the standard time-series-type plot, see autoplot.sts.
animate see animate.sts.
toLatex see toLatex.sts.

Author(s)

Michael Höhle and Sebastian Meyer

Examples

showClass("sts")

create an sts object from time-series data
salmonellaDF <- read.table(system.file("extdata/salmonella.agona.txt",

package = "surveillance"), header = TRUE)
str(salmonellaDF)
salmonella <- with(salmonellaDF,

sts(observed = observed, state = state,
start = c(1990, 1), frequency = 52))

salmonella
plot(salmonella)

these data are also available as a legacy "disProg" object in the package
data(salmonella.agona)
stopifnot(all.equal(salmonella, disProg2sts(salmonella.agona)))

A typical dataset with weekly counts of measles from several districts
data("measlesWeserEms")
measlesWeserEms

reconstruct data("measlesWeserEms") from its components
counts <- observed(measlesWeserEms)
map <- measlesWeserEms@map

https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=ggplot2

220 stsBP-class

populationFrac <- population(measlesWeserEms)
weserems_nbOrder <- neighbourhood(measlesWeserEms)
orders of adjacency can also be determined from the map
if (requireNamespace("spdep")) {

stopifnot(identical(weserems_nbOrder,
nbOrder(poly2adjmat(map))))

}
mymeasles <- sts(counts, start = c(2001, 1), frequency = 52,

population = populationFrac,
neighbourhood = weserems_nbOrder, map = map)

stopifnot(identical(mymeasles, measlesWeserEms))

convert ts/mts object to sts
z <- ts(matrix(rpois(300,10), 100, 3), start = c(1961, 1), frequency = 12)
z.sts <- as(z, "sts")
plot(z.sts)

conversion of "sts" objects to the quasi-standard "xts" class
if (requireNamespace("xts")) {

z.xts <- as.xts.sts(z.sts)
plot(z.xts)

}

stsBP-class Class "stsBP" – a class inheriting from class sts which allows the
user to store the results of back-projecting or nowcasting surveillance
time series

Description

A class inheriting from class sts, but with additional slots to store the result and associated confi-
dence intervals from back projection of a sts object.

Slots

The slots are as for "sts". However, two additional slots exists.

ci: An array containing the upper and lower limit of the confidence interval.

lambda: Back projection component

Methods

The methods are the same as for "sts".

coerce signature(from = "sts", to = "stsBP"): convert an object of class sts to class stsBP.

Author(s)

M. Höhle

stsNC-class 221

stsNC-class Class "stsNC" – a class inheriting from class sts which allows the
user to store the results of back-projecting surveillance time series

Description

A class inheriting from class sts, but with additional slots to store the results of nowcasting.

Slots

The slots are as for "sts". However, a number of additional slots exists.

reportingTriangle: An array containing the upper and lower limit of the confidence interval.

predPMF: Predictive distribution for each nowcasted time point.

pi: A prediction interval for each nowcasted time point. This is calculated based on predPMF.

truth: An object of type sts containing the true number of cases.

delayCDF: List with the CDF of the estimated delay distribution for each method.

SR: Possible output of proper scoring rules

Methods

The methods are the same as for "sts".

coerce signature(from = "sts", to = "stsNC"): convert an object of class sts to class stsNC.

reportingTriangle signature(x = "stsNC"): extract the reportingTriangle slot of an stsNC
object.

delayCDF signature(x = "stsNC"): extract the delayCDF slot of an stsNC object.

score signature(x = "stsNC"): extract the scoring rules result slot of an stsNC object.

predint signature(x = "stsNC"): extract the prediction interval slot of an stsNC object.

Author(s)

M. Höhle

222 stsNClist_animate

stsNClist_animate Animate a Sequence of Nowcasts

Description

Animate a sequence of nowcasts stored as a list.

Usage

animate_nowcasts(nowcasts,linelist_truth, method="bayes.trunc.ddcp",
control=list(dRange=NULL,anim.dRange=NULL, plot.dRange=NULL,

consistent=FALSE, sys.sleep = 1, ylim=NULL,cex.names=0.7,
col=c("violetred3","#2171B5","orange","blue","black",

"greenyellow")),
showLambda=TRUE)

Arguments

nowcasts A list of objects of class stsNC

linelist_truth True linelist

method Which method to show (has to be present in the nowcasts)

control List with control options

showLambda Boolean indicating whether to show the estimate for the epidemic curve (only
applied to bayes.trunc.ddcp)

Value

This function is experimental and not yet fully documented.

Author(s)

M. Höhle

See Also

https://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html for a worked through ex-
ample.

https://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html

stsNewport 223

stsNewport Salmonella Newport cases in Germany 2001-2015

Description

Reported number of cases of the Salmonella Newport serovar in Germany 2001-2015, by date
of disease onset. The slot control contains a matrix reportingTriangle$n with the reporting
triangle as described in Salmon et al. (2015).

Usage

data(stsNewport)

Format

A sts object.

References

Salmon, M., Schumacher, D., Stark, K., Höhle, M. (2015): Bayesian outbreak detection in the
presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067.

stsplot Plot Methods for Surveillance Time-Series Objects

Description

This page gives an overview of plot types for objects of class "sts".

Usage

S4 method for signature 'sts,missing'
plot(x, type = observed ~ time | unit, ...)

Arguments

x an object of class "sts".

type see Details.

... arguments passed to the type-specific plot function.

224 stsplot_space

Details

There are various types of plots which can be produced from an "sts" object. The type argument
specifies the desired plot as a formula, which defaults to observed ~ time | unit, i.e., plot the
time series of each unit separately. Arguments to specific plot functions can be passed as further
arguments (. . .). The following list describes the plot variants:

observed ~ time | unit The default type shows ncol(x) plots, each containing the time series of
one observational unit. The actual plotting per unit is done by the function stsplot_time1,
called sequentially from stsplot_time.
A ggplot2-based alternative for this type of plot is provided through an autoplot-method for
"sts" objects.

observed ~ time The observations in x are first aggregated over units and the resulting univariate
time-series is plotted via the function stsplot_time.

alarm ~ time Generates a so called alarmplot for a multivariate sts object. For each time point
and each series it is shown whether there is an alarm. In case of hierarchical surveillance the
user can pass an additional argument lvl, which is a vector of the same length as rows in x
specifying for each time series its level.

observed ~ unit produces a map of counts (or incidence) per region aggregated over time. See
stsplot_space for optional arguments, details and examples.

Value

NULL (invisibly). The methods are called for their side-effects.

See Also

the documentation of the individual plot types stsplot_time, stsplot_space, as well as the
animate method.

stsplot_space Map of Disease Counts/Incidence accumulated over a Given Period

Description

This is the plot variant of type=observed~unit for "sts" objects, i.e., plot(stsObj, type=observed~unit,
...) calls the function documented below. It produces an spplot where regions are color-coded
according to disease incidence (either absolute counts or relative to population) over a given time
period.

Usage

stsplot_space(x, tps = NULL, map = x@map, population = NULL,
main = NULL, labels = FALSE, ...,
at = 10, col.regions = NULL,
colorkey = list(space = "bottom", labels = list(at=at)),
total.args = NULL,

https://CRAN.R-project.org/package=ggplot2

stsplot_space 225

gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2),
sp.layout = NULL,
xlim = bbox(map)[1,], ylim = bbox(map)[2,])

Arguments

x an object of class "sts" or a matrix of counts, i.e., observed(stsObj), where
especially colnames(x) have to be contained in row.names(map). If a matrix,
the map object has to be provided explicitly. The possibility of specifying a
matrix is, e.g., useful to plot mean counts of simulations from simulate.hhh4.

tps a numeric vector of one or more time points. The unit-specific sum over all time
points tps is plotted. The default tps=NULL means accumulation over the whole
time period 1:nrow(x).

map an object inheriting from "SpatialPolygons" representing the ncol(x) re-
gions. By default the map slot of x is queried (which might be empty and is
not applicable if x is a matrix of counts).

population if NULL (default), the map shows the region-specific numbers of cases accumu-
lated over tps. For a disease incidence map, population can be specified in
three ways:

• a numeric vector of population numbers in the ncol(x) regions, used to
divide the disease counts.

• a matrix of population counts of dimension dim(x) (such as population(x)
in an "sts" object). This will produce the cumulative incidence over tps
relative to the population at the first time point, i.e., only population[tps[1],]
is used.

• [if is(x, "sts")] a scalar specifying how population(x) should be scaled
for use as the population matrix, i.e., population(x)/population is used.
For instance, if population(x) contains raw population numbers, population=1000
would produce the incidence per 1000 inhabitants.

main a main title for the plot. If NULL and x is of class "sts", the time range of tps is
put as the main title.

labels determines if and how the regions of the map are labeled, see layout.labels.

... further arguments for spplot, for example col = "white" for white polygon
lines.

at either a number of levels (default: 10) for the categorization (color-coding) of
counts/incidence, or a numeric vector of specific break points, or a named list of
a number of levels ("n"), a transformer ("trafo") of class "trans" defined by
package scales, and optional further arguments for pretty. The default breaks
are equally spaced on the square-root scale (equivalent to sqrt_trans). Note
that intervals given by at are closed on the left and open to the right; if man-
ually specified break points do not cover the data range, further breaks are au-
tomatically added at 0 and the maximum (rounded up to 1 significant digit),
respectively.

col.regions a vector of fill colors, sufficiently long to serve all levels (determined by at).
“Heat” colors are used by default (NULL).

226 stsplot_space

colorkey a list describing the color key, see levelplot. The default list elements will be
updated by the provided list using modifyList.

total.args an optional list of arguments for grid.text to have the overall number/incidence
of cases printed at an edge of the map. The default settings are list(label="Overall:
", x=1, y=0), and total.args=list() will use all of them.

gpar.missing list of graphical parameters for sp.polygons applied to the regions of map,
which are not part of x. Such extra regions won’t be plotted if !is.list(gpar.missing).

sp.layout optional list of additional layout items, see spplot.

xlim, ylim numeric vectors of length 2 specifying the axis limits.

Value

a lattice plot of class "trellis", but see spplot.

Author(s)

Sebastian Meyer

See Also

the central stsplot-documentation for an overview of plot types, and animate.sts for animations
of "sts" objects.

Examples

data("measlesWeserEms")

default plot: total region-specific counts over all weeks
plot(measlesWeserEms, type = observed ~ unit)
stsplot_space(measlesWeserEms) # the same

cumulative incidence (per 100'000 inhabitants),
with region labels and white borders
plot(measlesWeserEms, observed ~ unit,

population = measlesWeserEms@map$POPULATION / 100000,
labels = list(labels = "GEN", cex = 0.7, font = 3),
col = "white", lwd = 2,
sub = "cumulative incidence (per 100'000 inhabitants)")

incidence in a particular week, manual color breaks, display total
plot(measlesWeserEms, observed ~ unit, tps = 62,

population = measlesWeserEms@map$POPULATION / 100000,
at = c(0, 1, 5),
total.args = list(x = 0, label = "Overall incidence: "))

if we had only observed a subset of the regions
plot(measlesWeserEms[,5:11], observed ~ unit,

gpar.missing = list(col = "gray", lty = 4))

stsplot_time 227

stsplot_time Time-Series Plots for "sts" Objects

Description

These are the plot variants of type=observed~time|unit, type=observed~time, and type=alarm~time
for "sts" objects (see the central "sts" plot-method for an overview of plot types).

Usage

stsplot_time(x, units=NULL,
as.one=FALSE, same.scale=TRUE, par.list=list(), ...)

stsplot_time1(x, k=1, ylim=NULL,
axes=TRUE, xaxis.tickFreq=list("%Q"=atChange),
xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ",
epochsAsDate=x@epochAsDate,
xlab="time", ylab="No. infected", main=NULL,
type="s", lty=c(1,1,2), col=c(NA,1,4), lwd=c(1,1,1),
outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1),
alarm.symbol=list(pch=24, col=2, cex=1, lwd=1),
legend.opts=list(),
dx.upperbound=0L, hookFunc=function(){},
.hookFuncInheritance=function() {}, ...)

stsplot_alarm(x, lvl=rep(1,ncol(x)),
xaxis.tickFreq=list("%Q"=atChange),
xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ",
epochsAsDate=x@epochAsDate,
xlab="time", ylab="", main=NULL,
outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1),
alarm.symbol=list(pch=24, col=2, cex=1, lwd=1),
cex.yaxis=1, ...)

Arguments

x an object of class "sts".

units optional integer or character vector to select the units (=columns of observed(x))
to plot. The default is to plot all time series. If as.one=FALSE, stsplot_time1
is called for (k in units) with mfrow splitting (see par.list). Note that if
there are too many units, the default mfrow setting might lead to the error “fig-
ure margins too large” (meaning that the units do not fit onto a single page).

as.one logical indicating if all time series should be plotted in a single frame (using
matplot).

same.scale logical indicating if all time series should be plotted with the same ylim. Default
is to do so. Only relevant for multivariate plots (ncol(x) > 1).

228 stsplot_time

par.list a list of arguments delivered to a call of par to set graphical parameters before
plotting. The mfrow splitting is handled per default. Afterwards, the parameters
are reverted to their original values. Use par.list=NULL to disable the internal
par call.

k the unit to plot, i.e., an element of 1:ncol(x).

ylim the y limits of the plot(s). Ignored if same.scale=FALSE.

axes a logical value indicating whether both axes should be drawn on the plot.
xaxis.tickFreq, xaxis.labelFreq, xaxis.labelFormat

arguments for addFormattedXAxis if epochsAsDate=TRUE. Use xaxis.labelFormat=NULL
to get a standard x-axis (without date labels).

epochsAsDate Boolean indicating whether to treat the epochs as Date objects (or to transform
them to dates such that the new x-axis formatting is applied). Default: Value of
the epochAsDate slot of x.

xlab a title for the x axis. See plot.default.

ylab a title for the y axis. See plot.default.

main an overall title for the plot: see ’title’.

type type of plot to do.

lty vector of length 3 specifying the line type for the three lines in the plot – see col
argument.

col Vector of length 3 specifying the color to use in the plot. The first color is the
fill color of the polygons for the counts bars (NA for unfilled), the 2nd element
denotes their border color, the 3rd element is the color of the upperbound plot-
ting.

lwd Vector of length 3 specifying the line width of the three elements to plot. See
also the col argument.

alarm.symbol a list with entries pch, col, cex and lwd specifying the appearance of the alarm
symbol in the plot.

outbreak.symbol

a list with entries pch, col, cex and lwd specifying the appearance of the out-
break symbol in the plot. Currently ignored by stsplot_alarm.

legend.opts a list of arguments for the legend. If missing(legend.opts) (i.e., not explic-
itly specified), the default legend will only be added if the "sts" object contains
outbreaks, alarms, or upperbounds. The default legend options are

x "top"

legend c("Infected","Threshold","Outbreak","Alarm")[included]

lty,lwd,pch,col the corresponding graphical settings of the included elements

where individual elements are only included in the legend if they are plotted
(except for alarms, which are also included if upperbounds exist). To disable the
legend, use legend.opts=NULL.

dx.upperbound horizontal change in the plotting of the upperbound line. Sometimes it can be
convenient to offset this line a little for better visibility.

lvl A vector of length ncol(x), which is used to specify the hierarchy level for each
time series in the sts object for alarm plots.

stsplot_time 229

cex.yaxis The magnification to be used for y-axis annotation.

hookFunc a function that is called after all the basic plotting has be done, i.e., it is not
possible to control formatting with this function. See Examples.

.hookFuncInheritance

a function which is altered by sub-classes plot method. Do not alter this function
manually.

... further arguments for the function matplot. If e.g. xlab or main are provided
they overwrite the default values.

Details

The time series plot relies on the work-horse stsplot_time1. Its arguments are (almost) similar to
plot.survRes.

Value

NULL (invisibly). The functions are called for their side-effects.

Author(s)

Michael Höhle and Sebastian Meyer

See Also

There is an autoplot-method, which implements ggplot2-based time-series plots of "sts" objects.

The stsplot help page gives an overview of other types of plots for "sts" objects.

Examples

data("ha.sts")
print(ha.sts)

plot(ha.sts, type=observed ~ time | unit) # default multivariate type
plot(ha.sts, units=c("mitt", "pank")) # selected units
plot(ha.sts, type=observed ~ time) # aggregated over all districts

Hook function example
hookFunc <- function() grid(NA,NULL,lwd=1)
plot(ha.sts, hookFunc=hookFunc)

another multivariate time series example plotted "as.one"
data("measlesDE")
plot(measlesDE, units=1:2, as.one=TRUE, legend.opts=list(cex=0.8))
more sophisticated plots are offered by package "xts"
if (requireNamespace("xts"))

plot(as.xts.sts(measlesDE))

Use ISO8601 date formatting (see ?strptime) and no legend
data("salmNewport")
plot(aggregate(salmNewport,by="unit"), xlab="Time (weeks)",

https://CRAN.R-project.org/package=ggplot2

230 stsXtrct

xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),
xaxis.labelFreq=list("%G"=atMedian),xaxis.labelFormat="%G")

Formatting also works for daily data (illustrated by artificial
outbreak converted to sts object via 'linelist2sts')
set.seed(123)
exposureTimes <- as.Date("2014-03-12") + sample(x=0:25,size=99,replace=TRUE)
sts <- linelist2sts(data.frame(exposure=exposureTimes),

dateCol="exposure",aggregate.by="1 day")
Plot it with larger ticks for days than usual
surveillance.options("stsTickFactors"=c("%d"=1, "%W"=0.33,

"%V"=0.33, "%m"=1.75, "%Q"=1.25, "%Y"=1.5, "%G"=1.5))
plot(sts,xaxis.tickFreq=list("%d"=atChange,"%m"=atChange),

xaxis.labelFreq=list("%d"=at2ndChange),xaxis.labelFormat="%d-%b",
xlab="Time (days)")

stsSlot-generics Generic Functions to Access "sts" Slots

Description

For almost every slot of the "sts" class, package surveillance defines a generic function of the
same name (and a replacement version) to extract (or set) the corresponding slot. See the "sts"
class documentation.

stsXtrct Subsetting "sts" Objects

Description

The [-method extracts parts of an "sts" object using row (time) and column (unit) indices.

Usage

S4 method for signature 'sts'
x[i, j, ..., drop]

Arguments

x an object of class "sts".

i row index (integer or logical vector).

j column index (character, integer, or logical vector).

..., drop unused (arguments of the generic).
Dimensions are never dropped.

sts_animate 231

Details

Row indices are used to select a subset of the original time period. The start and epoch slots of
the time series are adjusted accordingly. A warning is issued if an irregular integer sequence is used
to extract rows, e.g., x[c(1,2,4),], which could destroy the structure of the time series (freq).

Column indices work as usual when indexing matrices, so may select units by name, position or a
vector of booleans. When subsetting columns, population fractions are recomputed if and only if x
is no multinomialTS and already contains population fractions.

NA indices are not supported, negative indices are.

Note that a [<- method (i.e., subassignment) is not implemented.

Value

an object of class "sts".

Examples

data("ha.sts")
haagg <- aggregate(ha.sts, nfreq=13)

plot(haagg[, 3]) # Single series
plot(haagg[1:30, 3]) # Somewhat shorter

#Counts at time 20
plot(haagg[20,], type = observed ~ unit)

sts_animate Animated Maps and Time Series of Disease Counts or Incidence

Description

The animate-method for sts objects iterates over time points, plotting maps of the current|cumulative
counts|incidence via stsplot_space, optionally including a time series chart below the map to
track the epidemic curve. It is worth using functionality of the animation package (e.g., saveHTML)
to directly export the animation into a useful format.

Usage

S3 method for class 'sts'
animate(object, tps = NULL, cumulative = FALSE,

population = NULL, at = 10, ...,
timeplot = list(pos = 1, size = 0.3, fill = TRUE),
sleep = 0.5, verbose = interactive(), draw = TRUE)

232 sts_animate

Arguments

object an object of class "sts" or a matrix of counts, i.e., observed(stsObj), where
especially colnames(x) have to be contained in row.names(map). If a matrix,
the map object has to be provided explicitly (as part of ...).

tps a numeric vector of one or more time points at which to plot the map. The
default tps=NULL means the whole time period 1:nrow(object).

cumulative logical specifying if the cumulative counts/incidence over time should be plot-
ted. The cumulative incidence is relative to the population from the first time
point tps[1] throughout the whole animation, while cumulative=FALSE com-
putes the incidence from the current population numbers.

population, at, ...
arguments for stsplot_space.

timeplot if a list and package gridExtra is available, a time series chart of the counts
along the selected time points tps will be plotted next to the map. The list el-
ements determine both the positioning of this plot (pos, size, and fill) and
its appearance. The default pos=1 and size=0.3 arguments put the time se-
ries plot below the map, using 30% of the total plot height. The logical value
fill indicates whether to make the panel as big as possible (default: TRUE).
An alternative to fill=FALSE is to manually specify an aspect (ratio) value
in timeplot. Other list elements are arguments for the internal (and currently
undocumented) function stsplot_timeSimple. For example, inactive and
active are lists of graphical parameters (e.g., col) determining the appearance
of the bars (e.g., default color is grey when inactive and black when active),
and the boolean as.Date determines whether dates should be put on the x-axis
(instead of the tps indexes).

sleep time to wait (Sys.sleep) between subsequent snapshots (only if dev.interactive),
in seconds.

verbose logical indicating if a txtProgressBar should be shown during generation of
the animation – which may take a while. Default is to do so in interactive
sessions.

draw logical indicating if the produced plots at each time point should be drawn di-
rectly (the default) or not. The setting draw = FALSE is useful if one would like
to manually arrange the plots, which are always returned invisibly in a list of
length length(tps).

Value

(invisibly) a list of the length(tps) sequential plot objects. These are of class "gtable" (from
gtable) if the timeplot is included, otherwise of class "\code{trellis".

Author(s)

Sebastian Meyer

See Also

the other plot types documented in stsplot for static time series plots and maps.

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gtable

sts_creation 233

Examples

data("measlesWeserEms")

animate the weekly counts of measles (during weeks 12-16 only, for speed)
if (interactive() && require("animation")) {

oldwd <- setwd(tempdir()) # to not clutter up the current working dir
saveHTML(animate(measlesWeserEms, tps=12:16),

title="Evolution of the measles epidemic in the Weser-Ems region",
ani.width=500, ani.height=600)

setwd(oldwd)
}

Not run:
animate the weekly incidence of measles (per 100'000 inhabitants),
and label the time series plot with dates in a specified format
animate(measlesWeserEms, tps=12:16,

population = measlesWeserEms@map$POPULATION / 100000,
timeplot = list(as.Date = TRUE,

scales = list(x = list(format = "%G/%V"))))

End(Not run)

sts_creation Simulate Count Time Series with Outbreaks

Description

Function for simulating a time series and creating an sts object. As the counts are generated
using a negative binomial distribution one also gets the (1-alpha) quantile for each timepoint (can
be interpreted as an in-control upperbound for in-control values). The baseline and outbreaks are
created as in Noufaily et al. (2012).

Usage

sts_creation(theta, beta, gamma1, gamma2, m, overdispersion, dates,
sizesOutbreak, datesOutbreak, delayMax, alpha, densityDelay)

Arguments

theta baseline frequency of reports

beta time trend

gamma1 seasonality

gamma2 seasonality

m seasonality

overdispersion size parameter of rnbinom for the parameterization with mean and dispersion

dates dates of the time series

234 sts_creation

sizesOutbreak sizes of all the outbreaks (vector)

datesOutbreak dates of all the outbreaks (vector)

delayMax maximal delay in time units

alpha alpha for getting the (1-alpha) quantile of the negative binomial distribution at
each timepoint

densityDelay density distribution for the delay

References

Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

Examples

set.seed(12345)
Time series parameters
scenario4 <- c(1.6,0,0.4,0.5,2)
theta <- 1.6
beta <- 0
gamma1 <-0.4
gamma2 <- 0.5
overdispersion <- 1
m <- 1
Dates
firstDate <- "2006-01-01"
lengthT=350
dates <- as.Date(firstDate) + 7 * 0:(lengthT - 1)
Maximal delay in weeks
D=10
Dates and sizes of the outbreaks
datesOutbreak <- as.Date(c("2008-03-30","2011-09-25"))
sizesOutbreak <- c(2,5)
Delay distribution
data("salmAllOnset")
in2011 <- which(isoWeekYear(epoch(salmAllOnset))$ISOYear == 2011)
rT2011 <- salmAllOnset@control$reportingTriangle$n[in2011,]
densityDelay <- apply(rT2011,2,sum, na.rm=TRUE)/sum(rT2011, na.rm=TRUE)
alpha for the upperbound
alpha <- 0.05
Create the sts with the full time series
stsSim <- sts_creation(theta=theta,beta=beta,gamma1=gamma1,gamma2=gamma2,m=m,

overdispersion=overdispersion,
dates=dates,
sizesOutbreak=sizesOutbreak,datesOutbreak=datesOutbreak,
delayMax=D,densityDelay=densityDelay,
alpha=alpha)

plot(stsSim)

sts_ggplot 235

sts_ggplot Time-Series Plots for "sts" Objects Using ggplot2

Description

A simple ggplot2 variant of stsplot_time, based on a “tidy” version of the "sts" object via
tidy.sts. It uses a date axis and thus only works for time series indexed by dates or with a
standard frequency (daily, (bi-)weekly, or monthly).

Usage

autoplot.sts(object, population = FALSE, units = NULL,
as.one = FALSE, scales = "fixed", width = NULL, ...)

Arguments

object an object of class "sts".

population logical indicating whether observed(object) should be divided by population(object).
The population argument can also be a scalar, which is used to scale the de-
nominator population(object), i.e., observed(object) is divided by population(object)
/ population. For instance, if population(object) contains raw population
numbers, population = 1000 could be used to plot the incidence per 1000 in-
habitants.

units optional integer or character vector to select the units (=columns of object) to
plot. The default (NULL) is to plot all time series.

as.one logical indicating if all time series should be plotted in one panel with geom_line.
By default, the time series are plotted in separate panels (using geom_col).

scales passed to facet_wrap (for as.one=FALSE). By default, all panels use a common
ylim (and xlim).

width bar width, passed to geom_col. Defaults to 7 for weekly time series.

... unused (argument of the generic).

Value

a "ggplot" object.

Author(s)

Sebastian Meyer

See Also

stsplot_time for the traditional plots.

https://CRAN.R-project.org/package=ggplot2

236 sts_observation

Examples

compare traditional plot() with ggplot2-based autoplot.sts()
if (requireNamespace("ggplot2")) {

data("measlesDE")
plot(measlesDE, units = 1:2)
autoplot.sts(measlesDE, units = 1:2)

}

weekly incidence: population(measlesDE) gives population fractions,
which we need to multiply by the total population
if (require("ggplot2", quietly = TRUE)) {

autoplot.sts(measlesDE, population = 1000000/82314906) +
ylab("Weekly incidence [per 1'000'000 inhabitants]")

}

sts_observation Create an sts object with a given observation date

Description

Function for creating an sts object with a given observation date.

Usage

sts_observation(sts, dateObservation, cut = TRUE)

Arguments

sts sts-object we want to set at a previous state. Needs to include a reporting trian-
gle.

dateObservation

Date for which we want the state. Needs to be in the reporting triangle dates.

cut Boolean indicating whether to have 0 counts after the observation date or to
simply cut the sts-object

Examples

data("salmAllOnset")
salmAllOnsety2014m01d20 <- sts_observation(salmAllOnset,

dateObservation="2014-01-20",cut=FALSE)
plot(salmAllOnset)
lines(observed(salmAllOnsety2014m01d20),type="h",col="red")

surveillance.options 237

surveillance.options Options of the surveillance Package

Description

Query, set or reset options specific to the surveillance package, similar to what options does for
global settings.

Usage

surveillance.options(...)
reset.surveillance.options()

Arguments

... Either empty, or a sequence of option names (as strings), or a sequence of
name=value pairs, or a named list of options. Available options are:

stsTickFactors: A named vector containing tick sizes for the "sts" x-axis rel-
ative to par("tcl"). Each entry contains the size at strptime formatting
strings. See the help on stsplot_time1 for details.
"%d"
"%W"
"%V"
"%m"
"%Q"
"%Y"
"%G"

colors: A named list containing plotting color defaults.
nowSymbol Color of the "now" symbol in stsNC plots. Default: "springgreen4".
piBars Color of the prediction interval bars in stsNC plots. Default: "orange".

allExamples: Logical flag queried before running cumbersome computations
in help file examples. For interactive() sessions, this option defaults to
TRUE. Otherwise, long examples will only be run if the environment vari-
able _R_SURVEILLANCE_ALL_EXAMPLES_ is set (to any value different from
"") when attaching the surveillance package. This is to avoid long compu-
tations during (daily) CRAN checks.

Value

reset.surveillance.options reverts all options to their default values and (invisibly) returns
these in a list.

For surveillance.options, the following holds:

• If no arguments are given, the current values of all package options are returned in a list.

238 tidy.sts

• If one option name is given, the current value of this option is returned (not in a list, just the
value).

• If several option names are given, the current values of these options are returned in a list.

• If name=value pairs are given, the named options are set to the given values, and the previous
values of these options are returned in a list.

Examples

surveillance.options()

tidy.sts Convert an "sts" Object to a Data Frame in Long (Tidy) Format

Description

The resulting data frame will have a row for each time point and observational unit, and columns
corresponding to the slots of the "sts" object (except for populationFrac, which is named population).
Some time variables are added for convenience: year, epochInYear, epochInPeriod, date (the
latter gives NA dates if epoch(x, as.Date=TRUE) fails, i.e., for non-standard x@freq if not x@epochAsDate).

Usage

tidy.sts(x, ...)

Arguments

x an object of class "sts".

... unused.

Author(s)

Sebastian Meyer

See Also

as.data.frame.sts

Examples

data("momo")
momodat <- tidy.sts(momo)
head(momodat)

tidy.sts(stsObj) is the same as as.data.frame(stsObj, tidy = TRUE)
stopifnot(identical(as.data.frame(momo, tidy = TRUE), momodat))

toLatex.sts 239

toLatex.sts toLatex-Method for "sts" Objects

Description

Convert "sts" objects to a character vector with LaTeX markup.

Usage

S4 method for signature 'sts'
toLatex(object, caption = "",label=" ", columnLabels = NULL,

subset = NULL,
alarmPrefix = "\\textbf{\\textcolor{red}{",
alarmSuffix = "}}", ubColumnLabel = "UB", ...)

Arguments

object an "sts" object.

caption A caption for the table. Default is the empty string.

label A label for the table. Default is the empty string.

columnLabels A list of labels for each column of the resulting table. Default is NULL

subset A range of values which should be displayed. If Null, then all data in the sts
objects will be displayed. Else only a subset of data. Therefore range needs to
be a numerical vector of indexes from 1 to length(@observed).

alarmPrefix A latex compatible prefix string wrapped around a table cell iff there is an
alarm;i.e. alarm = TRUE

alarmSuffix A latex compatible suffix string wrapped around a table cell iff there is an
alarm;i.e. alarm[i,j] = TRUE

ubColumnLabel The label of the upper bound column; default is \"UB\".

... further arguments passed to print.xtable.

Value

An object of class "Latex".

Author(s)

Dirk Schumacher

240 twinSIR

Examples

Create a test object
data("salmonella.agona")

Create the corresponding sts object from the old disProg object
salm <- disProg2sts(salmonella.agona)

control <- list(range=(260:312),
noPeriods=1,populationOffset=FALSE,
fitFun="algo.farrington.fitGLM.flexible",
b=4,w=3,weightsThreshold=1,
pastWeeksNotIncluded=3,
pThresholdTrend=0.05,trend=TRUE,
thresholdMethod="delta",alpha=0.1)

salm <- farringtonFlexible(salm,control=control)

toLatex(salm, sanitize.text.function=identity, comment=FALSE)

twinSIR Fit an Additive-Multiplicative Intensity Model for SIR Data

Description

twinSIR is used to fit additive-multiplicative intensity models for epidemics as described in Höhle
(2009). Estimation is driven by (penalized) maximum likelihood in the point process frame work.
Optimization (maximization) of the (penalized) likelihood function is performed by means of optim.
The implementation is illustrated in Meyer et al. (2017, Section 4), see vignette("twinSIR").

Usage

twinSIR(formula, data, weights, subset,
knots = NULL, nIntervals = 1, lambda.smooth = 0, penalty = 1,
optim.args = list(), model = TRUE, keep.data = FALSE)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the intensity model to be estimated. The details of the model
specification are given below.

data an object inheriting from class "epidata".

weights an optional vector of weights to be used in the fitting process. Should be NULL
(the default, i.e. all observations have unit weight) or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process. The subset atRiskY == 1 is automatically chosen, because the likeli-
hood only depends on those observations.

twinSIR 241

knots numeric vector or NULL (the default). Specification of the knots, where we sup-
pose a step of the log-baseline. With the current implementation, these must be
existing "stop" time points in the selected subset of the data, which is always
restricted to atRiskY == 1 rows. The intervals of constant log-baseline hazard
rate then are (minTime; knots1], (knots1; knots2], . . . , (knotsK ;maxTime].
By default, the knots are automatically chosen at the quantiles of the infec-
tion time points such that nIntervals intervals result. Non-NULL knots take
precedence over nIntervals.

nIntervals the number of intervals of constant log-baseline hazard. Defaults to 1, which
means an overall constant log-baseline hazard will be fitted.

lambda.smooth numeric, the smoothing parameter λ. By default it is 0 which leads to unpenal-
ized likelihood inference. In case lambda.smooth=-1, the automatic smoothing
parameter selection based on a mixed model approach is used (cf. Höhle, 2009).

penalty either a single number denoting the order of the difference used to penalize the
log-baseline coefficients (defaults to 1), or a more specific penalty matrix K for
the parameter sub-vector β. In case of non-equidistant knots – usually the case
when using quantile based knot locations – only a 1st order differences penalty
matrix as in Fahrmeir and Lang (2001) is implemented.

optim.args a list with arguments passed to the optim function. Especially useful are the
following ones:

par: to specify initial parameter values. Those must be in the order c(alpha,
h0, beta), i.e. first the coefficients of the epidemic covariates in the same
order as they appear in the formula, then the log-baseline levels in chrono-
logical order and finally the coefficients of the endemic covariates in the
same order as they appear in the cox terms of the formula. The default is
to start with 1’s for alpha and 0’s for h0 and beta.

control: for more detailed trace-ing (default: 1), another REPORT-ing fre-
quency if trace is positive (default: 10), higher maxit (maximum number
of iterations, default: 300) or another factr value (default: 1e7, a lower
value means higher precision).

method: the optimization algorithm defaults to "L-BFGS-B" (for box-constrained
optimization), if there are any epidemic (non-cox) variables in the model,
and to "BFGS" otherwise.

lower: if method = "L-BFGS-B" this defines the lower bounds for the model
coefficients. By default, all effects α of epidemic variables are restricted to
be non-negative. Normally, this is exactly what one would like to have, but
there might be reasons for other lower bounds, see the Note below.

hessian: An estimation of the Expected Fisher Information matrix is always
part of the return value of the function. It might be interesting to see the
Observed Fisher Information (= negative Hessian at the maximum), too.
This will be additionally returned if hessian = TRUE.

model logical indicating if the model frame, the weights, lambda.smooth, the penalty
matrix K and the list of used distance functions f (from attributes(data))
should be returned for further computation. This defaults to TRUE as this infor-
mation is necessary e.g. in the profile and plot methods.

242 twinSIR

keep.data logical indicating if the "epidata" object (data) should be part of the return
value. This is only necessary for use of the simulate-method for "twinSIR"
objects. The reason is that the twinSIR function only uses and stores the rows
with atRiskY == 1 in the model component, but for the simulation of new epi-
demic data one needs the whole data set with all individuals in every time block.
The default value is FALSE, so if you intent to use simulate.twinSIR, you have
to set this to TRUE.

Details

A model is specified through the formula, which has the form

~ epidemicTerm1 + epidemicTerm2 + cox(endemicVar1) * cox(endemicVar2),

i.e. the right hand side has the usual form as in lm with some variables marked as being endemic
by the special function cox. The left hand side of the formula is empty and will be set internally to
cbind(start, stop, event), which is similar to Surv(start, stop, event, type="counting")
in package survival.
Basically, the additive-multiplicative model for the infection intensity λi(t) for individual i is

λi(t) = Yi(t) ∗ (ei(t) + hi(t))

where

Y_i(t) is the at-risk indicator, indicating if individual i is “at risk” of becoming infected at time
point t. This variable is part of the event history data.

e_i(t) is the epidemic component of the infection intensity, defined as

ei(t) =
∑
j∈I(t)

f(||si − sj ||)

where I(t) is the set of infectious individuals just before time point t, si is the coordinate
vector of individual i and the function f is defined as

f(u) =

p∑
m=1

αmBm(u)

with unknown transmission parameters α and known distance functions Bm. This set of
distance functions results in the set of epidemic variables normally calculated by the converter
function as.epidata, considering the equality

ei(t) =

p∑
m=1

αmxim(t)

with xim(t) =
∑
j∈I(t)Bm(||si − sj ||) being the m’th epidemic variable for individual i.

h_i(t) is the endemic (cox) component of the infection intensity, defined as

hi(t) = exp(h0(t) + zi(t)
′β)

where h0(t) is the log-baseline hazard function, zi(t) is the vector of endemic covariates of
individual i and β is the vector of unknown coefficients. To fit the model, the log-baseline haz-
ard function is approximated by a piecewise constant function with known knots, but unknown
levels, which will be estimated. The approximation is specified by the arguments knots or
nIntervals.

twinSIR 243

If a big number of knots (or nIntervals) is chosen, the corresponding log-baseline parameters
can be rendered identifiable by the use of penalized likelihood inference. At present, it is the job of
the user to choose an adequate value of the smoothing parameter lambda.smooth. Alternatively, a
data driven lambda.smooth smoothing parameter selection based on a mixed model representation
of an equivalent truncated power spline is offered (see reference for further details). The following
two steps are iterated until convergence:

1. Given fixed smoothing parameter, the penalized likelihood is optimized for the regression
components using a L-BFGS-B approach

2. Given fixed regression parameters, a Laplace approximation of the marginal likelihood for the
smoothing parameter is numerically optimized.

Depending on the data, convergence might take a couple of iterations.

Note also that it is unwise to include endemic covariates with huge values, as they affect the inten-
sities on the exponential scale (after multiplication by the parameter vector β). With large covariate
values, the optim method "L-BFGS-B" will likely terminate due to an infinite log-likelihood or
score function in some iteration.

Value

twinSIR returns an object of class "twinSIR", which is a list containing the following components:

coefficients a named vector of coefficients.

loglik the maximum of the (penalized) log-likelihood function.

counts the number of log-likelihood and score function evaluations.

converged logical indicating convergence of the optimization algorithm.
fisherinfo.observed

if requested, the negative Hessian from optim.

fisherinfo an estimation of the Expected Fisher Information matrix.

method the optimization algorithm used.

intervals a numeric vector (c(minTime, knots, maxTime)) representing the consecutive
intervals of constant log-baseline.

nEvents a numeric vector containing the number of infections in each of the above intervals.

model if requested, the model information used. This is a list with components "survs"
(data.frame with the id, start, stop and event columns), "X" (matrix of the epi-
demic variables), "Z" (matrix of the endemic variables), "weights" (the speci-
fied weights), "lambda.smooth" (the specified lambda.smooth), "K" (the penalty
matrix used), and "f" and "w" (the functions to generate the used epidemic co-
variates). Be aware that the model only contains those rows with atRiskY ==
1!

data if requested, the supplied "epidata" data.

call the matched call.

formula the specified formula.

terms the terms object used.

244 twinSIR

Note

There are some restrictions to modelling the infection intensity without a baseline hazard rate,
i.e. without an intercept in the formula. Reason: At some point, the optimization algorithm L-
BFGS-B tries to set all transmission parameters α to the boundary value 0 and to calculate the
(penalized) score function with this set of parameters (all 0). The problem then is that the values
of the infection intensities lambdai(t) are 0 for all i and t and especially at observed event times,
which is impossible. Without a baseline, it is not allowed to have all alpha’s set to 0, because then
we would not observe any infections. Unfortunately, L-BFGS-B can not consider this restriction.
Thus, if one wants to fit a model without baseline hazard, the control parameter lower must be
specified in optim.args so that some alpha is strictly positive, e.g. optim.args = list(lower =
c(0,0.001,0.001,0)) and the initial parameter vector par must not be the zero vector.

Author(s)

Michael Höhle and Sebastian Meyer

References

Höhle, M. (2009), Additive-multiplicative regression models for spatio-temporal epidemics, Bio-
metrical Journal, 51 (6), 961-978.

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

as.epidata for the necessary data input structure, plot.twinSIR for plotting the path of the infec-
tion intensity, profile.twinSIR for profile likelihood estimation. and simulate.twinSIR for the
simulation of epidemics following the fitted model.

Furthermore, the standard extraction methods vcov, logLik, AIC and extractAIC are implemented
for objects of class "twinSIR".

Examples

data("hagelloch")
summary(hagelloch)

simple model with an overall constant baseline hazard rate
fit1 <- twinSIR(~ household + cox(AGE), data = hagelloch)
fit1
summary(fit1) # see also help("summary.twinSIR")
plot(fit1) # see also help("plot.twinSIR")
checkResidualProcess(fit1) # could be better

fit a piecewise constant baseline hazard rate with 3 intervals using
_un_penalized ML and estimated coefs from fit1 as starting values
fit2 <- twinSIR(~ household, data = hagelloch, nIntervals = 3,

optim.args = list(par = coef(fit1)[c(1,2,2,2)]))
summary(fit2)

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

twinSIR_intensityplot 245

fit a piecewise constant baseline hazard rate with 7 intervals
using _penalized_ ML
fit3 <- twinSIR(~ household, data = hagelloch, nIntervals = 7,

lambda.smooth = 0.1, penalty = 1)
summary(fit3)
checkResidualProcess(fit3)

plot the estimated log-baseline levels
plot(x=fit2$intervals, y=coef(fit2)[c(2,2:4)], type="S", ylim=c(-6, -1))
lines(x=fit3$intervals, y=coef(fit3)[c(2,2:8)], type="S", col=2)
legend("right", legend=c("unpenalized 3", "penalized 7"), lty=1, col=1:2, bty="n")

special use case: fit the model to a subset of the events only,
while preserving epidemic contributions from the remainder
(maybe some buffer area nodes)
fit_subset <- twinSIR(~ household, data = hagelloch, subset = CL=="preschool")
summary(fit_subset)

twinSIR_intensityplot Plotting Paths of Infection Intensities for twinSIR Models

Description

intensityplot methods to plot the evolution of the total infection intensity, its epidemic proportion
or its endemic proportion over time. The default plot method for objects of class "twinSIR" is just
a wrapper for the intensityplot method. The implementation is illustrated in Meyer et al. (2017,
Section 4), see vignette("twinSIR").

Usage

S3 method for class 'twinSIR'
plot(x, which = c("epidemic proportion", "endemic proportion",

"total intensity"), ...)

S3 method for class 'twinSIR'
intensityplot(x, which = c("epidemic proportion", "endemic proportion",

"total intensity"), aggregate = TRUE, theta = NULL,
plot = TRUE, add = FALSE, rug.opts = list(), ...)

S3 method for class 'simEpidata'
intensityplot(x, which = c("epidemic proportion", "endemic proportion",

"total intensity"), aggregate = TRUE, theta = NULL,
plot = TRUE, add = FALSE, rug.opts = list(), ...)

246 twinSIR_intensityplot

Arguments

x an object of class "twinSIR" (fitted model) or "simEpidata" (simulated twinSIR
epidemic), respectively.

which "epidemic proportion", "endemic proportion", or "total intensity". Par-
tial matching is applied. Determines whether to plot the path of the total inten-
sity λ(t) or its epidemic or endemic proportions e(t)

λ(t) or h(t)λ(t) .

aggregate logical. Determines whether lines for all individual infection intensities should
be drawn (FALSE) or their sum only (TRUE, the default).

theta numeric vector of model coefficients. If x is of class "twinSIR", then theta =
c(alpha, beta), where beta consists of the coefficients of the piecewise con-
stant log-baseline function and the coefficients of the endemic (cox) predictor.
If x is of class "simEpidata", then theta = c(alpha, 1, betarest), where
1 refers to the (true) log-baseline used in the simulation and betarest is the
vector of the remaining coefficients of the endemic (cox) predictor. The default
(NULL) means that the fitted or true parameters, respectively, will be used.

plot logical indicating if a plot is desired, defaults to TRUE. Otherwise, only the data
of the plot will be returned. Especially with aggregate = FALSE and many indi-
viduals one might e.g. consider to plot a subset of the individual intensity paths
only or do some further calculations/analysis of the infection intensities.

add logical. If TRUE, paths are added to the current plot, using lines.

rug.opts either a list of arguments passed to the function rug, or NULL (or NA), in which
case no rug will be plotted. By default, the argument ticksize is set to 0.02
and quiet is set to TRUE. Note that the argument x of the rug() function, which
contains the locations for the rug is fixed internally and can not be modified.
The locations of the rug are the time points of infections.

... For the plot.twinSIR method, arguments passed to intensityplot.twinSIR.
For the intensityplot methods, further graphical parameters passed to the
function matplot, e.g. lty, lwd, col, xlab, ylab and main. Note that the
matplot arguments x, y, type and add are implicit and can not be specified
here.

Value

numeric matrix with the first column "stop" and as many rows as there are "stop" time points in
the event history x. The other columns depend on the argument aggregate: if TRUE, there is only
one other column named which, which contains the values of which at the respective "stop" time
points. Otherwise, if aggregate = FALSE, there is one column for each individual, each of them
containing the individual which at the respective "stop" time points.

Author(s)

Sebastian Meyer

References

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/

https://doi.org/10.18637/jss.v077.i11

twinSIR_methods 247

jss.v077.i11

See Also

twinSIR for a description of the intensity model, and simulate.twinSIR for the simulation of
epidemic data according to a twinSIR specification.

Examples

data("hagelloch")
plot(hagelloch)

a simplistic twinSIR model
fit <- twinSIR(~ household, data = hagelloch)

overall total intensity
plot(fit, which = "total")

overall epidemic proportion
epi <- plot(fit, which = "epidemic", ylim = c(0, 1))
head(epi)
add overall endemic proportion = 1 - epidemic proportion
ende <- plot(fit, which = "endemic", add = TRUE, col = 2)
legend("topleft", legend = "endemic proportion", lty = 1, col = 2, bty = "n")

individual intensities
tmp <- plot(fit, which = "total", aggregate = FALSE,

col = rgb(0, 0, 0, alpha = 0.1),
main = expression("Individual infection intensities " *

lambda[i](t) == Y[i](t) %.% (e[i](t) + h[i](t))))
return value: matrix of individual intensity paths
str(tmp)

plot intensity path only for individuals 3 and 99
matplot(x = tmp[,1], y = tmp[,1+c(3,99)], type = "S",

ylab = "Force of infection", xlab = "time",
main = expression("Paths of the infection intensities " *

lambda[3](t) * " and " * lambda[99](t)))
legend("topright", legend = paste("Individual", c(3,99)),

col = 1:2, lty = 1:2)

twinSIR_methods Print, Summary and Extraction Methods for "twinSIR" Objects

Description

Besides print and summary methods there are also some standard extraction methods defined for
objects of class "twinSIR": vcov, logLik and especially AIC and extractAIC, which extract
Akaike’s Information Criterion. Note that special care is needed, when fitting models with param-
eter constraints such as the epidemic effects α in twinSIR models. Parameter constraints reduce

https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

248 twinSIR_methods

the average increase in the maximized loglikelihood - thus the penalty for constrained parameters
should be smaller than the factor 2 used in the ordinary definition of AIC. To this end, these two
methods offer the calculation of the so-called one-sided AIC (OSAIC).

Usage

S3 method for class 'twinSIR'
print(x, digits = max(3, getOption("digits") - 3), ...)
S3 method for class 'twinSIR'
summary(object,

correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'twinSIR'
AIC(object, ..., k = 2, one.sided = NULL, nsim = 1e3)
S3 method for class 'twinSIR'
extractAIC(fit, scale = 0, k = 2, one.sided = NULL,

nsim = 1e3, ...)

S3 method for class 'twinSIR'
vcov(object, ...)
S3 method for class 'twinSIR'
logLik(object, ...)

S3 method for class 'summary.twinSIR'
print(x,

digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

x, object, fit an object of class "twinSIR".
For the print method of the summary method, an object of class "summary.twinSIR".

digits integer, used for number formatting with signif(). Minimum number of sig-
nificant digits to be printed in values.

correlation logical. if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

... For the summary method: arguments passed to extractAIC.twinSIR.
For the AIC method, optionally more fitted model objects.
For the print, extractAIC, vcov and logLik methods: unused (argument of
the generic).

k numeric specifying the "weight" of the penalty to be used; in an unconstrained
fit k = 2 is the classical AIC.

one.sided logical or NULL (the default). Determines if the one-sided AIC should be cal-
culated instead of using the classical penalty k*edf. The default value NULL
chooses classical AIC in the case of an unconstrained fit and one-sided AIC in

twinSIR_methods 249

the case of constraints. The type of the fit can be seen in object$method (or
fit$method respectively), where "L-BFGS" means constrained optimization.

nsim when there are more than two epidemic covariates in the fit, the weights in the
OSAIC formula have to be determined by simulation. Default is to use 1000
samples. Note that package quadprog is additionally required in this case.

scale unused (argument of the generic).

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

Details

The print and summary methods allow the compact or comprehensive representation of the fitting
results, respectively. The former only prints the original function call, the estimated coefficients
and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard
errors, z- and p-values (see printCoefmat), and additionally the number of infections per log-
baseline interval, the (one-sided) AIC and the number of log-likelihood evaluations. They both
append a big “WARNING”, if the optimization algorithm did not converge.

The estimated coefficients may be extracted by using the default coef-method from package stats.

The two AIC functions differ only in that AIC can take more than one fitted model object and that
extractAIC always returns the number of parameters in the model (AIC only does with more than
one fitted model object).

Concerning the choice of one-sided AIC: parameter constraints – such as the non-negative con-
straints for the epidemic effects alpha in twinSIR models – reduce the average increase in the
maximized loglikelihood. Thus, the penalty for constrained parameters should be smaller than the
factor 2 used in the ordinary definition of AIC. One-sided AIC (OSAIC) suggested by Hughes and
King (2003) is such a proposal when p out of k = p+ q parameters have non-negative constraints:

OSAIC = −2l(θ, τ) + 2

p∑
g=0

w(p, g)(k − p+ g)

where w(p, g) are p-specific weights. For more details see Section 5.2 in Höhle (2009).

Value

The print methods return their first argument, invisibly, as they always should. The vcov and
logLik methods return the estimated variance-covariance matrix of the parameters (here, the inverse
of the estimate of the expected Fisher information matrix), and the maximum log-likelihood value
of the model, respectively. The summary method returns a list containing some summary statistics
of the fitted model, which is nicely printed by the corresponding print method. For the AIC and
extractAIC methods, see the documentation of the corresponding generic functions.

Author(s)

Michael Höhle and Sebastian Meyer

250 twinSIR_profile

References

Hughes A, King M (2003) Model selection using AIC in the presence of one-sided information.
Journal of Statistical Planning and Inference 115, pp. 397–411.

Höhle, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Bio-
metrical Journal, 51(6):961-978.

Examples

data("hagelloch")

a simplistic twinSIR model
fit <- twinSIR(~ household + cox(AGE), data = hagelloch)

coef(fit)
vcov(fit)
logLik(fit)

summary(fit, correlation = TRUE, symbolic.cor = TRUE)

AIC or OSAIC
AIC(fit)
AIC(fit, one.sided = FALSE)
extractAIC(fit)
extractAIC(fit, one.sided = FALSE)

comparing models via AIC
fit2 <- update(fit, nIntervals = 2)
AIC(fit, fit2) # the 2nd column should be named "OSAIC" here

twinSIR_profile Profile Likelihood Computation and Confidence Intervals

Description

Function to compute estimated and profile likelihood based confidence intervals. Computations
might be cumbersome! There is a simple plot-method for the result.

Usage

S3 method for class 'twinSIR'
profile(fitted, profile, alpha = 0.05,

control = list(fnscale = -1, factr = 10, maxit = 100), ...)

Arguments

fitted an object of class "twinSIR".

profile a list with elements being numeric vectors of length 4. These vectors must have
the form c(index, lower, upper, gridsize).

twinSIR_simulation 251

index: index of the parameter to be profiled in the vector coef(fitted).
lower, upper: lower/upper limit of the grid on which the profile log-likelihood

is evaluated. Can also be NA in which case lower/upper equals the lower/upper
bound of the respective 0.3 % Wald confidence interval (+-3*se).

gridsize: grid size of the equally spaced grid between lower and upper. Can
also be 0 in which case the profile log-likelihood for this parameter is not
evaluated on a grid.

alpha (1 − α)100% profile likelihood based confidence intervals are computed. If
alpha <= 0, then no confidence intervals are computed.

control control object to use in optim for the profile log-likelihood computations.

... unused (argument of the generic).

Value

a list with profile log-likelihood evaluations on the grid and highest likelihood and Wald confidence
intervals. The argument profile is also returned. The result has class "profile.twinSIR", for
which a simple (undocumented) plot-method is available.

Author(s)

Michael Höhle and Sebastian Meyer

Examples

data("hagelloch")
fit <- twinSIR(~ household, data = hagelloch)
gridsize <- if (interactive()) 35 else 5 # for fast tests
prof <- profile(fit, list(c(1, NA, NA, gridsize)))
prof$ci.hl
plot(prof)

twinSIR_simulation Simulation of Epidemic Data

Description

This function simulates the infection (and removal) times of an epidemic. Besides the classical SIR
type of epidemic, also SI, SIRS and SIS epidemics are supported. Simulation works via the condi-
tional intensity of infection of an individual, given some (time varying) endemic covariates and/or
some distance functions (epidemic components) as well as the fixed positions of the individuals.
The lengths of the infectious and removed periods are generated following a pre-specified function
(can be deterministic).

The simulate method for objects of class "twinSIR" simulates new epidemic data using the model
and the parameter estimates of the fitted object.

252 twinSIR_simulation

Usage

simEpidata(formula, data, id.col, I0.col, coords.cols, subset,
beta, h0, f = list(), w = list(), alpha, infPeriod,
remPeriod = function(ids) rep(Inf, length(ids)),
end = Inf, trace = FALSE, .allocate = NULL)

S3 method for class 'twinSIR'
simulate(object, nsim = 1, seed = 1,

infPeriod = NULL, remPeriod = NULL,
end = diff(range(object$intervals)), trace = FALSE, .allocate = NULL,
data = object$data, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the intensity model to be estimated. The details of model
specification are given under Details.

data a data.frame containing the variables in formula and the variables specified by
id.col, I0.col and coords.col (see below). It represents the “history” of the
endemic covariates to use for the simulation. The form is similar to and can be
an object of class "epidata". The simulation period is split up into consecutive
intervals of constant endemic covariables. The data frame consists of a block of
N (number of individuals) rows for each of those time intervals (all rows in a
block share the same start and stop values... therefore the name “block”), where
there is one row per individual in the block. Each row describes the (fixed) state
of the endemic covariates of the individual during the time interval given by the
start and stop columns (specified through the lhs of formula).
For the simulate method of class "twinSIR" this should be the object of class
"epidata" used for the fit. This is a part of the return value of the function
twinSIR, if called with argument keep.data set to TRUE.

id.col only if data does not inherit from epidata: single index of the id column in
data. Can be numeric (by column number) or character (by column name).
The id column identifies the individuals in the data-frame. It will be converted
to a factor variable and its levels serve also to identify individuals as argument
to the infPeriod function.

I0.col only if data does not inherit from epidata: single index of the I0 column in
data. Can be numeric (by column number), character (by column name) or
NULL.
The I0 column indicates if an individual is initially infectious, i.e. it is already
infectious at the beginning of the first time block. Setting I0.col = NULL is short
for “there are no initially infectious individuals”. Otherwise, the variable must
be logical or in 0/1-coding. As this variable is constant over time the initially
infectious individuals are derived from the first time block only.

coords.cols only if data does not inherit from epidata: indexes of the coords columns in
data. Can be a numeric (by column number), a character (by column name)
vector or NULL.

twinSIR_simulation 253

These columns contain the coordinates of the individuals. It must be empha-
sized that the functions in this package currently assume fixed positions of the
individuals during the whole epidemic. Thus, an individual has the same coor-
dinates in every block. For simplicity, the coordinates are derived from the first
time block only. The epidemic covariates are calculated based on the Euclidean
distance between the individuals, see f.

subset an optional vector specifying a subset of the covariate history to be used in the
simulation.

beta numeric vector of length equal the number of endemic (cox) terms on the rhs
of formula. It contains the effects of the endemic predictor (excluding the log-
baseline h0, see below) in the same order as in the formula.

h0 either a single number to specify a constant baseline hazard (equal to exp(h0))
or a list of functions named exact and upper. In the latter case, h0$exact
is the true log-baseline hazard function and h0$upper is a piecewise constant
upper bound for h0$exact. The function h0$upper must inherit from stepfun
with right=FALSE. Theoretically, the intensity function is left-continuous, thus
right=TRUE would be adequate, but in the implementation, when we evaluate
the intensity at the knots (change points) of h0$upper we need its value for the
subsequent interval.

f, w see as.epidata.

alpha a named numeric vector of coefficients for the epidemic covariates generated by
f and w. The names are matched against names(f) and names(w). Remember
that alpha >= 0.

infPeriod a function generating lengths of infectious periods. It should take one parameter
(e.g. ids), which is a character vector of id’s of individuals, and return appropri-
ate infection periods for those individuals. Therefore, the value of the function
should be of length length(ids). For example, for independent and identi-
cally distributed infection periods following Exp(1), the generating function is
function(ids) rexp(length(ids), rate=1). For a constant infectious pe-
riod of length c, it is sufficient to set function (x) {c}.
For the simulate method of class "twinSIR" only, this can also be NULL (the
default), which means that the observed infectious periods of infected individ-
uals are re-used when simulating a new epidemic and individuals with missing
infectious periods (i.e. infection and recovery was not observed) are attributed
to the mean observed infectious period.
Note that it is even possible to simulate an SI-epidemic by setting
infPeriod = function (x) {Inf}

In other words: once an individual became infected it spreads the disease for-
ever, i.e. it will never be removed.

remPeriod a function generating lengths of removal periods. Per default, once an individual
was removed it will stay in this state forever (Inf). Therefore, it will not become
at-risk (S) again and re-infections are not possible. Alternatively, always return-
ing 0 as length of the removal period corresponds to a SIS epidemic. Any other
values correspond to SIRS. Note that end should be set to a finite value in these
cases.

254 twinSIR_simulation

end a single positive numeric value specifying the time point at which the simulation
should be forced to end. By default, this is Inf, i.e. the simulation continues
until there is no susceptible individual left.
For the simulate method of class "twinSIR" the default is to have equal simu-
lation and observation periods.

trace logical (or integer) indicating if (or how often) the sets of susceptible and in-
fected individuals as well as the rejection indicator (of the rejection sampling
step) should be cated. Defaults to FALSE.

.allocate number of blocks to initially allocate for the event history (i.e. .allocate*N
rows). By default (NULL), this number is set to max(500, ceiling(nBlocks/100)*100),
i.e. 500 but at least the number of blocks in data (rounded to the next multi-
ple of 100). Each time the simulated epidemic exceeds the allocated space, the
event history will be enlarged by .allocate blocks.

object an object of class "twinSIR". This must contain the original data used for the
fit (see data).

nsim number of epidemics to simulate. Defaults to 1.

seed an integer that will be used in the call to set.seed before simulating the epi-
demics.

... unused (argument of the generic).

Details

A model is specified through the formula, which has the form

cbind(start, stop) ~ cox(endemicVar1) * cox(endemicVar2),

i.e. the right hand side has the usual form as in lm, but all variables are marked as being endemic
by the special function cox. The effects of those predictor terms are specified by beta. The left
hand side of the formula denotes the start and stop columns in data. This can be omitted, if data
inherits from class "epidata" in which case cbind(start, stop) will be used. The epidemic
model component is specified by the arguments f and w (and the associated coefficients alpha).

If the epidemic model component is empty and infPeriod always returns Inf, then one actually
simulates from a pure Cox model.

The simulation algorithm used is Ogata’s modified thinning. For details, see Höhle (2009), Section
4.

Value

An object of class "simEpidata", which is a data.frame with the columns "id", "start", "stop",
"atRiskY", "event", "Revent" and the coordinate columns (with the original names from data),
which are all obligatory. These columns are followed by all the variables appearing on the rhs of
the formula. Last but not least, the generated columns with epidemic covariates corresponding to
the functions in the lists f and w are appended.

Note that objects of class "simEpidata" also inherit from class "epidata", thus all "epidata"
methods can be applied.

The data.frame is given the additional attributes

"eventTimes" numeric vector of infection time points (sorted chronologically).

twinSIR_simulation 255

"timeRange" numeric vector of length 2: c(min(start), max(stop)).

"coords.cols" numeric vector containing the column indices of the coordinate columns in the
resulting data-frame.

"f" this equals the argument f.

"w" this equals the argument w.

"config" a list with elements h0 = h0$exact, beta and alpha.

call the matched call.

terms the terms object used.

If nsim > 1 epidemics are simulated by the simulate-method for fitted "twinSIR" models, these
are returned in a list.

Author(s)

Sebastian Meyer and Michael Höhle

References

Höhle, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Bio-
metrical Journal, 51(6):961-978.

See Also

The plot.epidata and animate.epidata methods for plotting and animating (simulated) epi-
demic data, respectively. The intensityplot.simEpidata method for plotting paths of infection
intensities.

Function twinSIR for fitting spatio-temporal epidemic intensity models to epidemic data.

Examples

Generate a data frame containing a hypothetic population with 100 individuals
set.seed(1234)
n <- 100
pos <- matrix(rnorm(n*2), ncol=2, dimnames=list(NULL, c("x", "y")))
pop <- data.frame(id=1:n, x=pos[,1], y=pos[,2],

gender=sample(0:1, n, replace=TRUE),
I0col=c(rep(1,3),rep(0,n-3)), # 3 initially infectious
start=rep(0,n), stop=rep(Inf,n))

Simulate an SIR epidemic in this population
set.seed(123)
infPeriods <- setNames(c(1:3/10, rexp(n-3, rate=1)), 1:n)
epi <- simEpidata(

cbind(start,stop) ~ cox(gender), data = pop,
id.col = "id", I0.col = "I0col", coords.cols = c("x","y"),
beta = c(-2), h0 = -1, alpha = c(B1=0.1), f = list(B1=function(u) u<=1),
infPeriod = function(ids) infPeriods[ids],
##remPeriod = function(ids) rexp(length(ids), rate=0.1), end = 30 # -> SIRS

)

256 twinstim

extract event times by id
head(summary(epi)$byID)

Plot the numbers of susceptible, infectious and removed individuals
plot(epi)

load the 1861 Hagelloch measles epidemic
data("hagelloch")
summary(hagelloch)
plot(hagelloch)

fit a simplistic twinSIR model
fit <- twinSIR(~ household, data = hagelloch)

simulate a new epidemic from the above model
with simulation period = observation period, re-using observed infPeriods
sim1 <- simulate(fit, data = hagelloch)
plot(sim1)

check if we find similar parameters in the simulated epidemic
fitsim1 <- update(fit, data = sim1)
cbind(base = coef(fit), new = coef(fitsim1))

if (surveillance.options("allExamples")) {

simulate only 10 days, using random infPeriods ~ Exp(0.1)
sim2 <- simulate(fit, data = hagelloch, seed = 2, end = 10,

infPeriod = function(ids) rexp(length(ids), rate = 0.1))
plot(sim2)

simulate from a different model with manually specified parameters
set.seed(321)
simepi <- simEpidata(~ cox(AGE), data = hagelloch,

beta = c(0.1), h0 = -4, alpha = c(household = 0.05),
f = list(household = function(u) u == 0),
infPeriod = function(ids) rexp(length(ids), rate=1/8))

plot(simepi)
intensityplot(simepi)

see if we correctly estimate the parameters
fitsimepi <- twinSIR(~ cox(AGE) + household, data = simepi)
cbind(true = c(0.05, -4, 0.1), est = coef(fitsimepi), confint(fitsimepi))

}

twinstim Fit a Two-Component Spatio-Temporal Point Process Model

twinstim 257

Description

A twinstim model as described in Meyer et al. (2012) is fitted to marked spatio-temporal point
process data. This constitutes a regression approach for conditional intensity function modelling.
The implementation is illustrated in Meyer et al. (2017, Section 3), see vignette("twinstim").

Usage

twinstim(endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data,
subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1),
na.action = na.fail, start = NULL, partial = FALSE,
epilink = "log", control.siaf = list(F = list(), Deriv = list()),
optim.args = list(), finetune = FALSE,
model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(),
cores = 1, verbose = TRUE)

Arguments

endemic right-hand side formula for the exponential (Cox-like multiplicative) endemic
component. May contain offsets (to be marked by the special function offset).
If omitted or ~0 there will be no endemic component in the model. A type-
specific endemic intercept can be requested by including the term (1|type) in
the formula.

epidemic formula representing the epidemic model for the event-specific covariates (marks)
determining infectivity. Offsets are not implemented here. If omitted or ~0 there
will be no epidemic component in the model.

siaf spatial interaction function. Possible specifications are:

• NULL or missing, corresponding to siaf.constant(), i.e. spatially homo-
geneous infectivity independent of the distance from the host

• a list as returned by siaf or, more commonly, generated by a predefined
interaction function such as siaf.gaussian as in Meyer et al. (2012) or
siaf.powerlaw as in Meyer and Held (2014). The latter requires unique
event locations, possibly after random tie-breaking (untie) or imputation
of interval-censored locations. siaf.exponential is a simpler alternative.

• a numeric vector corresponding to the knots of a step function, i.e. the same
as siaf.step(knots)

If you run into “false convergence” with a non-constant siaf specification, the
numerical accuracy of the cubature methods is most likely too low (see the
control.siaf argument).

tiaf temporal interaction function. Possible specifications are:

• NULL or missing, corresponding to tiaf.constant(), i.e. time-constant
infectivity

• a list as returned by tiaf or by a predefined interaction function such as
tiaf.exponential

• a numeric vector corresponding to the knots of a step function, i.e. the same
as tiaf.step(knots)

258 twinstim

qmatrix square indicator matrix (0/1 or FALSE/TRUE) for possible transmission between
the event types. The matrix will be internally converted to logical. Defaults to
the Q matrix specified in data.

data an object of class "epidataCS".
subset an optional vector evaluating to logical indicating a subset of data$events to

keep. Missing values are taken as FALSE. The expression is evaluated in the con-
text of the data$events@data data.frame, i.e. columns of this data.frame
may be referenced directly by name.

t0, T events having occurred during (-Inf;t0] are regarded as part of the prehistory H0

of the process. Only events that occurred in the interval (t0; T] are considered in
the likelihood. The time point t0 (T) must be an element of data$stgrid$start
(data$stgrid$stop). The default time range covers the whole spatio-temporal
grid of endemic covariates.

na.action how to deal with missing values in data$events? Do not use na.pass. Missing
values in the spatio-temporal grid data$stgrid are not accepted.

start a named vector of initial values for (a subset of) the parameters. The names must
conform to the conventions of twinstim to be assigned to the correct model
terms. For instance, "h.(Intercept)" = endemic intercept, "h.I(start/365)"
= coefficient of a linear time trend in the endemic component, "h.factorB" =
coefficient of the level B of the factor variable factor in the endemic predictor,
"e.(Intercept)" = epidemic intercept, "e.VAR" = coefficient of the epidemic
term VAR, "e.siaf.2" = second siaf parameter, "e.tiaf.1" = first tiaf pa-
rameter. Elements which don’t match any of the model parameters are ignored.
Alternatively, start may also be a named list with elements "endemic" or "h",
"epidemic" or "e", "siaf" or "e.siaf", and "tiaf" or "e.tiaf", each of
which containing a named numeric vector with the term labels as names (i.e.
without the prefix "h.", "e.", etc). Thus, start=list(endemic=c("(Intercept)"=-10))
is equivalent to start=c("h.(Intercept)"=-10).

partial logical indicating if a partial likelihood similar to the approach by Diggle et
al. (2010) should be used (default is FALSE). Note that the partial likelihood
implementation is not well tested.

epilink a character string determining the link function to be used for the epidemic lin-
ear predictor of event marks. By default, the log-link is used. The experimental
alternative epilink = "identity" (for use by epitest) does not guarantee the
force of infection to be positive. If this leads to a negative total intensity (en-
demic + epidemic), the point process is not well defined (the log-likelihood will
be NaN).

control.siaf a list with elements "F" and "Deriv", which are lists of extra arguments passed
to the functions siaf$F and siaf$Deriv, respectively.
These arguments control the accuracy of the cubature routines from package
polyCub involved in non-constant siaf specifications, e.g., the bandwidth of
the midpoint rule polyCub.midpoint, the number of Gaussian quadrature points
for polyCub.SV, or the relative tolerance of integrate in polyCub.iso.
For instance, siaf.gaussian(F.adaptive = TRUE) uses the midpoint-cubature
polyCub.midpoint with an adaptive bandwidth of eps=adapt*sd to numeri-
cally integrate the kernel f(s), and the default adapt value (0.1) can be overwrit-
ten by setting control.siafFadapt. However, the default version siaf.gaussian()

twinstim 259

as well as siaf.powerlaw() and friends use polyCub.iso and thus accept
control arguments for the standard integrate routine (such as rel.tol) via
control.siaf$F and control.siaf$Deriv.
This argument list is ignored in the case siaf=siaf.constant() (which is the
default if siaf is unspecified).

optim.args an argument list passed to optim, or NULL, in which case no optimization will be
performed but the necessary functions will be returned in a list (similar to what
is returned if model = TRUE).
Initial values for the parameters may be given as list element par in the order
(endemic, epidemic, siaf, tiaf). If no initial values are provided, crude
estimates will be used for the endemic intercept and the Gaussian kernel, -9 for
the epidemic intercept, and zeroes for the remaining parameters. Any initial
values given in the start argument take precedence over those in par.
Note that optim receives the negative log-likelihood for minimization (thus, if
used, optim.args$control$fnscale should be positive). The hessian ar-
gument defaults to TRUE, and in the control list, traceing is enabled with
REPORT=1 by default. By setting optim.args$control$trace = 0, all output
from the optimization routine is suppressed.
For the partial likelihood, the analytic score function and the Fisher informa-
tion are not implemented and the default is to use robust method="Nelder-Mead"
optimization.
There may be an extra component fixed in the optim.args list, which deter-
mines which parameters should stick to their initial values. This can be specified
by a logical vector of the same length as the par component, by an integer vector
indexing par or by a character vector following the twinstim naming conven-
tions. Furthermore, if isTRUE(fixed), then all parameters are fixed at their
initial values and no optimization is performed.
Importantly, the method argument in the optim.args list may also be "nlminb",
in which case the nlminb optimizer is used. This is also the default for full like-
lihood inference. In this case, not only the score function but also the expected
Fisher information can be used during optimization (as estimated by what Mar-
tinussen and Scheike (2006, p. 64) call the “optional variation process”, or see
Rathbun (1996, equation (4.7))). In our experience this gives better conver-
gence than optim’s methods. For method="nlminb", the following parameters
of the optim.args$control list may be named like for optim and are renamed
appropriately: maxit (-> iter.max), REPORT (-> trace, default: 1), abstol
(-> abs.tol), and reltol (-> rel.tol, default: 1e-6). For nlminb, a logical
hessian argument (default: TRUE) indicates if the negative expected Fisher in-
formation matrix should be used as the Hessian during optimization (otherwise
a numerical approximation is used).
Similarly, method="nlm" should also work but is not recommended here.

finetune logical indicating if a second maximisation should be performed with robust
Nelder-Mead optim using the resulting parameters from the first maximisation
as starting point. This argument is only considered if partial = FALSE and the
default is to not conduct a second maximization (in most cases this does not
improve upon the MLE).

model logical indicating if the model environment should be kept with the result, which

260 twinstim

is required for intensityplots and R0(..., trimmed = FALSE). Specifically,
if model=TRUE, the return value will have the evaluation environment set as
its environment, and the returned functions element will contain the log-
likelihood function (or partial log-likelihood function, if partial = TRUE), and
optionally the score and the expected Fisher information functions (not for the
partial likelihood, and only if siaf and tiaf provide the necessary derivatives).
Note that fitted objects with a model environment might consume quite a lot of
memory since they contain the data.

cumCIF logical (default: FALSE) indicating whether to calculate the fitted cumulative
ground intensity at event times. This is the residual process, see residuals.twinstim.

cumCIF.pb logical indicating if a progress bar should be shown during the calculation of
cumCIF. Defaults to do so in an interactive R session, and will be FALSE if cores
!= 1.

cores number of processes to use in parallel operation. By default twinstim runs in
single-CPU mode. Currently, only the multicore-type of parallel computing
via forking is supported, which is not available on Windows, see mclapply in
package parallel. Note that for a memoised siaf.step kernel, cores=1 is fixed
internally since parallelization would slow down model fitting significantly.

verbose logical indicating if information should be printed during execution. Defaults to
TRUE.

Details

The function performs maximum likelihood inference for the additive-multiplicative spatio-temporal
intensity model described in Meyer et al. (2012). It uses nlminb as the default optimizer and re-
turns an object of class "twinstim". Such objects have print, plot and summary methods. The
summary output can be converted via corresponding xtable or toLatex methods. Furthermore, the
usual accessor methods are implemented, including coef, vcov, logLik, residuals, and update.
Additional functionality is provided by the R0 and simulate methods.

Value

Returns an S3 object of class "twinstim", which is a list with the following components:

coefficients vector containing the MLE.

loglik value of the log-likelihood function at the MLE with a logical attribute "partial"
indicating if the partial likelihood was used.

counts number of log-likelihood and score evaluations during optimization.

converged either TRUE (if the optimizer converged) or a character string containing a failure
message.

fisherinfo expected Fisher information evaluated at the MLE. Only non-NULL for full likeli-
hood inference (partial = FALSE) and if spatial and temporal interaction func-
tions are provided with their derivatives.

fisherinfo.observed

observed Fisher information matrix evaluated at the value of the MLE. Obtained
as the negative Hessian. Only non-NULL if optim.args$method is not "nlminb"
and if it was requested by setting hessian=TRUE in optim.args.

twinstim 261

fitted fitted values of the conditional intensity function at the events.
fittedComponents

two-column matrix with columns "h" and "e" containing the fitted values of the
endemic and epidemic components, respectively.
(Note that rowSums(fittedComponents) == fitted.)

tau fitted cumulative ground intensities at the event times. Only non-NULL if cumCIF
= TRUE. This is the “residual process” of the model, see residuals.twinstim.

R0 estimated basic reproduction number for each event. This equals the spatio-
temporal integral of the epidemic intensity over the observation domain (t0;T] x
W for each event.

npars vector describing the lengths of the 5 parameter subvectors: endemic intercept(s)
β0(κ), endemic coefficients β, epidemic coefficients γ, parameters of the siaf
kernel, and parameters of the tiaf kernel.

qmatrix the qmatrix associated with the epidemic data as supplied in the model call.

bbox the bounding box of data$W.

timeRange the time range used for fitting: c(t0,T).

formula a list containing the four main parts of the model specification: endemic, epidemic,
siaf, and tiaf.

xlevels a record of the levels of the factors used in fitting.

control.siaf see the “Arguments” section above.

optim.args input optimizer arguments used to determine the MLE.

functions if model=TRUE this is a list with components ll, sc and fi, which are func-
tions evaluating the log-likelihood, the score function and the expected Fisher
information for a parameter vector θ. The environment of these function is
the model environment, which is thus retained in the workspace if model=TRUE.
Otherwise, the functions component is NULL.

call the matched call.

runtime the proc.time-queried time taken to fit the model, i.e., a named numeric vector
of length 5 of class "proc_time", with the number of cores set as additional
attribute.

If model=TRUE, the model evaluation environment is assigned to this list and can thus be queried by
calling environment() on the result.

Note

twinstim makes use of the memoise package if it is available – and that is highly recommended
for non-constant siaf specifications to speed up calculations. Specifically, the necessary numerical
integrations of the spatial interaction function will be cached such that they are only calculated once
for every state of the siaf parameters during optimization.

Author(s)

Sebastian Meyer

Contributions to this documentation by Michael Höhle and Mayeul Kauffmann.

262 twinstim

References

Diggle, P. J., Kaimi, I. & Abellana, R. (2010): Partial-likelihood analysis of spatio-temporal point-
process data. Biometrics, 66, 347-354.

Martinussen, T. and Scheike, T. H. (2006): Dynamic Regression Models for Survival Data. Springer.

Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes.
Master’s Thesis, Ludwig-Maximilians-Universität München.
Available as https://epub.ub.uni-muenchen.de/11703/

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

Rathbun, S. L. (1996): Asymptotic properties of the maximum likelihood estimator for spatio-
temporal point processes. Journal of Statistical Planning and Inference, 51, 55-74.

See Also

vignette("twinstim").

There is a simulate.twinstim method, which simulates the point process based on the fitted
twinstim.

A discrete-space alternative is offered by the twinSIR modelling framework.

Examples

Load invasive meningococcal disease data
data("imdepi")

first, fit a simple endemic-only model

m_noepi <- twinstim(
endemic = addSeason2formula(~ offset(log(popdensity)) + I(start/365-3.5),

S=1, period=365, timevar="start"),
data = imdepi, subset = !is.na(agegrp)

)

look at the model summary
summary(m_noepi)

there is no evidence for a type-dependent endemic intercept (LR test)
m_noepi_type <- update(m_noepi, endemic = ~(1|type) + .)
pchisq(2*c(logLik(m_noepi_type)-logLik(m_noepi)), df=1, lower.tail=FALSE)

add an epidemic component with just the intercept, i.e.
assuming uniform dispersal in time and space up to a distance of

https://epub.ub.uni-muenchen.de/11703/
https://doi.org/10.1111/j.1541-0420.2011.01684.x
https://doi.org/10.1214/14-AOAS743
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

twinstim 263

eps.s = 200 km and eps.t = 30 days (see summary(imdepi))

m0 <- update(m_noepi, epidemic=~1, model=TRUE)

summarize the model fit
summary(m0, correlation = TRUE, symbolic.cor = TRUE)

the default confint-method can be used for Wald-CI's
confint(m0, level=0.95)

same "untrimmed" R0 for every event (simple epidemic intercept model)
summary(R0(m0, trimmed=FALSE))

plot the path of the fitted total intensity
plot(m0, "total intensity", tgrid=500)

if (surveillance.options("allExamples")) {
extract "residual process" integrating over space (takes some seconds)
res <- residuals(m0)
if the model describes the true CIF well _in the temporal dimension_,
then this residual process should behave like a stationary Poisson
process with intensity 1
plot(res, type="l"); abline(h=c(0, length(res)), lty=2)
easier, with CI and serial correlation:
checkResidualProcess(m0)
}

Not run:
NB: in contrast to nlminb(), optim's BFGS would miss the
likelihood maximum wrt the epidemic intercept
m0_BFGS <- update(m_noepi, epidemic=~1, optim.args = list(method="BFGS"))
format(cbind(nlminb=coef(m0), BFGS=coef(m0_BFGS)), digits=3, scientific=FALSE)
m0_BFGS$fisherinfo # singular Fisher information matrix here
m0$fisherinfo
logLik(m0_BFGS)
logLik(m0)
nlminb is more powerful since we make use of the analytical fisherinfo
as estimated by the model during optimization, which optim cannot

End(Not run)

an epidemic-only model?
for a purely epidemic model, all events must have potential source events
(otherwise the intensity at the observed event would be 0)

let's focus on the C-type for this example
imdepiC <- subset(imdepi, type == "C")
table(summary(imdepiC)$nSources)
106 events have no prior, close events (in terms of eps.s and eps.t)
try(twinstim(epidemic = ~1, data = imdepiC)) # detects this problem
let's assume spatially unbounded interaction
imdepiC_infeps <- update(imdepiC, eps.s = Inf)

264 twinstim_epitest

(s <- summary(imdepiC_infeps))
table(s$nSources)
for 11 events, there is no prior event within eps.t = 30 days
(which is certainly true for the first event)
plot(s$counter, main = "Number of infectious individuals over time (eps.t = 30)")
rug(imdepiC_infeps$events$time)
rug(imdepiC_infeps$events$time[s$nSources == 0], col = 2, lwd = 3)
An endemic component would catch such events (from unobserved sources),
otherwise a longer infectious period would need to be assumed and
for the first event to happen, a prehistory is required (e.g., t0 = 31).
As an example, we fit the data only until T = 638 (all events have ancestors)
m_epi <- twinstim(epidemic = ~1, data = imdepiC_infeps, t0 = 31, T = 638)
summary(m_epi)

if (surveillance.options("allExamples")) withAutoprint({

full model with interaction functions (time-consuming)
estimate an exponential temporal decay of infectivity
m1_tiaf <- update(m0, tiaf=tiaf.exponential())
plot(m1_tiaf, "tiaf", scaled=FALSE)

estimate a step function for spatial interaction
summary(sourceDists <- getSourceDists(imdepi, "space"))
(knots <- quantile(sourceDists, c(5,10,20,40)/100))
m1_fstep <- update(m0, siaf=knots)
plot(m1_fstep, "siaf", scaled=FALSE)
rug(sourceDists, ticksize=0.02)

estimate a continuously decreasing spatial interaction function,
here we use the kernel of an isotropic bivariate Gaussian
m1 <- update(m0, siaf = siaf.gaussian())
AIC(m_noepi, m0, m1_fstep, m1)
summary(m1) # e.siaf.1 is log(sigma), no test for H0: log(sigma) = 0
exp(confint(m1, "e.siaf.1")) # a confidence interval for sigma
plot(m1, "siaf", scaled=FALSE)
alternative: siaf.powerlaw() with eps.s=Inf and untie()d data,
see vignette("twinstim")

add epidemic covariates
m2 <- update(m1, epidemic = ~ 1 + type + agegrp)
AIC(m1, m2) # further improvement
summary(m2)

look at estimated R0 values by event type
tapply(R0(m2), imdepi$events@data[names(R0(m2)), "type"], summary)

})

twinstim_epitest Permutation Test for Space-Time Interaction in "twinstim"

twinstim_epitest 265

Description

The function epitest takes a "twinstim" model and tests if the spatio-temporal interaction in-
voked by the epidemic model component is statistically significant. The test only works for simple
epidemic models, where epidemic = ~1 (no additional parameters for event-specific infectivity),
and requires the non-canonical epilink="identity" (see twinstim). A permutation test is per-
formed by default, which is only valid if the endemic intensity is space-time separable. The ap-
proach is described in detail in Meyer et al. (2016), where it is also compared to alternative global
tests for clustering such as the knox test.

Usage

epitest(model, data, tiles, method = "time", B = 199,
eps.s = NULL, eps.t = NULL, fixed = NULL,
verbose = TRUE, compress = FALSE, ...)

S3 method for class 'epitest'
coef(object, which = c("m1", "m0"), ...)
S3 method for class 'epitest'
plot(x, teststat = c("simpleR0", "D"), ...)

Arguments

model a simple epidemic "twinstim" with epidemic = ~1, fitted using the non-canonical
epilink="identity". Note that the permutation test is only valid for models
with a space-time separable endemic intensity, where covariates vary either in
space or time but not both.

data an object of class "epidataCS", the data to which the model was fitted.

tiles (only used by method = "simulate") a "SpatialPolygons" representation of
the tiles in data$stgrid.

method one of the following character strings specifying the test method:

"LRT": a simple likelihood ratio test of the epidemic model against the corre-
sponding endemic-only model,

"time"/"space": a Monte Carlo permutation test where the null distribution is
obtained by relabeling time points or locations, respectively (using permute.epidataCS).

"simulate": obtain the null distribution of the test statistic by simulations from
the endemic-only model (using simEndemicEvents).

B the number of permutations for the Monte Carlo approach. The default number
is rather low; if computationally feasible, B = 999 is more appropriate. Note that
this determines the “resolution” of the p-value: the smallest attainable p-value
is 1/(B+1).

eps.s, eps.t arguments for simpleR0.

fixed optional character vector naming parameters to fix at their original value when
re-fitting the model on permuted data. The special value fixed = TRUE means to
fix all epidemic parameters but the intercept.

266 twinstim_epitest

verbose the amount of tracing in the range 0:3. Set to 0 (or FALSE) for no output, 1 (or
TRUE, the default) for a progress bar, 2 for the test statistics resulting from each
permutation, and to 3 for additional tracing of the log-likelihood maximization
in each permutation (not useful if parallelized). Tracing does not work if per-
mutations are parallelized using clusters. See plapply for other choices.

compress logical indicating if the nobs-dependent elements "fitted", "fittedComponents",
and "R0" should be dropped from the permutation-based model fits. Not keep-
ing these elements saves a lot of memory especially with a large number of
events. Note, however, that the returned permfits then no longer are fully valid
"twinstim" objects (but most methods will still work).

... further arguments for plapply to configure parallel operation, i.e., .parallel
as well as .seed to make the results reproducible.
For the plot-method, further arguments passed to truehist.
Ignored by the coef-method.

object, x an object of class "epitest" as returned by epitest.

which a character string indicating either the full ("m1", default) or the endemic-only
("m0") model.

teststat a character string determining the test statistic to plot, either "simpleR0" or "D"
(twice the log-likelihood difference of the models).

Details

This space-time interaction test is limited to models with epidemic = ~1, since covariate effects are
not identifiable under the null hypothesis of no space-time interaction. Estimating a rich epidemic
model based on permuted data will most likely result in singular convergence. A similar issue might
arise when the model employs parametric interaction functions, in which case fixed=TRUE can be
used. For further details see Meyer et al. (2016).

The test statistic is the reproduction number simpleR0. A likelihood ratio test of the supplied
epidemic model against the corresponding endemic-only model is also available. By default, the
null distribution of the test statistic under no space-time interaction is obtained by a Monte Carlo
permutation approach (via permute.epidataCS) and therefore relies on a space-time separable
endemic model component.

The plot-method shows a truehist of the simulated null distribution together with the observed
value. The coef-method extracts the parameter estimates from the B permfits (by default for the
full model which = "m1").

Value

a list (inheriting from "htest") with the following components:

method a character string indicating the type of test performed.

data.name a character string giving the supplied data and model arguments.

statistic the observed test statistic.

parameter the (effective) number of permutations used to calculate the p-value (only those
with convergent fits are used).

twinstim_epitest 267

p.value the p-value for the test. For the methods involving resampling under the null
(method != "LRT"), it is based on the subset of convergent fits only and the p-
value from the simple LRT is attached as an attribute "LRT".

In addition, if method != "LRT", the result will have the following elements:

permfits the list of model fits (endemic-only and epidemic) from the B permutations.

permstats a data frame with B rows and the columns "l0" (log-likelihood of the endemic-
only model m0), "l1" (log-likelihood of the epidemic model m1), "D" (twice
their difference), "simpleR0" (the results of simpleR0(m1, eps.s, eps.t)),
and "converged" (a boolean indicator if both models converged).

The plot-method invisibly returns NULL. The coef-method returns the B x length(coef(model))
matrix of parameter estimates.

Author(s)

Sebastian Meyer

References

Meyer, S., Warnke, I., Rössler, W. and Held, L. (2016): Model-based testing for space-time inter-
action using point processes: An application to psychiatric hospital admissions in an urban area.
Spatial and Spatio-temporal Epidemiology, 17, 15-25. doi:10.1016/j.sste.2016.03.002. Eprint:
https://arxiv.org/abs/1512.09052.

See Also

permute.epidataCS, knox

Examples

data("imdepi", "imdepifit")

test for space-time interaction of the B-cases
assuming spatial interaction to be constant within 50 km
imdepiB50 <- update(subset(imdepi, type == "B"), eps.s = 50)
imdfitB50 <- update(imdepifit, data = imdepiB50, subset = NULL,

epidemic = ~1, epilink = "identity", siaf = NULL,
start = c("e.(Intercept)" = 0))

simple likelihood ratio test
epitest(imdfitB50, imdepiB50, method = "LRT")

permutation test
et <- epitest(imdfitB50, imdepiB50,

B = 5, # CAVE: limited here for speed
verbose = 2, # (tracing does not work on Windows
.seed = 1, .parallel = 1) # if parallelized)

et
plot(et)

https://doi.org/10.1016/j.sste.2016.03.002
https://arxiv.org/abs/1512.09052

268 twinstim_iaf

summary of parameter estimates under permutation
summary(coef(et, which = "m1"))

twinstim_iaf Temporal and Spatial Interaction Functions for twinstim

Description

A twinstim model as described in Meyer et al. (2012) requires the specification of the spatial and
temporal interaction functions (f and g, respectively), i.e. how infectivity decays with increasing
spatial and temporal distance from the source of infection. Own such functions can be specified (see
siaf and tiaf, respectively), but the package already predefines some common dispersal kernels
returned by the constructor functions documented here. See Meyer and Held (2014) for various spa-
tial interaction functions, and Meyer et al. (2017, Section 3, available as vignette("twinstim"))
for an illustration of the implementation.

Usage

predefined spatial interaction functions
siaf.constant()
siaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL)
siaf.gaussian(nTypes = 1, logsd = TRUE, density = FALSE,

F.adaptive = FALSE, F.method = "iso",
effRangeMult = 6, validpars = NULL)

siaf.exponential(nTypes = 1, validpars = NULL, engine = "C")
siaf.powerlaw(nTypes = 1, validpars = NULL, engine = "C")
siaf.powerlaw1(nTypes = 1, validpars = NULL, sigma = 1)
siaf.powerlawL(nTypes = 1, validpars = NULL, engine = "C")
siaf.student(nTypes = 1, validpars = NULL, engine = "C")

predefined temporal interaction functions
tiaf.constant()
tiaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL)
tiaf.exponential(nTypes = 1, validpars = NULL)

Arguments

knots numeric vector of distances at which the step function switches to a new height.
The length of this vector determines the number of parameters to estimate. For
identifiability, the step function has height 1 in the first interval [0, knots1).
Note that the implementation is right-continuous, i.e., intervals are [a, b).
An initial choice of knots could be based on quantiles of the observed distances
between events and their potential source events. For instance, an identifiable
spatial step function could be siaf.step(quantile(getSourceDists(myepi,
"space"), c(1,2,4)/10)), where myepi is the "epidataCS" data to be mod-
elled.

twinstim_iaf 269

maxRange a scalar larger than any of knots. Per default (maxRange=Inf), the step function
never drops to 0 but keeps the last height for any distance larger than the last
knot. However, this might not work in some cases, where the last parameter
value would become very small and lead to numerical problems. It is then pos-
sible to truncate interaction at a distance maxRange (just like what the variables
eps.s and eps.t do in the "epidataCS" object).

nTypes determines the number of parameters ((log-)scales or (log-)shapes) of the ker-
nels. In a multitype epidemic, the different types may share the same spatial
interaction function, in which case nTypes=1. Otherwise nTypes should equal
the number of event types of the epidemic, in which case every type has its own
(log-)scale or (log-)shape, respectively.
Currently, nTypes > 1 is only implemented for siaf.gaussian(F.adaptive =
TRUE), tiaf.step, and tiaf.exponential.

logsd, density logicals affecting the parametrization of the Gaussian kernel. Settings differ-
ent from the defaults are deprecated. The default is to use only the kernel of
the bivariate, isotropic normal distribution (density=FALSE, see Details below),
parametrized with the log-standard deviation (logsd=TRUE) to avoid constrained
optimisation (L-BFGS-B) or validpars.
The power-law kernels always employ the log-scale for their scale and shape
parameters.

F.adaptive, F.method
If F.adaptive = TRUE, then an adaptive bandwidth of adapt*sd will be used in
the midpoint-cubature (polyCub.midpoint in package polyCub) of the Gaus-
sian interaction kernel, where adapt is an extra parameter of the returned siaf$F
function and defaults to 0.1. It can be customized either by the control.siaf$F
argument list of twinstim, or by a numeric specification of F.adaptive in the
constructing call, e.g., F.adaptive = 0.05 to achieve higher accuracy.
Otherwise, if F.adaptive = FALSE, the F.method argument determines which
polyCub method to use in siaf$F. The accuracy (controlled via, e.g., nGQ,
rel.tol, or eps, depending on the cubature method) can then be adjusted in
twinstim’s control.siaf$F argument.

effRangeMult determines the effective range for numerical integration in terms of multiples
of the standard deviation σ of the Gaussian kernel, i.e. with effRangeMult=6
the 6σ region around the event is considered as the relevant integration domain
instead of the whole observation region W. Setting effRangeMult=NULL will dis-
able the integral approximation with an effective integration range.

validpars function taking one argument, the parameter vector, indicating if it is valid (see
also siaf). If logsd=FALSE and one prefers not to use method="L-BFGS-B" for
fitting the twinstim, then validpars could be set to function (pars) pars >
0.

engine character string specifying the implementation to use. Prior to surveillance
0.14.0, the intrfr functions for polyCub.iso were evaluated in R (and this
implementation is available via engine = "R"). The new C-implementation,
‘LinkingTo’ the newly exported polyCub_iso C-implementation in polyCub
0.6.0, is considerably faster.

sigma Fixed value of σ for the one-parameter power-law kernel.

270 twinstim_iaf

Details

Evaluation of twinstim’s likelihood involves cubature of the spatial interaction function over polyg-
onal domains. Various approaches have been compared by Meyer (2010, Section 3.2) and a new
efficient method, which takes advantage of the assumed isotropy, has been proposed by Meyer and
Held (2014, Supplement B, Section 2) for evaluation of the power-law kernels. These cubature
methods are available in the dedicated R package polyCub and used by the kernels implemented in
surveillance.

The readily available spatial interaction functions are defined as follows:

siaf.constant: f(s) = 1

siaf.step: f(s) =
∑K
k=0 exp(αk)Ik(||s||),

where α0 = 0, and α1, . . . , αK are the parameters (heights) to estimate. Ik(||s||) indicates if
distance ||s|| belongs to the kth interval according to c(0,knots,maxRange), where k = 0
indicates the interval c(0,knots[1]).
Note that siaf.step makes use of the memoise package if it is available – and that is highly
recommended to speed up calculations. Specifically, the areas of the intersection of a polyg-
onal domain (influence region) with the “rings” of the two-dimensional step function will be
cached such that they are only calculated once for every polydomain (in the first iteration of
the twinstim optimization). They are used in the integration components F and Deriv. See
Meyer and Held (2014) for a use case and further details.

siaf.gaussian: f(s|κ) = exp(−||s||/2/σ2
κ)

If nTypes=1 (single-type epidemic or type-invariant siaf in multi-type epidemic), then σκ =
σ for all types κ. If density=TRUE (deprecated), then the kernel formula above is additionally
divided by 2πσ2

κ, yielding the density of the bivariate, isotropic Gaussian distribution with
zero mean and covariance matrix σ2

κI2. The standard deviation is optimized on the log-scale
(logsd = TRUE, not doing so is deprecated).

siaf.exponential: f(s) = exp(−||s||/sigma)
The scale parameter sigma is estimated on the log-scale, i.e., σ = exp(σ̃), and σ̃ is the actual
model parameter.

siaf.powerlaw: f(s) = (||s||+ σ)−d

The parameters are optimized on the log-scale to ensure positivity, i.e., σ = exp(σ̃) and
d = exp(d̃), where (σ̃, d̃) is the parameter vector. If a power-law kernel is not identifiable for
the dataset at hand, the exponential kernel or a lagged power law are useful alternatives.

siaf.powerlaw1: f(s) = (||s||+ 1)−d,
i.e., siaf.powerlaw with fixed σ = 1. A different fixed value for sigma can be specified via
the sigma argument of siaf.powerlaw1. The decay parameter d is estimated on the log-scale.

siaf.powerlawL: f(s) = (||s||/σ)−d, for ||s|| ≥ σ, and f(s) = 1 otherwise,
which is a Lagged power-law kernel featuring uniform short-range dispersal (up to distance σ)
and a power-law decay (Pareto-style) from distance σ onwards. The parameters are optimized
on the log-scale to ensure positivity, i.e. σ = exp(σ̃) and d = exp(d̃), where (σ̃, d̃) is the
parameter vector. However, there is a caveat associated with this kernel: Its derivative wrt σ̃
is mathematically undefined at the threshold ||s|| = σ. This local non-differentiability makes
twinstim’s likelihood maximization sensitive wrt parameter start values, and is likely to cause
false convergence warnings by nlminb. Possible workarounds are to use the slow and robust
method="Nelder-Mead", or to just ignore the warning and verify the result by sets of different
start values.

twinstim_iaf 271

siaf.student: f(s) = (||s||2 + σ2)−d,
which is a reparametrized t-kernel. For d = 1, this is the kernel of the Cauchy density with
scale sigma. In Geostatistics, a correlation function of this kind is known as the Cauchy
model.
The parameters are optimized on the log-scale to ensure positivity, i.e. σ = exp(σ̃) and
d = exp(d̃), where (σ̃, d̃) is the parameter vector.

The predefined temporal interaction functions are defined as follows:

tiaf.constant: g(t) = 1

tiaf.step: g(t) =
∑K
k=0 exp(αk)Ik(t),

where α0 = 0, and α1, . . . , αK are the parameters (heights) to estimate. Ik(t) indicates if t
belongs to the kth interval according to c(0,knots,maxRange), where k = 0 indicates the
interval c(0,knots[1]).

tiaf.exponential: g(t|κ) = exp(−ακt),
which is the kernel of the exponential distribution. If nTypes=1 (single-type epidemic or
type-invariant tiaf in multi-type epidemic), then ακ = α for all types κ.

Value

The specification of an interaction function, which is a list. See siaf and tiaf, respectively, for a
description of its components.

Author(s)

Sebastian Meyer

References

Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes.
Master’s Thesis, Ludwig-Maximilians-Universität München.
Available as https://epub.ub.uni-muenchen.de/11703/

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

twinstim, siaf, tiaf, and package polyCub for the involved cubature methods.

https://epub.ub.uni-muenchen.de/11703/
https://doi.org/10.1111/j.1541-0420.2011.01684.x
https://doi.org/10.1214/14-AOAS743
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

272 twinstim_iafplot

Examples

constant temporal dispersal
tiaf.constant()
step function kernel
tiaf.step(c(3,7), maxRange=14, nTypes=2)
exponential temporal decay
tiaf.exponential()

Type-dependent Gaussian spatial interaction function using an adaptive
two-dimensional midpoint-rule to integrate it over polygonal domains
siaf.gaussian(2, F.adaptive=TRUE)

Single-type Gaussian spatial interaction function (using polyCub.iso)
siaf.gaussian()

Exponential kernel
siaf.exponential()

Power-law kernel
siaf.powerlaw()

Power-law kernel with fixed sigma = 1
siaf.powerlaw1()

"lagged" power-law
siaf.powerlawL()

(reparametrized) t-kernel
siaf.student()

step function kernel
siaf.step(c(10,20,50), maxRange=100)

twinstim_iafplot Plot the Spatial or Temporal Interaction Function of a twimstim

Description

The function plots the fitted temporal or (isotropic) spatial interaction function of a twinstim object.
The implementation is illustrated in Meyer et al. (2017, Section 3), see vignette("twinstim").

Usage

iafplot(object, which = c("siaf", "tiaf"), types = NULL,
scaled = c("intercept", "standardized", "no"), truncated = FALSE,
log = "", conf.type = if (length(pars) > 1) "MC" else "parbounds",
conf.level = 0.95, conf.B = 999, xgrid = 101,
col.estimate = rainbow(length(types)), col.conf = col.estimate,
alpha.B = 0.15, lwd = c(3,1), lty = c(1,2),

twinstim_iafplot 273

verticals = FALSE, do.points = FALSE,
add = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL,
legend = !add && (length(types) > 1), ...)

Arguments

object object of class "twinstim" containing the fitted model.
which argument indicating which of the two interaction functions to plot. Possible

values are "siaf" (default) for the spatial interaction f(x) as a function of the
distance x, and "tiaf" for the temporal interaction function g(t).

types integer vector indicating for which event types the interaction function should
be plotted in case of a marked "twinstim". The default types=NULL checks if
the interaction function is type-specific: if so, types=1:nrow(object$qmatrix)
is used, otherwise types=1.

scaled character string determining if/how the the interaction function should be scaled.
Possible choices are:
"intercept": multiplication by the epidemic intercept.
"standardized": division by the value at 0 distance such that the function starts

at 1.
"no": no scaling.
The first one is the default and required for the comparison of estimated interac-
tion functions from different models. For backward compatibility, scaled can
also be a boolean, where TRUE refers to "intercept" scaling and FALSE to "no"
scaling.

truncated logical indicating if the plotted interaction function should take the maximum
range of interaction (eps.t/eps.s) into account, i.e., drop to zero at that point (if
it is finite after all). If there is no common range of interaction, a rug indicating
the various ranges will be added to the plot if truncated=TRUE. If truncated
is a scalar, this value is used as the point eps where the function drops to 0.

log a character string passed to plot.default indicating which axes should be log-
arithmic. If add=TRUE, log is set according to par("xlog") and par("ylog").

conf.type type of confidence interval to produce.
If conf.type="MC" (or "bootstrap"), conf.B parameter vectors are sampled
from the asymptotic (multivariate) normal distribution of the ML estimate of the
interaction function parameters; the interaction function is then evaluated on the
xgrid (i.e. temporal or spatial distances from the host) for each parameter real-
ization to obtain a conf.level confidence interval at each point of the xgrid (or
to plot the interaction functions of all Monte-Carlo samples if conf.level=NA).
Note that the resulting plot is .Random.seed-dependent for the Monte-Carlo
type of confidence interval.
If conf.type="parbounds", the conf.level Wald confidence intervals for the
interaction function parameters are calculated and the interaction function is
evaluated on the xgrid (distances from the host) for all combinations of the
bounds of the parameters and the point-wise extremes of those functions are
plotted. This type of confidence interval is only valid in case of a single pa-
rameter, i.e. scaled + nsiafpars == 1, but could also be used as a rough indi-
cation if the Monte-Carlo approach takes too long. A warning is thrown if the

274 twinstim_iafplot

"parbounds" type is used for multiple parameters.
If conf.type="none" or NA or NULL, no confidence interval will be calculated.

conf.level the confidence level required. For conf.type = "MC" it may also be specified as
NA, in which case all conf.B sampled functions will be plotted with transparency
value given by alpha.B.

conf.B number of samples for the "MC" (Monte Carlo) confidence interval.

xgrid either a numeric vector of x-values (distances from the host) where to evaluate
which, or a scalar representing the desired number of evaluation points in the
interval c(0,xlim[2]).
If the interaction function is a step function (siaf.step or tiaf.step), xgrid
is ignored and internally set to c(0, knots).

col.estimate vector of colours to use for the function point estimates of the different types.

col.conf vector of colours to use for the confidence intervals of the different types.

alpha.B alpha transparency value (as relative opacity) used for the conf.B sampled in-
teraction functions in case conf.level = NA

lwd, lty numeric vectors of length two specifying the line width and type of point esti-
mates (first element) and confidence limits (second element), respectively.

verticals, do.points
graphical settings for step function kernels. These can be logical (as in plot.stepfun)
or lists of graphical parameters.

add add to an existing plot?

xlim, ylim vectors of length two containing the x- and y-axis limit of the plot. The default y-
axis range (ylim=NULL) is from 0 to the value of the (scaled) interaction function
at x = 0. The default x-axis (xlim=NULL) starts at 0, and the upper limit is
determined as follows (in decreasing order of precedence):

• If xgrid is a vector of evaluation points, xlim[2] is set to max(xgrid).
• eps.t/eps.s if it is unique and finite.
• If the interaction function is a step function with maxRange<Inf, i.e. it

drops to 0 at maxRange, xlim[2] is set to maxRange.
• Otherwise, it is set to the length of the observation period (which="tiaf")

or the diagonal length of the bounding box of the observation region (which="siaf"),
respectively.

xlab, ylab labels for the axes with NULL providing sensible defaults.

legend logical indicating if a legend for the types should be added. It can also be a list
of arguments passed to legend to tweak the default settings.

... additional arguments passed to the default plot method.

Value

A plot is created – see e.g. Figure 3(b) in Meyer et al. (2012).

The function invisibly returns a matrix of the plotted values of the interaction function (evaluated
on xgrid, by type). The first column of the matrix contains the distance x, and the remaining
length(types) columns contain the (scaled) function values for each type.

twinstim_intensity 275

The pointwise confidence intervals of the interaction functions are returned in similar matrices
as attributes: if length(types)==1, there is a single attribute "CI", whereas for multiple types,
the attributes are named paste0("CI.",typeNames) (where the typeNames are retrieved from
object$qmatrix).

Author(s)

Sebastian Meyer

References

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

Meyer, S., Held, L. and Höhle, M. (2017): Spatio-temporal analysis of epidemic phenomena us-
ing the R package surveillance. Journal of Statistical Software, 77 (11), 1-55. doi:10.18637/
jss.v077.i11

See Also

plot.twinstim, which calls this function.

Examples

data("imdepifit")

iafplot(imdepifit, "tiaf", scaled=FALSE) # tiaf.constant(), not very exciting
iafplot(imdepifit, "siaf", scaled=FALSE)

scaled version uses a Monte-Carlo-CI
set.seed(1) # result depends on .Random.seed
iafplot(imdepifit, "siaf", scaled=TRUE, conf.type="MC", conf.B=199,

col.conf=gray(0.4), conf.level=NA) # show MC samples

twinstim_intensity Plotting Intensities of Infection over Time or Space

Description

intensityplot method to plot the evolution of the total infection intensity, its epidemic propor-
tion or its endemic proportion over time or space (integrated over the other dimension) of fitted
twinstim models (or simEpidataCS). The "simEpidataCS"-method is just a wrapper around
intensityplot.twinstim by making the "simEpidataCS" object "twinstim"-compatible, i.e.
enriching it by the required model components and environment.

The intensity.twinstim auxiliary function returns functions which calculate the endemic or epi-
demic intensity at a specific time point or location (integrated over the other dimension).

https://doi.org/10.1111/j.1541-0420.2011.01684.x
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11

276 twinstim_intensity

Usage

S3 method for class 'twinstim'
intensityplot(x,

which = c("epidemic proportion", "endemic proportion", "total intensity"),
aggregate = c("time", "space"), types = 1:nrow(x$qmatrix),
tiles, tiles.idcol = NULL, plot = TRUE, add = FALSE,
tgrid = 101, rug.opts = list(),
sgrid = 128, polygons.args = list(), points.args = list(),
cex.fun = sqrt, ...)

S3 method for class 'simEpidataCS'
intensityplot(x, ...)

intensity.twinstim(x,
aggregate = c("time", "space"), types = 1:nrow(x$qmatrix),
tiles, tiles.idcol = NULL)

Arguments

x an object of class "twinstim" or "simEpidataCS", respectively.
which "epidemic proportion", "endemic proportion", or "total intensity". Par-

tial matching is applied. Determines whether to plot the path of the total inten-
sity or its epidemic or endemic proportions over time or space (which) aggre-
gated over the other dimension and types.

aggregate One of "time" or "space". The former results in a plot of the evolution of
which as a function of time (integrated over the observation region W), whereas
the latter produces a spplot of which over W (spanned by tiles). In both
cases, which is evaluated on a grid of values, given by tgrid or sgrid, respec-
tively.

types event types to aggregate. By default, all types of events are aggregated, but one
could also be interested in only one specific type or a subset of event types.

tiles object of class "SpatialPolygons" representing the decomposition of W into
different regions (as used in the corresponding stgrid of the "epidataCS".
This is only needed for aggregate = "space".

tiles.idcol either a column index for tiles@data (if tiles is a "SpatialPolygonsDataFrame"),
or NULL (default), which refers to the "ID" slot of the polygons, i.e., row.names(tiles).
The ID’s must correspond to the factor levels of stgrid$tile of the "epidataCS"
on which x was fitted.

plot logical indicating if a plot is desired, which defaults to TRUE. Otherwise, a
function will be returned, which takes a vector of time points (if aggregate
= "time") or a matrix of coordinates (if aggregate = "space"), and returns
which on this grid.

add logical. If TRUE and aggregate = "time", paths are added to the current plot,
using lines. This does not work for aggregate = "space".

tgrid either a numeric vector of time points when to evaluate which, or a scalar rep-
resenting the desired number of evaluation points in the observation interval
[t0, T]. This argument is unused for aggregate = "space".

twinstim_intensity 277

rug.opts if a list, its elements are passed as arguments to the function rug, which will
mark the time points of the events if aggregate = "time" (it is unused in the
spatial case); otherwise (e.g., NULL), no rug will be produced. By default, the
rug argument ticksize is set to 0.02 and quiet is set to TRUE. Note that the
argument x of the rug function, which contains the locations for the rug is fixed
internally and can not be modified.

sgrid either an object of class "SpatialPixels" (or coercible to that class) repre-
senting the locations where to evaluate which, or a scalar representing the ap-
proximate number of points of a grid constructed on the bounding box of tiles.
sgrid is internally subsetted to contain only points inside tiles. This argument
is unused for aggregate = "time".

polygons.args if a list, its elements are passed as arguments to sp.polygons, which will add
tiles to the plot if aggregate = "space" (it is unused for the temporal plot).
By default, the fill colour of the tiles is set to "darkgrey".

points.args if a list, its elements are passed as arguments to sp.points, which will add the
event locations to the plot if aggregate = "space" (it is unused for the temporal
plot). By default, the plot symbol is set to pch=1. The sizes of the points are
determined as the product of the argument cex (default: 0.5) of this list and the
sizes obtained from the function cex.fun which accounts for multiple events at
the same location.

cex.fun function which takes a vector of counts of events at each unique location and
returns a (vector of) cex value(s) for the sizes of the points at the event locations
used in points.args. Defaults to the sqrt() function, which for the default
circular pch=1 means that the area of each point is proportional to the number
of events at its location.

... further arguments passed to plot or lines (if aggregate = "time"), or to spplot
(if aggregate = "space").
For intensityplot.simEpidataCS, arguments passed to intensityplot.twinstim.

Value

If plot = FALSE or aggregate = "time", a function is returned, which takes a vector of time points
(if aggregate = "time") or a matrix of coordinates (if aggregate = "space"), and returns which
on this grid. intensity.twinstim returns a list containing such functions for the endemic and
epidemic intensity (but these are not vectorized).

If plot = TRUE and aggregate = "space", the trellis.object of the spatial plot is returned.

Author(s)

Sebastian Meyer

See Also

plot.twinstim, which calls intensityplot.twinstim.

278 twinstim_intensity

Examples

data("imdepi", "imdepifit")

for the intensityplot we need the model environment, which can be
easily added by the intelligent update method (no need to refit the model)
imdepifit <- update(imdepifit, model=TRUE)

path of the total intensity
opar <- par(mfrow=c(2,1))
intensityplot(imdepifit, which="total intensity",

aggregate="time", tgrid=500)
plot(imdepi, "time", breaks=100)
par(opar)

time course of the epidemic proportion by event
intensityplot(imdepifit, which="epidemic proportion",

aggregate="time", tgrid=500, types=1)
intensityplot(imdepifit, which="epidemic proportion",

aggregate="time", tgrid=500, types=2, add=TRUE, col=2)
legend("topright", legend=levels(imdepi$events$type), lty=1, col=1:2,

title = "event type")

endemic and total intensity in one plot
intensity_endprop <- intensityplot(imdepifit, which="endemic proportion",

aggregate="time", plot=FALSE)
intensity_total <- intensityplot(imdepifit, which="total intensity",

aggregate="time", tgrid=501, lwd=2)
curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501)
text(2500, 0.36, labels="total", col=1, pos=2, font=2)
text(2500, 0.08, labels="endemic", col=2, pos=2, font=2)

spatial shape of the intensity (aggregated over time)

load borders of Germany's districts
load(system.file("shapes", "districtsD.RData", package="surveillance"))

total intensity (using a rather sparse 'sgrid' for speed)
intensityplot(imdepifit, which="total intensity",

aggregate="space", tiles=districtsD, sgrid=500,
col.regions=rev(heat.colors(100)))

epidemic proportion by type
maps_epiprop <- lapply(1:2, function (type) {

intensityplot(imdepifit, which="epidemic", aggregate="space",
types=type, tiles=districtsD, sgrid=1000,
main=rownames(imdepifit$qmatrix)[type],
scales=list(draw=FALSE), at=seq(0,1,by=0.1),
col.regions=rev(hcl.colors(10,"YlOrRd")),
colorkey=list(title=list("Epidemic proportion", cex=1)))

})
plot(maps_epiprop[[1]], split=c(1,1,2,1), more=TRUE)

twinstim_methods 279

plot(maps_epiprop[[2]], split=c(2,1,2,1))

twinstim_methods Print, Summary and Extraction Methods for "twinstim" Objects

Description

Besides print and summary methods there are also some standard extraction methods defined for
objects of class "twinstim": vcov, logLik, and nobs. This also enables the use of, e.g., confint
and AIC. The model summary can be exported to LaTeX by the corresponding toLatex or xtable
methods.

Usage

S3 method for class 'twinstim'
print(x, digits = max(3, getOption("digits") - 3), ...)
S3 method for class 'twinstim'
summary(object, test.iaf = FALSE,

correlation = FALSE, symbolic.cor = FALSE, runtime = FALSE, ...)

S3 method for class 'twinstim'
coeflist(x, ...)
S3 method for class 'twinstim'
vcov(object, ...)
S3 method for class 'twinstim'
logLik(object, ...)
S3 method for class 'twinstim'
nobs(object, ...)

S3 method for class 'summary.twinstim'
print(x,

digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

S3 method for class 'summary.twinstim'
toLatex(object,

digits = max(3, getOption("digits") - 3), eps.Pvalue = 1e-4,
align = "lrrrr", booktabs = getOption("xtable.booktabs", FALSE),
withAIC = FALSE, ...)

S3 method for class 'summary.twinstim'
xtable(x, caption = NULL, label = NULL,

align = c("l", "r", "r", "r"), digits = 3,
display = c("s", "f", "s", "s"), ...,
ci.level = 0.95, ci.fmt = "%4.2f", ci.to = "--",
eps.Pvalue = 1e-4)

280 twinstim_methods

Arguments

x, object an object of class "twinstim" or "summary.twinstim", respectively.

digits integer, used for number formatting with signif(). Minimum number of sig-
nificant digits to be printed in values.

test.iaf logical indicating if the simple Wald z- and p-values should be calculated for pa-
rameters of the interaction functions siaf and tiaf. Because it is often invalid
or meaningless to do so, the default is FALSE.

correlation logical. If TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

runtime logical. If TRUE, the summary additionally includes the time elapsed and the
number of log-likelihood and score function evaluations during model fitting.

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

eps.Pvalue passed to format.pval.

booktabs logical indicating if the toprule, midrule and bottomrule commands from the
LaTeX package booktabs should be used for horizontal lines rather than hline.

withAIC logical indicating if the AIC and the log-likelihood of the model should be in-
cluded below the table of coefficients in the LaTeX tabular.

caption, label, align, display
see xtable.

ci.level, ci.fmt, ci.to
the confidence intervals are calculated at level ci.level and printed using sprintf
with format ci.fmt and separator ci.to.

... For print.summary.twinstim, arguments passed to printCoefmat.
For all other methods: unused (argument of the generic).

Details

The estimated coefficients and standard Wald-type confidence intervals can be extracted using the
default coef and confint methods from package stats. Note, however, that there is the useful
coeflist method to list the coefficients by model component.

The print and summary methods allow the compact or comprehensive representation of the fitting
results, respectively. The former only prints the original function call, the estimated coefficients
and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard
errors, z- and p-values (see printCoefmat) – separately for the endemic and the epidemic compo-
nent – and additionally the AIC, the achieved log-likelihood, the number of log-likelihood and score
evaluations, and the runtime. They both append a big “WARNING”, if the optimization algorithm
did not converge.

The toLatex method is essentially a translation of the printed summary table of coefficients to
LaTeX code (using xtable). However, the xtable method does a different job in that it first converts
coefficients to rate ratios (RR, i.e., the exp-transformation) and gives confidence intervals for those
instead of standard errors and z-values. Intercepts and interaction function parameters are ignored
by the xtable method.

twinstim_methods 281

Value

The print methods return their first argument, invisibly, as they always should. The vcov method
returns the estimated variance-covariance matrix of the parameters, which is the inverse of object$fisherinfo
(estimate of the expected Fisher information matrix). This "fisherinfo" is not always available
(see twinstim), in which case object$fisherinfo.observed is used if available or an error is
returned otherwise. The logLik and nobs methods return the maximum log-likelihood value of the
model, and the number of events (excluding events of the prehistory), respectively.

The summary method returns a list containing some summary statistics of the model, which is nicely
printed by the corresponding print method.

The toLatex method returns a character vector of class "Latex", each element containing one line
of LaTeX code (see print.Latex). The xtable method returns an object of class "xtable". Note
that the column name of the confidence interval, e.g. “95% CI”, contains the percent symbol that
may need to be escaped when printing the "xtable" in the output format (see sanitize.text.function
in print.xtable). This may also hold for row names.

Author(s)

Sebastian Meyer

Examples

load a fit of the 'imdepi' data, see the example in ?twinstim
data("imdepifit")

print method
imdepifit

extract point estimates (in a single vector or listed by model component)
coef(imdepifit)
coeflist(imdepifit)

variance-covariance matrix of endemic parameters
(inverse of expected Fisher information)
unname(vcov(imdepifit)[1:4,1:4])

the default confint() method may be used for Wald CI's
confint(imdepifit, parm="e.typeC", level=0.95)

log-likelihood and AIC of the fitted model
logLik(imdepifit)
AIC(imdepifit)
nobs(imdepifit)

produce a summary with parameter correlations and runtime information
(s <- summary(imdepifit, correlation=TRUE, symbolic.cor=TRUE, runtime=TRUE))

create LaTeX code of coefficient table
toLatex(s, digits=2)

or using the xtable-method (which produces rate ratios)

282 twinstim_plot

xtable(s)

twinstim_plot Plot methods for fitted twinstim’s

Description

The fitted conditional intensity function from twinstim may be visualized in at least two ways:
iafplot plots the fitted interaction functions (as a function of the distance from the host), and
intensityplot.twinstim plots the fitted intensity either aggregated over space (evolution over
time) or aggregated over time (spatial surface of the cumulated intensity). The plot method for
class "twinstim" is just a wrapper for these two functions.

Usage

S3 method for class 'twinstim'
plot(x, which, ...)

Arguments

x an object of class "twinstim".

which character. Which characteristic of the conditional intensity should be plotted?
Possible values are the ones allowed in the functions iafplot and intensityplot.twinstim,
e.g. "siaf", or "epidemic proportion". Partial matching is applied.

... further arguments passed to iafplot or intensityplot.twinstim.

Value

See the documentation of the respective plot functions, iafplot or intensityplot.twinstim.

Author(s)

Sebastian Meyer

Examples

see the examples for iafplot() and intensityplot.twinstim()

twinstim_profile 283

twinstim_profile Profile Likelihood Computation and Confidence Intervals for
twinstim objects

Description

Function to compute estimated and profile likelihood based confidence intervals for twinstim ob-
jects. Computations might be cumbersome!

WARNING: the implementation is not well tested, simply uses optim (ignoring optimizer settings
from the original fit), and does not return the complete set of coefficients at each grid point.

Usage

S3 method for class 'twinstim'
profile(fitted, profile, alpha = 0.05,

control = list(fnscale = -1, maxit = 100, trace = 1),
do.ltildeprofile=FALSE, ...)

Arguments

fitted an object of class "twinstim".

profile a list with elements being numeric vectors of length 4. These vectors must have
the form c(index, lower, upper, gridsize).

index: index of the parameter to be profiled in the vector coef(fitted).
lower, upper: lower/upper limit of the grid on which the profile log-likelihood

is evaluated. Can also be NA in which case lower/upper equals the lower/upper
bound of the respective 0.3 % Wald confidence interval (+-3*se).

gridsize: grid size of the equally spaced grid between lower and upper. Can
also be 0 in which case the profile log-likelihood for this parameter is not
evaluated on a grid.

alpha (1−α)% profile likelihood based confidence intervals are computed. If alpha <=
0, then no confidence intervals are computed. This is currently not implemented.

control control object to use in optim for the profile log-likelihood computations. It
might be necessary to control maxit or reltol in order to obtain results in
finite time.

do.ltildeprofile

If TRUE calculate profile likelihood as well. This might take a while, since an
optimisation for all other parameters has to be performed. Useful for likelihood
based confidence intervals. Default: FALSE.

... unused (argument of the generic).

Value

list with profile log-likelihood evaluations on the grid, and – not implemented yet – highest likeli-
hood and Wald confidence intervals. The argument profile is also returned.

284 twinstim_siaf

Author(s)

Michael Höhle

Examples

profiling takes a while
Not run:
#Load the twinstim model fitted to the IMD data
data("imdepi", "imdepifit")
for profiling we need the model environment
imdepifit <- update(imdepifit, model=TRUE)

#Generate profiling object for a list of parameters for the new model
names <- c("h.(Intercept)","e.typeC")
coefList <- lapply(names, function(name) {

c(pmatch(name,names(coef(imdepifit))),NA,NA,11)
})

#Profile object (necessary to specify a more loose convergence
#criterion). Speed things up by using do.ltildeprofile=FALSE (the default)
prof <- profile(imdepifit, coefList,

control=list(reltol=0.1, REPORT=1), do.ltildeprofile=TRUE)

#Plot result for one variable
par(mfrow=c(1,2))
for (name in names) {

with(as.data.frame(prof$lp[[name]]),
matplot(grid,cbind(profile,estimated,wald),

type="l",xlab=name,ylab="loglik"))
legend(x="bottomleft",c("profile","estimated","wald"),lty=1:3,col=1:3)

}

End(Not run)

twinstim_siaf Spatial Interaction Function Objects

Description

A spatial interaction function for use in twinstim can be constructed via the siaf function. It
checks the supplied function elements, assigns defaults for missing arguments, and returns all
checked arguments in a list. However, for standard applications it is much easier to use one of
the pre-defined spatial interaction functions, e.g., siaf.gaussian.

Usage

siaf(f, F, Fcircle, effRange, deriv, Deriv, simulate, npars,
validpars = NULL)

twinstim_siaf 285

Arguments

f the spatial interaction function. It must accept two arguments, the first one being
a (2-column) coordinate matrix, the second one a parameter vector. For marked
twinstim, it must accept the type of the event (integer code) as its third argu-
ment (either a single type for all locations or separate types for each location).

F function computing the integral of f(s) (passed as second argument) over a
polygonal "owin" domain (first argument). The third and fourth argument are
the parameter vector and the (single) type, respectively. There may be additional
arguments, which can then be specified in the control.siaf$F argument list of
twinstim. If the F function is missing, a general default (polyCub) will be
used, with extra arguments method (default: "SV") and corresponding accuracy
parameters.

Fcircle optional function for fast calculation of the (two-dimensional) integral of f(s)
over a circle with radius r (first argument). Further arguments are as for f. It
must not be vectorized (will always be called with single radius and a single
type). If this function is specified, integration of the siaf over the spatial influ-
ence region of an event will be faster if the region is actually circular. This is
the case if the event is located at least a distance eps.s from the border of the
observation region W, or if the distance to the border is larger than the effective
integration range (if specified, see effRange below).

effRange optional function returning the “effective” range of f(s) for the given set of pa-
rameters (the first and only argument) such that the circle with radius effRange
contains the numerically essential proportion of the integral mass. For the Gaus-
sian kernel the default is function (logsd) 6*exp(logsd). The return value
must be a vector of length nTypes (effective range for each type). This function
is only used if Fcircle is also specified.

deriv optional derivative of f(s) with respect to the parameters. It takes the same
arguments as f but returns a matrix with as many rows as there were coordinates
in the input and npars columns. This derivative is necessary for the calculation
of the score function in twinstim(), which is advantageous for the numerical
log-likelihood maximization.

Deriv function computing the integral of deriv (passed as second argument) over a
polygonal "owin" domain (first argument). The return value is thus a vector
of length npars. The third argument is the parameter vector and the fourth
argument is a (single) type and must be named type. There may be additional
arguments, which can then be specified in the control.siaf$Deriv argument
list of twinstim. If the Deriv function is missing, a general default (polyCub)
will be used, with extra arguments method (default: "SV") and corresponding
accuracy parameters.

simulate optional function returning a sample drawn from the spatial kernel (only re-
quired for the simulation of twinstim models). Its first argument is the size of
the sample to generate, next the parameter vector, an optional single event type,
and an optional upper bound for the radius within which to simulate points. The
function must return a two-column matrix of the sampled locations. Note that
the simulation method actually samples only one location at a time, thus it is
sufficient to have a working function(n=1, pars, type, ub).

286 twinstim_simEndemicEvents

npars the number of parameters of the spatial interaction function f (i.e. the length of
its second argument).

validpars optional function taking one argument, the parameter vector, indicating if it is
valid. This approach to specify parameter constraints is rarely needed, because
usual box-constrained parameters can be taken into account by using L-BFGS-
B as the optimization method in twinstim (with arguments lower and upper),
and positivity constraints by using log-parametrizations. This component is not
necessary (and ignored) if npars == 0.

Value

list of checked arguments.

Author(s)

Sebastian Meyer

See Also

siaf.gaussian for a pre-defined spatial interaction function, and tiaf for the temporal interaction
function.

twinstim_simEndemicEvents

Quick Simulation from an Endemic-Only twinstim

Description

In endemic-only twinstim models, the conditional intensity is a piecewise constant function inde-
pendent from the history of the process. This allows for a much more efficient simulation algorithm
than via Ogata’s modified thinning as in the general simulate.twinstim method.

Usage

simEndemicEvents(object, tiles)

Arguments

object an object of class "twinstim" (with the model component retained; otherwise
try object <- update(object, model = TRUE)).

tiles an object inheriting from "SpatialPolygons", which represents the tiles of the
original data’s stgrid (see, e.g., levels(environment(object)$gridTiles)).

Value

a "SpatialPointsDataFrame"

twinstim_simulation 287

Author(s)

Sebastian Meyer

See Also

the general simulation method simulate.twinstim

Examples

data("imdepi", "imdepifit")
load(system.file("shapes", "districtsD.RData", package="surveillance"))

Fit an endemic-only twinstim()
m_noepi <- update(imdepifit, epidemic = ~0, siaf = NULL, model = TRUE,

T = 120) # using a restricted time range, for speed

Simulate events from the above endemic model
set.seed(1)
s1 <- simEndemicEvents(m_noepi, tiles = districtsD)
class(s1) # just a "SpatialPointsDataFrame"
summary(s1@data)
plot(imdepi$W, lwd = 2, asp = 1)
plot(s1, col = s1$type, cex = 0.5, add = TRUE)

Compare with the generic simulation method (slower)
s0 <- simulate(m_noepi, seed = 1, data = imdepi, tiles = districtsD)
class(s0) # gives a full "simEpidataCS" with several methods applicable
methods(class = "epidataCS")
plot(s0, "time")
plot(s0, "space", points.args = list(pch = 3), lwd = 2)

twinstim_simulation Simulation of a Self-Exciting Spatio-Temporal Point Process

Description

The function simEpidataCS simulates events of a self-exciting spatio-temporal point process of the
"twinstim" class. Simulation works via Ogata’s modified thinning of the conditional intensity as
described in Meyer et al. (2012). Note that simulation is limited to the spatial and temporal range
of stgrid.

The simulate method for objects of class "twinstim" simulates new epidemic data using the
model and the parameter estimates of the fitted object.

Usage

simEpidataCS(endemic, epidemic, siaf, tiaf, qmatrix, rmarks,
events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars,
epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1),

288 twinstim_simulation

nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()),
W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500,
.skipChecks = FALSE, .onlyEvents = FALSE)

S3 method for class 'twinstim'
simulate(object, nsim = 1, seed = NULL, data, tiles,

newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5,
control.siaf = object$control.siaf,
W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL,
.allocate = 500, simplify = TRUE, ...)

Arguments

endemic see twinstim. Note that type-specific endemic intercepts are specified by beta0
here, not by the term (1|type).

epidemic see twinstim. Marks appearing in this formula must be returned by the gener-
ating function rmarks.

siaf see twinstim. In addition to what is required for fitting with twinstim, the
siaf specification must also contain the element simulate, a function which
draws random locations following the spatial kernel siaf$f. The first argument
of the function is the number of points to sample (say n), the second one is the
vector of parameters siafpars, the third one is the type indicator (a character
string matching a type name as specified by dimnames(qmatrix)). With the
current implementation there will always be simulated only one location at a
time, i.e. n=1. The predefined siaf’s all provide simulation.

tiaf e.g. what is returned by the generating function tiaf.constant or tiaf.exponential.
See also twinstim.

qmatrix see epidataCS. Note that this square matrix and its dimnames determine the
number and names of the different event types. In the simplest case, there is
only a single type of event, i.e. qmatrix = diag(1).

rmarks function of single time (1st argument) and location (2nd argument) returning a
one-row data.frame of marks (named according to the variables in epidemic)
for an event at this point. This must include the columns eps.s and eps.t,
i.e. the values of the spatial and temporal interaction ranges at this point. Only
"numeric" and "factor" columns are allowed. Assure that factor variables are
coded equally (same levels and level order) for each new sample.
For the simulate.twinstim method, the default (NULL) means sampling from
the empirical distribution function of the (non-missing) marks in data restricted
to events in the simulation period (t0;T]. If there are no events in this period,
e.g., if simulating beyond the original observation period, rmarks will sample
marks from all of data$events.

events NULL or missing (default) in case of an empty prehistory, or a SpatialPointsDataFrame
containing events of the prehistory (-Inf;t0] of the process (required for the epi-
demic to start in case of no endemic component in the model). The SpatialPointsDataFrame
must have the same proj4string as tiles and W). The attached data.frame
(data slot) must contain the typical columns as described in as.epidataCS
(time, tile, eps.t, eps.s, and, for type-specific models, type) and all marks

twinstim_simulation 289

appearing in the epidemic specification. Note that some column names are re-
served (see as.epidataCS). Only events up to time t0 are selected and taken as
the prehistory.

stgrid see as.epidataCS. Simulation only works inside the spatial and temporal range
of stgrid.

tiles object inheriting from "SpatialPolygons" with row.names matching the tile
names in stgrid and having the same proj4string as events and W. This
is necessary to sample the spatial location of events generated by the endemic
component.

beta0, beta, gamma, siafpars, tiafpars
these are the parameter subvectors of the twinstim. beta and gamma must be
given in the same order as they appear in endemic and epidemic, respectively.
beta0 is either a single endemic intercept or a vector of type-specific endemic
intercepts in the same order as in qmatrix.

epilink a character string determining the link function to be used for the epidemic
linear predictor of event marks. By default, the log-link is used. The experi-
mental alternative is epilink = "identity". Note that the identity link does
not guarantee the force of infection to be positive. If this leads to a negative
total intensity (endemic + epidemic), the point process is not well defined and
simulation cannot proceed.

t0 events having occurred during (-Inf;t0] are regarded as part of the prehistory
H0 of the process. For simEpidataCS, by default and also if t0=NULL, the be-
ginning of stgrid is used as t0. For the simulate.twinstim method, NULL
means to use the fitted time range of the "twinstim" object.

T, nEvents simulate a maximum of nEvents events up to time T, then stop. For simEpidataCS,
by default, and also if T=NULL, T equals the last stop time in stgrid (it cannot be
greater) and nEvents is bounded above by 10000. For the simulate.twinstim
method, T=NULL means to use the same same time range as for the fitting of the
"twinstim" object.

W see as.epidataCS. When simulating from twinstim-fits, W is by default taken
from the original data$W. If specified as NULL, W is generated automatically via
unionSpatialPolygons(tiles). However, since the result of such a polygon
operation should always be verified, it is recommended to do that in advance.
It is important that W and tiles cover the same region: on the one hand direct
offspring is sampled in the spatial influence region of the parent event, i.e., in
the intersection of W and a circle of radius the eps.s of the parent event, after
which the corresponding tile is determined by overlay with tiles. On the other
hand endemic events are sampled from tiles.

trace logical (or integer) indicating if (or how often) the current simulation status
should be cated. For the simulate.twinstim method, trace currently only
applies to the first of the nsim simulations.

.allocate number of rows (events) to initially allocate for the event history; defaults to
500. Each time the simulated epidemic exceeds the allocated space, the event
data.frame will be enlarged by .allocate rows.

.skipChecks, .onlyEvents
these logical arguments are not meant to be set by the user. They are used by the
simulate-method for "twinstim" objects.

290 twinstim_simulation

object an object of class "twinstim".

nsim number of epidemics (i.e. spatio-temporal point patterns inheriting from class
"epidataCS") to simulate. Defaults to 1 when the result is a simple object inher-
iting from class "simEpidataCS" (as if simEpidataCS would have been called
directly). If nsim > 1, the result will be a list the structure of which depends on
the argument simplify.

seed an object specifying how the random number generator should be initialized for
simulation (via set.seed). The initial state will also be stored as an attribute
"seed" of the result. The original state of the .Random.seed will be restored at
the end of the simulation. By default (NULL), neither initialization nor recovery
will be done. This behaviour is copied from the simulate.lm method.

data an object of class "epidataCS", usually the one to which the "twinstim" object
was fitted. It carries the stgrid of the endemic component, but also events for
use as the prehistory, and defaults for rmarks and nCircle2Poly.

newcoef an optional named numeric vector of (a subset of) parameters to replace the orig-
inal point estimates in coef(object). Elements which do not match any model
parameter by name are silently ignored. The newcoefs may also be supplied in
a list following the same conventions as for the start argument in twinstim.

simplify logical. It is strongly recommended to set simplify = TRUE (default) if nsim
is large. This saves space and computation time, because for each simulated
epidemic only the events component is saved. All other components, which do
not vary between simulations, are only stored from the first run. In this case, the
runtime of each simulation is stored as an attribute "runtime" to each simulated
events. See also the “Value” section below.

control.siaf see twinstim.

nCircle2Poly see as.epidataCS. For simulate.twinstim, NULL means to use the same value
as for data.

gmax maximum value the temporal interaction function tiaf$g can attain. If NULL,
then it is assumed as the maximum value of the type-specific values at 0, i.e.
max(tiaf$g(rep.int(0,nTypes), tiafpars, 1:nTypes)).

... unused (arguments of the generic).

Value

The function simEpidataCS returns a simulated epidemic of class "simEpidataCS", which en-
hances the class "epidataCS" by the following additional components known from objects of class
"twinstim": bbox, timeRange, formula, coefficients, npars, control.siaf, call, runtime.
It has corresponding coeflist, residuals, R0, and intensityplot methods.

The simulate.twinstim method has some additional attributes set on its result: call, seed, and
runtime. If nsim > 1, it returns an object of class "simEpidataCSlist", the form of which depends
on the value of simplify (which is stored as an attribute simplified): if simplify = FALSE, then
the return value is just a list of sequential simulations, each of class "simEpidataCS". However, if
simplify = TRUE, then the sequential simulations share all components but the simulated events,
i.e. the result is a list with the same components as a single object of class "simEpidataCS", but
with events replaced by an eventsList containing the events returned by each of the simulations.

twinstim_simulation 291

The stgrid component of the returned "simEpidataCS" will be truncated to the actual end of the
simulation, which might be < T , if the upper bound nEvents is reached during simulation.

CAVE: Currently, simplify=TRUE in simulate.twinstim ignores that multiple simulated epi-
demics (nsim > 1) may have different stgrid time ranges. In a "simEpidataCSlist", the stgrid
shared by all of the simulated epidemics is just the stgrid returned by the first simulation.

Note

The more detailed the polygons in tiles are the slower is the algorithm. You are advised to sacrifice
some shape details for speed by reducing the polygon complexity, for example via the mapshaper
JavaScript library wrapped by the R package rmapshaper, or via simplify.owin.

Author(s)

Sebastian Meyer, with contributions by Michael Höhle

References

Douglas, D. H. and Peucker, T. K. (1973): Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization, 10, 112-122

Meyer, S., Elias, J. and Höhle, M. (2012): A space-time conditional intensity model for invasive
meningococcal disease occurrence. Biometrics, 68, 607-616. doi:10.1111/j.15410420.2011.01684.x

See Also

The function simEndemicEvents is a faster alternative for endemic-only models, only returning a
"SpatialPointsDataFrame" of simulated events.

The plot.epidataCS and animate.epidataCS methods for plotting and animating continuous-
space epidemic data, respectively, also work for simulated epidemics (by inheritance), and twinstim
can be used to fit spatio-temporal conditional intensity models also to simulated data.

Examples

data("imdepi", "imdepifit")

load borders of Germany's districts (originally obtained from
the German Federal Agency for Cartography and Geodesy,
https://gdz.bkg.bund.de/), simplified by the "modified Visvalingam"
algorithm (level=6.6%) using MapShaper.org (v. 0.1.17):
load(system.file("shapes", "districtsD.RData", package="surveillance"))
if (surveillance.options("allExamples")) {

plot(districtsD)
plot(stateD, add=TRUE, border=2, lwd=2)

}

simulate 2 realizations (over a short period, for speed)
considering events from data(imdepi) before t=31 as prehistory
IGNORE_RDIFF_BEGIN
mysims <- simulate(imdepifit, nsim=2, seed=1, data=imdepi,

https://CRAN.R-project.org/package=rmapshaper
https://doi.org/10.1111/j.1541-0420.2011.01684.x

292 twinstim_simulation

tiles=districtsD, newcoef=c("e.typeC"=-1),
t0=31, T=if (interactive()) 180 else 45, # for CRAN
simplify=TRUE)

IGNORE_RDIFF_END

plot both simulations using the plot-method for simEpidataCSlist's
mysims
plot(mysims, aggregate="time")

extract the second realization -> object of class simEpidataCS
mysim2 <- mysims[[2]]
summary(mysim2)
plot(mysim2, aggregate="space")

compare the observed _cumulative_ number of cases in the first 90 days to
nsim <- 20
simulations from the fitted model

sims <- simulate(imdepifit, nsim=nsim, seed=1, data=imdepi, t0=0, T=90,
tiles=districtsD, simplify=TRUE)

extract cusums
getcsums <- function (events) {

tapply(events$time, events@data["type"],
function (t) cumsum(table(t)), simplify=FALSE)

}
csums_observed <- getcsums(imdepi$events)
csums_simulated <- lapply(sims$eventsList, getcsums)

plot it
plotcsums <- function (csums, ...) {

mapply(function (csum, ...) lines(as.numeric(names(csum)), csum, ...),
csums, ...)

invisible()
}
plot(c(0,90), c(0,35), type="n", xlab="Time [days]",

ylab="Cumulative number of cases")
plotcsums(csums_observed, col=c(2,4), lwd=3)
legend("topleft", legend=levels(imdepi$events$type), col=c(2,4), lwd=1)
invisible(lapply(csums_simulated, plotcsums,

col=adjustcolor(c(2,4), alpha.f=0.5)))

Not run:
Experimental code to generate 'nsim' simulations of 'nm2add' months
beyond the observed time period:
nm2add <- 24
nsim <- 5
The events still infective by the end of imdepi$stgrid will be used
as the prehistory for the continued process.

twinstim_step 293

origT <- tail(imdepi$stgrid$stop, 1)
extend the 'stgrid' by replicating the last block 'nm2add' times
(i.e., holding "popdensity" constant)
stgridext <- local({

gLast <- subset(imdepi$stgrid, BLOCK == max(BLOCK))
gAdd <- gLast[rep(1:nrow(gLast), nm2add),]; rownames(gAdd) <- NULL
newstart <- seq(origT, by=30, length.out=nm2add)
newstop <- c(newstart[-1], max(newstart) + 30)
gAdd$start <- rep(newstart, each=nlevels(gAdd$tile))
gAdd$stop <- rep(newstop, each=nlevels(gAdd$tile))
rbind(imdepi$stgrid, gAdd, make.row.names = FALSE)[,-1]

})
create an updated "epidataCS" with the time-extended 'stgrid'
imdepiext <- update(imdepi, stgrid = stgridext)
newT <- tail(imdepiext$stgrid$stop, 1)

simulate beyond the original period
simsext <- simulate(imdepifit, nsim=nsim, seed=1, t0=origT, T=newT,

data=imdepiext, tiles=districtsD, simplify=TRUE)

Aside to understand the note from checking events and tiles:
marks(imdepi)["636",] # tile 09662 is attributed to this event, but:
plot(districtsD[c("09678","09662"),], border=1:2, lwd=2, axes=TRUE)
points(imdepi$events["636",])
this mismatch is due to polygon simplification

plot the observed and simulated event numbers over time
plot(imdepiext, breaks=c(unique(imdepi$stgrid$start),origT),

cumulative=list(maxat=330))
for (i in seq_along(simsext$eventsList))

plot(simsext[[i]], add=TRUE, legend.types=FALSE,
breaks=c(unique(simsext$stgrid$start),newT),
subset=!is.na(source), # have to exclude the events of the prehistory
cumulative=list(offset=c(table(imdepi$events$type)), maxat=330, axis=FALSE),
border=NA, density=0) # no histogram

abline(v=origT, lty=2, lwd=2)

End(Not run)

twinstim_step Stepwise Model Selection by AIC

Description

stepComponent is a wrapper around step to select a "twinstim" component’s model based on an
information criterion in a stepwise algorithm.

There are also stand-alone single-step methods of add1 and drop1.

294 twinstim_step

Usage

stepComponent(object, component = c("endemic", "epidemic"),
scope = list(upper = object$formula[[component]]),
direction = "both", trace = 2, verbose = FALSE, ...)

S3 method for class 'twinstim'
add1(object, scope, component = c("endemic", "epidemic"),

trace = 2, ...)
S3 method for class 'twinstim'
drop1(object, scope, component = c("endemic", "epidemic"),

trace = 2, ...)

Arguments

object an object of class "twinstim".

component one of "endemic" or "epidemic" (partially matched), determining the model
component where the algorithm should proceed.

scope, direction, trace
see step and add1, respectively.

verbose see twinstim.

... further arguments passed to step, add1.default, or drop1.default, respec-
tively.

Value

See step and add1, respectively.

Author(s)

(of this wrapper around step) Sebastian Meyer

See Also

step, add1, drop1

Examples

data("imdepi", "imdepifit")

simple baseline model
m0 <- update(imdepifit, epidemic=~1, siaf=NULL)

AIC-based step-wise backward selection of the endemic component
m0_step <- stepComponent(m0, "endemic", scope=list(lower=~I(start/365-3.5)))
nothing is dropped from the model

twinstim_tiaf 295

twinstim_tiaf Temporal Interaction Function Objects

Description

A temporal interaction function for use in twinstim can be constructed via the tiaf function.
It checks the supplied function elements, assigns defaults for missing arguments, and returns all
checked arguments in a list. However, for standard applications it is much easier to use one of the
pre-defined temporal interaction functions, e.g., tiaf.exponential.

Usage

tiaf(g, G, deriv, Deriv, npars, validpars = NULL)

Arguments

g the temporal interaction function. It must accept two arguments, the first one
being a vector of time points, the second one a parameter vector. For marked
twinstim, it must accept the type of the event (integer code) as its third argu-
ment (either a single type for all locations or separate types for each location).

G a primitive of g(t) (with respect to time). It must accept the same arguments as
g, for instance a vector of time points (not just a single one).

deriv optional derivative of g(t) with respect to the parameters. It takes the same
arguments as g but returns a matrix with as many rows as there were time points
in the input and npars columns. This derivative is necessary for the calculation
of the score function in twinstim(), which is advantageous for the numerical
log-likelihood maximization.

Deriv optional primitive of deriv (with respect to time). It must accept the same
arguments as deriv, g and G and returns a matrix with as many rows as there
were time points in the input and npars columns. The integrated derivative is
necessary for the score function in twinstim.

npars the number of parameters of the temporal interaction function g (i.e. the length
of its second argument).

validpars optional function taking one argument, the parameter vector, indicating if it is
valid. This approach to specify parameter constraints is rarely needed, because
usual box-constrained parameters can be taken into account by using L-BFGS-
B as the optimization method in twinstim (with arguments lower and upper),
and positivity constraints by using log-parametrizations. This component is not
necessary (and ignored) if npars == 0.

Value

list of checked arguments.

Author(s)

Sebastian Meyer

296 twinstim_update

See Also

tiaf.exponential for a pre-defined temporal interaction function, and siaf for the spatial inter-
action function.

twinstim_update update-method for "twinstim"

Description

Update and (by default) re-fit a "twinstim". This method is especially useful if one wants to add
the model environment (which is required for some methods) to a fitted model object a posteriori.

Usage

S3 method for class 'twinstim'
update(object, endemic, epidemic,

control.siaf, optim.args, model,
..., use.estimates = TRUE, evaluate = TRUE)

Arguments

object a previous "twinstim" fit.
endemic, epidemic

changes to the formulae – see update.formula and twinstim.

control.siaf a list (see twinstim) to replace the given elements in the original control.siaf
list. If NULL, the original list of control arguments is removed from the call, i.e.,
the defaults are used in twinstim.

optim.args see twinstim. If a list, it will modify the original optim.args using modifyList.

model see twinstim. If this is the only argument to update, re-fitting is cleverly cir-
cumvented. Enriching the fit by the model environment is, e.g., required for
intensityplot.twinstim.

... Additional arguments to the call, or arguments with changed values.
If start values are specified, they need to be in the same format as in the original
call object$call$start, which is either a named list of named numeric vectors
or a named numeric vector; see the argument description in twinstim.

use.estimates logical indicating if the estimates of object should be used as initial values for
the new fit (in the start argument of twinstim). Defaults to TRUE.

evaluate If TRUE (default), evaluate the new call else return the call.

Value

If evaluate = TRUE the re-fitted object, otherwise the updated call.

unionSpatialPolygons 297

Author(s)

Sebastian Meyer

Inspiration and some pieces of code originate from update.default by the R Core Team.

See Also

update.default

Examples

data("imdepi", "imdepifit")

add another epidemic covariate
(but fix siaf-parameter so that this example runs quickly)
imdepifit2 <- update(imdepifit, epidemic = ~. + log(popdensity),

optim.args = list(fixed="e.siaf.1"))

compare by AIC
AIC(imdepifit, imdepifit2)

unionSpatialPolygons Compute the Unary Union of "SpatialPolygons"

Description

Union all subpolygons of a "SpatialPolygons" object. This is a legacy wrapper for the polygon
clipping engines implemented by packages sf and polyclip. Internally, both methods need to convert
the input polygons to a class appropriate for the method, so are rather inefficient.

Usage

unionSpatialPolygons(SpP, method = c("sf", "polyclip"), ...)

Arguments

SpP an object of class "SpatialPolygons". For the polyclip method only, all poly-
gon classes for which an xylist-method exists should work as input.

method polygon clipping machinery to use. Default is to call st_union in package sf.
For method="polyclip", function polyclip from package polyclip is used.
The old method="gpclib" is no longer available.

... further arguments passed to the chosen method.

Value

an object of class "SpatialPolygons" representing the union of all subpolygons.

298 untie

Author(s)

Sebastian Meyer

See Also

st_union in package sf, polyclip in package polyclip.

Examples

Load districts of Germany
load(system.file("shapes", "districtsD.RData", package = "surveillance"))
plot(districtsD, border = "gray", asp = 1)

Union these districts using either "sf" or "polyclip"
if (requireNamespace("sf")) {

stateD <- unionSpatialPolygons(districtsD, method = "sf")
plot(stateD, add = TRUE, border = 2, lwd = 2)

}
if (requireNamespace("polyclip")) {

stateD_pc <- unionSpatialPolygons(districtsD, method = "polyclip")
plot(stateD_pc, add = TRUE, border = 1, lwd = 2, lty = 2)

}

untie Randomly Break Ties in Data

Description

This is a generic function intended to randomly break tied data in a way similar to what jitter
does: tie-breaking is performed by shifting all data points by a random amount. The surveillance
package defines methods for matrices, "epidataCS", and a default method for numeric vectors.

Usage

untie(x, amount, ...)

S3 method for class 'epidataCS'
untie(x, amount = list(t=NULL, s=NULL),

minsep = list(t=0, s=0), direction = "left", keep.sources = FALSE,
..., verbose = FALSE)

S3 method for class 'matrix'
untie(x, amount = NULL, minsep = 0,

constraint = NULL, giveup = 1000, ...)
Default S3 method:
untie(x, amount = NULL, minsep = 0,

direction = c("symmetric", "left", "right"), sort = NULL,
giveup = 1000, ...)

untie 299

Arguments

x the data to be untied.

amount upper bound for the random amount by which data are shifted. NULL means
to use a data-driven default, which equals the minimum separation of the data
points for the non-symmetric default method and its half for the symmetric de-
fault method and the matrix method.

minsep minimum separation of jittered points. Can only be obeyed if much smaller than
amount (also depending on the number of points). minsep>0 is currently only
implemented for the spatial (matrix) method.

keep.sources logical (FALSE). If TRUE, the original list of possible event sources in x$events$.sources
will be preserved. For instance, events observed at the same time did by defi-
nition not trigger each other; however, after random tie-breaking one event will
precede the other and considered as a potential source of infection for the latter,
although it could just as well be the other way round. Enabling keep.sources
will use the .sources list from the original (tied) "epidataCS" object. Note,
however, that an update is forced within twinstim if a subset of the data is
selected for model fitting or if a different qmatrix is supplied.

constraint an object of class "SpatialPolygons" representing the domain which the points
of the matrix should belong to – before and after jittering.

giveup number of attempts after which the algorithm should stop trying to generate new
points.

direction one of "symmetric" (default), "left", or "right", indicating in which direc-
tion vector elements should be shifted.

sort logical indicating if the jittered vector should be sorted. Defaults to doing so if
the original vector was already sorted.

... For the "epidataCS"-method: arguments passed to the matrix- or default-
method (giveup). Unused in other methods.

verbose logical passed to as.epidataCS.

Details

For numeric vectors (default method), the jittered version is the same as for jitter(x, amount=amount),
if direction="symmetric" (and amount is non-NULL), and otherwise uses x “+-” runif(length(x),
0, amount).

For matrices, a vector uniformly drawn from the disc with radius amount is added to each point
(row).

For "epidataCS", amount is a list stating the amounts for the temporal and/or spatial dimension,
respectively. It then uses the specific methods with arguments constraint=x$W, direction, and
sort=TRUE. Note that this implements a simplistic approach of tie-breaking where all events are
assumed to be subject to the same amounts of censoring, and the default amounts may not be
sensible choices.

Value

the untied (jittered) data.

300 wrap.algo

Author(s)

Sebastian Meyer

See Also

jitter

Examples

vector example
set.seed(123)
untie(c(rep(1,3), rep(1.2, 4), rep(3,3)), direction="left", sort=FALSE)

spatial example
data(imdepi)
coords <- coordinates(imdepi$events)
table(duplicated(coords))
plot(coords, cex=sqrt(multiplicity(coords)))
set.seed(1)
coords_untied <- untie(coords)
stopifnot(!anyDuplicated(coords_untied))
points(coords_untied, col=2) # shifted by very small amount in this case

wrap.algo Multivariate Surveillance through independent univariate algorithms

Description

This function takes an sts object and applies an univariate surveillance algorithm to the time series
of each observational unit.

Usage

wrap.algo(sts, algo, control,control.hook=function(k, control)
return(control),verbose=TRUE,...)

bayes(sts, control = list(range = range, b = 0, w = 6,
actY = TRUE,alpha=0.05),...)

rki(sts, control = list(range = range, b = 2, w = 4,
actY = FALSE),...)

cusum(sts, control = list(range=range, k=1.04, h=2.26,
m=NULL, trans="standard",alpha=NULL),...)

glrpois(sts, control = list(range=range,c.ARL=5, S=1,beta=NULL,
Mtilde=1, M=-1, change="intercept",theta=NULL),...)

glrnb(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0,
Mtilde=1, M=-1, change="intercept",
theta=NULL,dir=c("inc","dec"),
ret=c("cases","value")),...)

zetaweights 301

outbreakP(sts, control=list(range = range, k=100,
ret=c("cases","value"),maxUpperboundCases=1e5),...)

Arguments

sts Object of class sts

algo Character string giving the function name of the algorithm to call, e.g. "algo.farrington".
Calling is done using do.call.

control Control object as list. Depends on each algorithm.

control.hook This is a function for handling multivariate objects. This argument is a func-
tion function of integer k and the current control object and which returns the
appropriate control object for region k.

verbose Boolean, if TRUE then textual information about the process is given

... currently ignored.

Value

An sts object with the alarm, upperbound, etc. slots filled with the results of independent and
univariate surveillance algorithm.

Author(s)

M. Höhle

See Also

algo.rki, algo.farrington, algo.cusum, algo.glrpois, algo.glrnb, algo.outbreakP for
the exact form of the control object.

zetaweights Power-Law Weights According to Neighbourhood Order

Description

Compute power-law weights with decay parameter d based on a matrix of neighbourhood orders
nbmat (e.g., as obtained via nbOrder). Without normalization and truncation, this is just o−d (where
o is a neighbourhood order). This function is mainly used internally for W_powerlaw weights in
hhh4 models.

Usage

zetaweights(nbmat, d = 1, maxlag = max(nbmat), normalize = FALSE)

302 zetaweights

Arguments

nbmat numeric, symmetric matrix of neighbourhood orders.

d single numeric decay parameter (default: 1). Should be positive.

maxlag single numeric specifying an upper limit for the power law. For neighbourhood
orders > maxlag, the resulting weight is 0. Defaults to no truncation.

normalize Should the resulting weight matrix be normalized such that rows sum to 1?

Value

a numeric matrix with same dimensions and names as the input matrix.

Author(s)

Sebastian Meyer

See Also

W_powerlaw

Examples

nbmat <- matrix(c(0,1,2,2,
1,0,1,1,
2,1,0,2,
2,1,2,0), 4, 4, byrow=TRUE)

zetaweights(nbmat, d=1, normalize=FALSE) # harmonic: o^-1
zetaweights(nbmat, d=1, normalize=TRUE) # rowSums=1
zetaweights(nbmat, maxlag=1, normalize=FALSE) # results in adjacency matrix

Index

∗ aplot
addFormattedXAxis, 9
layout.labels, 166
twinSIR_intensityplot, 245
twinstim_iafplot, 272
twinstim_intensity, 275

∗ chron
formatDate, 107
isoWeekYear, 161
refvalIdxByDate, 203

∗ classes
epidata, 69
epidataCS, 74
sts-class, 216
stsBP-class, 220
stsNC-class, 221

∗ classif
algo.bayes, 12
algo.call, 14
algo.cdc, 15
algo.compare, 17
algo.cusum, 18
algo.farrington, 20
algo.glrnb, 25
algo.hmm, 29
algo.outbreakP, 31
algo.rki, 35
algo.rogerson, 36
boda, 50
earsC, 66
farringtonFlexible, 99
wrap.algo, 300

∗ cluster
stcd, 212

∗ datagen
discpoly, 64
hhh4_simulate, 135
sim.pointSource, 210
sim.seasonalNoise, 211

twinSIR_simulation, 251
twinstim_simEndemicEvents, 286
twinstim_simulation, 287

∗ datasets
abattoir, 8
campyDE, 56
deleval, 63
fluBYBW, 106
ha, 110
hagelloch, 111
hepatitisA, 114
husO104Hosp, 154
imdepi, 155
imdepifit, 158
influMen, 159
m1, 172
measles.weser, 175
measlesDE, 177
meningo.age, 178
MMRcoverageDE, 178
momo, 179
rotaBB, 205
salmAllOnset, 205
salmHospitalized, 206
salmNewport, 206
salmonella.agona, 207
shadar, 209
stsNewport, 223

∗ distribution
fanplot, 98

∗ dplot
bestCombination, 49
checkResidualProcess, 60
hhh4_validation, 145
layout.labels, 166
magic.dim, 173
pit, 192
twinSIR_intensityplot, 245
twinSIR_profile, 250

303

304 INDEX

twinstim_intensity, 275
twinstim_profile, 283
untie, 298

∗ dynamic
animate, 42
epidata_animate, 90
epidataCS_animate, 82
sts_animate, 231

∗ environment
surveillance.options, 237

∗ graphs
poly2adjmat, 196

∗ hplot
animate, 42
epidata_animate, 90
epidata_plot, 94
epidataCS_animate, 82
epidataCS_plot, 86
fanplot, 98
hhh4_plot, 127
hhh4_simulate_plot, 138
intensityplot, 160
ks.plot.unif, 164
plot.atwins, 195
sts_animate, 231
sts_ggplot, 235
stsNClist_animate, 222
stsplot, 223
stsplot_space, 224
stsplot_time, 227
twinSIR_intensityplot, 245
twinstim_iafplot, 272
twinstim_intensity, 275
twinstim_plot, 282

∗ htest
calibrationTest, 54
checkResidualProcess, 60
hhh4_validation, 145
knox, 162
ks.plot.unif, 164
permutationTest, 191
stK, 214
twinSIR_methods, 247
twinSIR_profile, 250
twinstim_epitest, 264
twinstim_methods, 279
twinstim_profile, 283

∗ iteration

clapply, 62
plapply, 194

∗ list
clapply, 62
plapply, 194

∗ manip
epidata, 69
epidata_intersperse, 93
epidataCS, 74
epidataCS_aggregate, 80
epidataCS_permute, 85
epidataCS_update, 89
intersectPolyCircle, 160
tidy.sts, 238
untie, 298

∗ math
primeFactors, 198

∗ methods
aggregate-methods, 11
epidata_plot, 94
epidata_summary, 96
epidataCS_aggregate, 80
epidataCS_plot, 86
epidataCS_update, 89
hhh4_methods, 125
hhh4_predict, 134
hhh4_update, 143
R0, 200
residualsCT, 204
sts-class, 216
stsplot, 223
stsSlot-generics, 230
stsXtrct, 230
twinSIR_intensityplot, 245
twinSIR_methods, 247
twinSIR_profile, 250
twinstim_intensity, 275
twinstim_methods, 279
twinstim_profile, 283
twinstim_step, 293
twinstim_update, 296

∗ misc
algo.quality, 33

∗ models
arlCusum, 44
backprojNP, 45
coeflist, 62
find.kh, 103

INDEX 305

findH, 104
findK, 105
glm_epidataCS, 109
hhh4_predict, 134
hhh4_update, 143
hhh4_W, 150
linelist2sts, 168
nowcast, 183
twinSIR, 240
twinSIR_simulation, 251
twinstim, 256
twinstim_iaf, 268
twinstim_simEndemicEvents, 286
twinstim_simulation, 287
twinstim_step, 293
twinstim_update, 296

∗ optimize
backprojNP, 45
linelist2sts, 168
twinSIR, 240
twinSIR_profile, 250
twinstim, 256
twinstim_profile, 283

∗ package
surveillance-package, 6

∗ print
algo.summary, 38
formatPval, 108
hhh4_methods, 125
print.algoQV, 199
toLatex.sts, 239
twinSIR_methods, 247
twinstim_methods, 279

∗ regression
algo.farrington.assign.weights, 22
algo.farrington.fitGLM, 23
algo.farrington.threshold, 24
algo.twins, 39
anscombe.residuals, 43
categoricalCUSUM, 57
hhh4, 115
hhh4_formula, 123
LRCUSUM.runlength, 169
pairedbinCUSUM, 188

∗ spatial
animate, 42
discpoly, 64
epidata, 69

epidata_animate, 90
epidata_intersperse, 93
epidata_plot, 94
epidataCS, 74
epidataCS_aggregate, 80
epidataCS_animate, 82
epidataCS_plot, 86
hhh4_W, 150
intersectPolyCircle, 160
multiplicity.Spatial, 181
nbOrder, 182
poly2adjmat, 196
polyAtBorder, 197
sts_animate, 231
stsplot, 223
stsplot_space, 224
unionSpatialPolygons, 297
zetaweights, 301

∗ ts
algo.twins, 39
hhh4, 115
hhh4_validation, 145
sts-class, 216
sts_ggplot, 235
stsplot, 223
stsplot_time, 227

∗ univar
hhh4_simulate_scores, 142
hhh4_validation, 145
R0, 200
scores, 207

∗ utilities
all.equal, 42
coeflist, 62
disProg2sts, 65
epidataCS_update, 89
hhh4_W, 150
hhh4_W_utils, 153
magic.dim, 173
multiplicity.Spatial, 181
nbOrder, 182
twinstim_iaf, 268
twinstim_siaf, 284
twinstim_tiaf, 295
untie, 298
zetaweights, 301

.GlobalEnv, 11

.Random.seed, 136, 162, 191, 194, 273, 290

306 INDEX

[,sts,ANY,ANY,ANY-method (stsXtrct), 230
[,sts-method (stsXtrct), 230
[.data.frame, 72
[.epidata (epidata), 69
[.epidataCS (epidataCS), 74

abattoir, 8
abline, 131
add1, 293, 294
add1.default, 294
add1.twinstim (twinstim_step), 293
addFormattedXAxis, 9, 130, 140, 228
addSeason2formula, 10, 117, 125, 126, 144,

174
aggregate,sts-method

(aggregate-methods), 11
aggregate-methods, 11
aggregate.hhh4sims

(hhh4_simulate_plot), 138
aggregate.hhh4simslist

(hhh4_simulate_plot), 138
aggregate.sts, 218
aggregate.sts (aggregate-methods), 11
aggregate.ts, 11
aggregated, 224
AIC, 127, 244, 249, 279
AIC.twinSIR (twinSIR_methods), 247
alarms (stsSlot-generics), 230
alarms,sts-method (sts-class), 216
alarms<- (stsSlot-generics), 230
alarms<-,sts-method (sts-class), 216
algo.bayes, 12, 14, 16, 36
algo.bayes1 (algo.bayes), 12
algo.bayes2 (algo.bayes), 12
algo.bayes3 (algo.bayes), 12
algo.bayesLatestTimepoint, 16, 36
algo.bayesLatestTimepoint (algo.bayes),

12
algo.call, 13, 14
algo.cdc, 15
algo.cdcLatestTimepoint (algo.cdc), 15
algo.compare, 17, 34, 39
algo.cusum, 18, 301
algo.farrington, 14, 20, 24, 301
algo.farrington.assign.weights, 22
algo.farrington.fitGLM, 21, 22, 23, 102
algo.farrington.threshold, 22, 24, 102
algo.glrnb, 25, 301
algo.glrpois, 301

algo.glrpois (algo.glrnb), 25
algo.hmm, 29
algo.outbreakP, 31, 301
algo.quality, 17, 33, 39
algo.rki, 13, 14, 35, 301
algo.rki1 (algo.rki), 35
algo.rki2 (algo.rki), 35
algo.rki3 (algo.rki), 35
algo.rkiLatestTimepoint, 13, 16
algo.rkiLatestTimepoint (algo.rki), 35
algo.rogerson, 36
algo.summary, 38
algo.twins, 7, 39, 196
all.equal, 42, 42
ani.options, 92
animate, 42, 71, 224
animate.epidata, 43, 73, 96, 255
animate.epidata (epidata_animate), 90
animate.epidataCS, 43, 79, 88, 291
animate.epidataCS (epidataCS_animate),

82
animate.sts, 43, 219, 226
animate.sts (sts_animate), 231
animate.summary.epidata

(epidata_animate), 90
animate_nowcasts (stsNClist_animate),

222
anscombe.residuals, 23, 24, 43
arlCusum, 44
as.data.frame,sts-method (sts-class),

216
as.data.frame.sts, 238
as.data.frame.sts (sts-class), 216
as.epidata, 81, 97, 111, 112, 242, 244, 253
as.epidata (epidata), 69
as.epidata.epidataCS, 79, 94
as.epidata.epidataCS

(epidataCS_aggregate), 80
as.epidataCS, 288–290, 299
as.epidataCS (epidataCS), 74
as.factor, 140
as.hhh4simslist (hhh4_simulate_plot),

138
as.matrix, 72
as.stepfun, 78
as.stepfun.epidataCS (epidataCS), 74
as.ts.sts (sts-class), 216
as.xts.sts (sts-class), 216

INDEX 307

at2ndChange (addFormattedXAxis), 9
atChange (addFormattedXAxis), 9
atMedian (addFormattedXAxis), 9
autoplot, 224, 229
autoplot.sts, 219
autoplot.sts (sts_ggplot), 235
axis, 9
axisTicks, 130

backprojNP, 45
bayes (wrap.algo), 300
bestCombination, 49, 174
BIC, 127
boda, 50
bodaDelay, 52
boxplot, 131

calc.outbreakP.statistic
(algo.outbreakP), 31

calibrationTest, 54, 145, 148
calibrationTest.default, 147
calibrationTest.hhh4 (hhh4_validation),

145
calibrationTest.oneStepAhead

(hhh4_validation), 145
campyDE, 56
catcusum.LLRcompute (categoricalCUSUM),

57
categoricalCUSUM, 6, 8, 57, 171, 189
checkResidualProcess, 60, 165, 205
clapply, 62
class, 94, 96
clusterSetRNGStream, 194
coef, 126, 280
coef.epitest (twinstim_epitest), 264
coef.hhh4, 10
coef.hhh4 (hhh4_methods), 125
coeflist, 62, 280, 290
coeflist.hhh4 (hhh4_methods), 125
coeflist.twinstim (twinstim_methods),

279
coefW, 152
coefW (hhh4_W_utils), 153
coerce,epidataCS,SpatialPointsDataFrame-method

(epidataCS), 74
coerce,sts,stsBP-method (stsBP-class),

220
coerce,sts,stsNC-method (stsNC-class),

221

coerce,sts,ts-method (sts-class), 216
coerce,ts,sts-method (sts-class), 216
colorRampPalette, 98, 140
confint, 127, 279, 280
confint.hhh4 (hhh4_methods), 125
confint.oneStepAhead (hhh4_validation),

145
control (stsSlot-generics), 230
control,sts-method (sts-class), 216
control<- (stsSlot-generics), 230
control<-,sts-method (sts-class), 216
coordinates, 181
cox, 242, 254
cusum (wrap.algo), 300

data.frame, 70, 72, 76
Date, 87, 107, 161, 217
delayCDF (stsNC-class), 221
delayCDF,stsNC-method (stsNC-class), 221
deleval, 63
dev.interactive, 83, 91, 232
dev.print, 92
dim,sts-method (sts-class), 216
dimnames, 218
dimnames,sts-method (sts-class), 216
disc, 64
discpoly, 64, 76, 160, 161
disProg2sts, 65, 110, 216
dist, 72, 162
dnbinom, 55, 208
drop1, 293, 294
drop1.default, 294
drop1.twinstim (twinstim_step), 293
dss, 147
dss (scores), 207

earsC, 66
ecdf, 165
environment, 260
epidata, 69, 79–82, 94, 96, 113, 240, 252, 254
epidata_animate, 90
epidata_intersperse, 93
epidata_plot, 94
epidata_summary, 96
epidataCS, 74, 80, 81, 85, 86, 89, 90, 109,

155–157, 258, 265, 269, 276, 288
epidataCS2sts, 79
epidataCS2sts (epidataCS_aggregate), 80
epidataCS_aggregate, 80

308 INDEX

epidataCS_animate, 82
epidataCS_permute, 85
epidataCS_plot, 86
epidataCS_update, 89
epidataCSplot_space (epidataCS_plot), 86
epidataCSplot_time (epidataCS_plot), 86
epitest, 85, 164, 201, 216, 258
epitest (twinstim_epitest), 264
epoch (stsSlot-generics), 230
epoch,sts-method (sts-class), 216
epoch<- (stsSlot-generics), 230
epoch<-,sts-method (sts-class), 216
epochInYear (sts-class), 216
epochInYear,sts-method (sts-class), 216
extractAIC, 244, 249
extractAIC.twinSIR, 248
extractAIC.twinSIR (twinSIR_methods),

247

facet_wrap, 235
factor, 71, 131
fan, 98, 99, 140
fanplot, 98, 147
farrington (algo.farrington), 20
farringtonFlexible, 22, 99
fe, 11, 117, 119
fe (hhh4_formula), 123
find.kh, 103
findH, 37, 104
findK, 105
fixef (ranef), 203
fixef.hhh4, 203
fixef.hhh4 (hhh4_methods), 125
fluBYBW, 106
format, 108
format.Date, 107
format.pval, 108, 280
formatDate, 107, 169
formatPval, 108
formula, 10, 11, 126, 240, 252
formula.hhh4 (hhh4_methods), 125

geom_col, 235
geom_line, 235
getMaxEV (hhh4_plot), 127
getMaxEV_season (hhh4_plot), 127
getNEweights, 152
getNEweights (hhh4_W_utils), 153
getSourceDists, 268

getSourceDists (epidataCS), 74
glm, 43, 109
glm.nb, 26, 117
glm_epidataCS, 109
glrnb, 25
glrnb (wrap.algo), 300
glrpois (wrap.algo), 300
grid, 98
grid.arrange, 132
grid.text, 226

h1_nrwrp (m1), 172
ha, 110
hagelloch, 73, 111, 181
head.epidataCS (epidataCS), 74
hepatitisA, 114
hhh4, 7, 10, 11, 80, 82, 115, 124–127, 129,

134, 135, 139, 142–146, 150, 152,
154, 174, 203, 301

hhh4_formula, 123
hhh4_methods, 125
hhh4_plot, 127
hhh4_predict, 134
hhh4_simulate, 135
hhh4_simulate_plot, 138
hhh4_simulate_scores, 142
hhh4_update, 143
hhh4_validation, 145
hhh4_W, 150
hhh4_W_utils, 153
hist, 86–88, 193
hist.Date, 86, 87
husO104Hosp, 154
hValues, 38
hValues (findH), 104

iafplot, 282
iafplot (twinstim_iafplot), 272
imdepi, 155, 158
imdepifit, 158
influMen, 159
integrate, 258, 259
intensity.twinstim

(twinstim_intensity), 275
intensityplot, 160, 245, 260, 275, 290
intensityplot.simEpidata, 255
intensityplot.simEpidata

(twinSIR_intensityplot), 245

INDEX 309

intensityplot.simEpidataCS
(twinstim_intensity), 275

intensityplot.twinSIR, 160
intensityplot.twinSIR

(twinSIR_intensityplot), 245
intensityplot.twinstim, 160, 282, 296
intensityplot.twinstim

(twinstim_intensity), 275
interactive, 194, 232
intersect.owin, 76
intersectPolyCircle, 160
intersperse (epidata_intersperse), 93
is.projected, 166
isoWeekYear, 161, 217

jitter, 298–300

k1 (m1), 172
knots, 253
knox, 162, 216, 265, 267
ks.plot.unif, 61, 164
ks.test, 165

lapply, 62, 194
layout.labels, 131, 166, 225
layout.scale.bar, 166
layout.scalebar (layout.labels), 166
legend, 83, 87, 88, 91, 95, 129, 139, 228, 274
levelplot, 130, 131, 226
linelist2sts, 107, 168, 184
lines, 98, 139, 140, 147
list, 218
lm, 242, 254
log_breaks, 130
logLik, 127, 244, 279
logLik.hhh4 (hhh4_methods), 125
logLik.twinSIR (twinSIR_methods), 247
logLik.twinstim (twinstim_methods), 279
logs (scores), 207
LRCUSUM.runlength, 59, 169

m1, 172
m2 (m1), 172
m3 (m1), 172
m4 (m1), 172
m5 (m1), 172
magic.dim, 49, 173
makeCluster, 194
makeControl, 117, 174

mapply, 174, 193
marks, 78, 175
marks.epidataCS, 175
marks.epidataCS (epidataCS), 74
matlines, 139
matplot, 131, 227, 246
Matrix, 72
matrix, 70
mclapply, 147, 194, 195, 260
meanHHH, 134
measles.weser, 175
measlesDE, 177, 179
measlesWeserEms (measles.weser), 175
meningo.age, 178
missing, 228
MMRcoverageDE, 177, 178
modifyList, 144, 226, 296
momo, 179
msm, 29, 31
multinomialTS (stsSlot-generics), 230
multinomialTS,sts-method (sts-class),

216
multinomialTS<- (stsSlot-generics), 230
multinomialTS<-,sts-method (sts-class),

216
multiplicity, 181, 181
multiplicity.Spatial, 181, 181

n1 (m1), 172
n2 (m1), 172
n2mfrow, 174
na.pass, 258
NaN, 258
nb2mat, 196, 197
nblag, 182
nbOrder, 131, 151, 152, 182, 301
negative.binomial, 26
neighbourhood (stsSlot-generics), 230
neighbourhood,sts-method (sts-class),

216
neighbourhood<- (stsSlot-generics), 230
neighbourhood<-,sts-method (sts-class),

216
nlm, 116
nlme::ranef, 203
nlminb, 118, 259, 260, 270
nobs, 126, 279
nobs.epidataCS (epidataCS), 74
nobs.hhh4 (hhh4_methods), 125

310 INDEX

nobs.twinstim (twinstim_methods), 279
nowcast, 183

observed (stsSlot-generics), 230
observed,sts-method (sts-class), 216
observed<- (stsSlot-generics), 230
observed<-,sts-method (sts-class), 216
on.exit, 194
oneStepAhead, 144
oneStepAhead (hhh4_validation), 145
optim, 103, 116, 240, 241, 251, 259, 283
options, 237
outbreakP (wrap.algo), 300
owin, 64, 160

pairedbinCUSUM, 6, 63, 188
panel.text, 166, 167
par, 61, 87, 91, 95, 129, 139, 215, 228, 237
parLapply, 194, 195
permutationTest, 191
permute.epidataCS, 265–267
permute.epidataCS (epidataCS_permute),

85
persp, 215
pit, 145, 148, 192
pit.default, 147
pit.hhh4 (hhh4_validation), 145
pit.oneStepAhead (hhh4_validation), 145
plapply, 162, 163, 194, 215, 266
plot, 73, 94, 127, 227, 260
plot,sts,missing-method (stsplot), 223
plot,stsNC,missing-method (stsplot), 223
plot.atwins, 195
plot.default, 98, 215, 273
plot.epidata, 92, 255
plot.epidata (epidata_plot), 94
plot.epidataCS, 79, 84, 291
plot.epidataCS (epidataCS_plot), 86
plot.epitest (twinstim_epitest), 264
plot.function, 95
plot.hhh4 (hhh4_plot), 127
plot.hhh4sims, 99, 137
plot.hhh4sims (hhh4_simulate_plot), 138
plot.hhh4simslist (hhh4_simulate_plot),

138
plot.histogram, 193
plot.knox (knox), 162
plot.oneStepAhead, 99
plot.oneStepAhead (hhh4_validation), 145

plot.profile.twinSIR (twinSIR_profile),
250

plot.stepfun, 95, 274
plot.stKtest (stK), 214
plot.sts, 219
plot.sts (stsplot), 223
plot.summary.epidata (epidata_plot), 94
plot.survRes, 229
plot.twinSIR, 244
plot.twinSIR (twinSIR_intensityplot),

245
plot.twinstim, 159, 275, 277
plot.twinstim (twinstim_plot), 282
plotHHH4_fitted (hhh4_plot), 127
plotHHH4_fitted1, 9, 10
plotHHH4_fitted1 (hhh4_plot), 127
plotHHH4_maps (hhh4_plot), 127
plotHHH4_maxEV (hhh4_plot), 127
plotHHH4_neweights (hhh4_plot), 127
plotHHH4_ri (hhh4_plot), 127
plotHHH4_season (hhh4_plot), 127
plotHHH4sims_fan (hhh4_simulate_plot),

138
plotHHH4sims_size (hhh4_simulate_plot),

138
plotHHH4sims_time (hhh4_simulate_plot),

138
points, 88, 91
poly2adjmat, 81, 196
poly2nb, 196, 197
polyAtBorder, 197
polyclip, 297, 298
polyCub, 269, 285
polyCub.iso, 258, 259, 269
polyCub.midpoint, 258, 269
polyCub.SV, 258
Polygon, 64
population (stsSlot-generics), 230
population,sts-method (sts-class), 216
population<- (stsSlot-generics), 230
population<-,sts-method (sts-class), 216
predefined siaf’s, 288
predict.hhh4 (hhh4_predict), 134
predint (stsNC-class), 221
predint,stsNC-method (stsNC-class), 221
pretty, 225
primeFactors, 174, 198
print, 96, 279

INDEX 311

print.algoQV, 199
print.data.frame, 72, 77
print.epidata (epidata), 69
print.epidataCS (epidataCS), 74
print.hhh4 (hhh4_methods), 125
print.Latex, 281
print.summary.epidata

(epidata_summary), 96
print.summary.epidataCS (epidataCS), 74
print.summary.twinSIR

(twinSIR_methods), 247
print.summary.twinstim

(twinstim_methods), 279
print.table, 77
print.twinSIR (twinSIR_methods), 247
print.twinstim (twinstim_methods), 279
print.xtable, 239, 281
printCoefmat, 249, 280
proc.time, 119, 261
profile.twinSIR, 244
profile.twinSIR (twinSIR_profile), 250
profile.twinstim (twinstim_profile), 283
proj4string, 76, 166

q1_nrwh (m1), 172
q2 (m1), 172
quantile.oneStepAhead

(hhh4_validation), 145

R0, 200, 260, 290
rainbow, 87
ranef, 203
ranef.hhh4, 203
ranef.hhh4 (hhh4_methods), 125
refvalIdxByDate, 203
reportingTriangle (stsNC-class), 221
reportingTriangle,stsNC-method

(stsNC-class), 221
reset.surveillance.options

(surveillance.options), 237
residuals, 60, 61, 127, 260, 290
residuals.glm, 127
residuals.hhh4 (hhh4_methods), 125
residuals.simEpidataCS (residualsCT),

204
residuals.twinSIR (residualsCT), 204
residuals.twinstim, 260, 261
residuals.twinstim (residualsCT), 204
residualsCT, 204

ri, 11, 117, 119
ri (hhh4_formula), 123
rki (wrap.algo), 300
rnbinom, 136, 233
RNGkind, 194
rotaBB, 205
rps (scores), 207
rug, 95, 246, 273, 277
run.jags, 186

s1 (m1), 172
s2 (m1), 172
s3 (m1), 172
salmAllOnset, 205
salmHospitalized, 206
salmNewport, 206
salmonella.agona, 207
saveHTML, 83, 84, 231
score (stsNC-class), 221
score,stsNC-method (stsNC-class), 221
scores, 145, 191, 207
scores.hhh4 (hhh4_validation), 145
scores.hhh4sims, 137
scores.hhh4sims (hhh4_simulate_scores),

142
scores.hhh4simslist

(hhh4_simulate_scores), 142
scores.oneStepAhead (hhh4_validation),

145
seq.Date, 168, 169, 184
ses (scores), 207
set.seed, 51, 136, 194, 215, 254, 290
sf, 217
shadar, 209
siaf, 257, 268, 269, 271, 296
siaf (twinstim_siaf), 284
siaf.constant (twinstim_iaf), 268
siaf.exponential, 257
siaf.exponential (twinstim_iaf), 268
siaf.gaussian, 257, 258, 284, 286
siaf.gaussian (twinstim_iaf), 268
siaf.powerlaw, 257, 259
siaf.powerlaw (twinstim_iaf), 268
siaf.powerlaw1 (twinstim_iaf), 268
siaf.powerlawL (twinstim_iaf), 268
siaf.step, 257, 260, 274
siaf.step (twinstim_iaf), 268
siaf.student (twinstim_iaf), 268
sim.pointSource, 210, 212

312 INDEX

sim.seasonalNoise, 210, 211
simEndemicEvents, 265, 291
simEndemicEvents

(twinstim_simEndemicEvents),
286

simEpidata, 73, 246
simEpidata (twinSIR_simulation), 251
simEpidataCS, 204, 275
simEpidataCS (twinstim_simulation), 287
simpleR0, 265–267
simpleR0 (R0), 200
simplify.owin, 78, 291
simplify2array, 208
simulate, 136, 139, 142, 242, 251, 260, 287,

290
simulate.hhh4, 138, 225
simulate.hhh4 (hhh4_simulate), 135
simulate.twinSIR, 244, 247
simulate.twinSIR (twinSIR_simulation),

251
simulate.twinstim, 159, 262, 286, 287
simulate.twinstim

(twinstim_simulation), 287
sp.points, 277
sp.polygons, 131, 226, 277
Spatial, 166, 181
SpatialPixels, 277
SpatialPoints, 181
SpatialPointsDataFrame, 75, 77, 155, 286,

288, 291
SpatialPolygons, 76, 78, 81, 84, 87, 88, 131,

156, 196–198, 217, 218, 225, 265,
276, 286, 289, 297, 299

SpatialPolygonsDataFrame, 88, 106, 176,
217, 218, 276

spatstat.geom::marks, 175
spatstat.geom::multiplicity, 181
split, 62
spplot, 86–88, 129, 131, 132, 166, 167,

224–226, 277
sprintf, 280
sqrt_trans, 139, 225
st_union, 297, 298
stateplot (epidata_plot), 94
stcd, 212
stdiagn, 215
step, 293, 294
stepComponent (twinstim_step), 293

stepfun, 253
stK, 214
stkhat, 215
stKtest, 164
stKtest (stK), 214
stmctest, 215
storage.mode, 78
strftime, 9, 10, 107, 108, 161
stripplot, 131
strptime, 168, 169, 237
sts, 6, 9, 11, 21, 25, 45, 63, 79–81, 100, 106,

115, 127, 130, 136, 169, 175, 177,
180, 206, 220, 221, 223–225, 227,
230–233, 235, 236, 238, 239, 300,
301

sts (sts-class), 216
sts-class, 216
sts2disProg, 25
sts2disProg (disProg2sts), 65
sts_animate, 231
sts_creation, 233
sts_ggplot, 235
sts_observation, 236
stsBP, 46, 47
stsBP-class, 220
stsecal, 215
stsNC, 186, 222
stsNC-class, 221
stsNClist_animate, 222
stsNewport, 223
stsplot, 223, 226, 229, 232
stsplot_alarm (stsplot_time), 227
stsplot_space, 224, 224, 231, 232
stsplot_time, 130, 196, 224, 227, 235
stsplot_time1, 9, 10, 224, 237
stsplot_time1 (stsplot_time), 227
stsSlot-generics, 230
stsXtrct, 230
subset.data.frame, 77, 87
subset.epidataCS (epidataCS), 74
summary, 73, 96, 260, 279
summary.epidata, 72, 92, 96
summary.epidata (epidata_summary), 96
summary.epidataCS (epidataCS), 74
summary.hhh4, 132
summary.hhh4 (hhh4_methods), 125
summary.twinSIR (twinSIR_methods), 247
summary.twinstim, 159

INDEX 313

summary.twinstim (twinstim_methods), 279
surveillance (surveillance-package), 6
surveillance-package, 6
surveillance.options, 237
Sys.sleep, 83, 91

t.test, 192
tail.epidataCS (epidataCS), 74
terms, 117
text, 166, 167
tiaf, 257, 268, 271, 286
tiaf (twinstim_tiaf), 295
tiaf.constant, 288
tiaf.constant (twinstim_iaf), 268
tiaf.exponential, 257, 288, 295, 296
tiaf.exponential (twinstim_iaf), 268
tiaf.step, 257, 274
tiaf.step (twinstim_iaf), 268
tidy.sts, 219, 235, 238
title, 91
toLatex, 260, 279
toLatex,sts-method (toLatex.sts), 239
toLatex.knox (knox), 162
toLatex.sts, 219, 239
toLatex.summary.twinstim

(twinstim_methods), 279
trans, 225
trellis, 226, 232
trellis.object, 88, 132, 277
truehist, 162, 163, 191, 215, 266
ts, 217
twinSIR, 7, 61, 69, 71, 73, 80–82, 111, 113,

204, 240, 246, 247, 251, 255, 262
twinSIR_intensityplot, 245
twinSIR_methods, 247
twinSIR_profile, 250
twinSIR_simulation, 251
twinstim, 7, 61, 74, 76–78, 109, 155, 157,

158, 164, 200, 201, 204, 216, 256,
265, 271, 275, 281, 282, 284,
286–288, 290, 291, 293–296

twinstim_epitest, 264
twinstim_iaf, 268
twinstim_iafplot, 272
twinstim_intensity, 275
twinstim_methods, 279
twinstim_plot, 282
twinstim_profile, 283
twinstim_siaf, 284

twinstim_simEndemicEvents, 286
twinstim_simulation, 287
twinstim_step, 293
twinstim_tiaf, 295
twinstim_update, 296
txtProgressBar, 93, 194, 232

unionSpatialPolygons, 197, 198, 289, 297
untie, 75, 155, 257, 298
update, 79, 89, 112, 127, 286
update.default, 297
update.epidata (epidata), 69
update.epidataCS (epidataCS_update), 89
update.formula, 296
update.hhh4 (hhh4_update), 143
update.twinstim (twinstim_update), 296
upperbound (stsSlot-generics), 230
upperbound,sts-method (sts-class), 216
upperbound<- (stsSlot-generics), 230
upperbound<-,sts-method (sts-class), 216

vcov, 127, 244, 279
vcov.hhh4 (hhh4_methods), 125
vcov.twinSIR (twinSIR_methods), 247
vcov.twinstim (twinstim_methods), 279

W_np (hhh4_W), 150
W_powerlaw, 116, 118, 153, 301, 302
W_powerlaw (hhh4_W), 150
wrap.algo, 6, 21, 300

xtable, 260, 279–281
xtable.algoQV (algo.quality), 33
xtable.summary.twinstim

(twinstim_methods), 279
xtable.twinstim (twinstim_methods), 279
xylist, 215, 297

year (sts-class), 216
year,sts-method (sts-class), 216

zetaweights, 301

	surveillance-package
	abattoir
	addFormattedXAxis
	addSeason2formula
	aggregate-methods
	algo.bayes
	algo.call
	algo.cdc
	algo.compare
	algo.cusum
	algo.farrington
	algo.farrington.assign.weights
	algo.farrington.fitGLM
	algo.farrington.threshold
	algo.glrnb
	algo.hmm
	algo.outbreakP
	algo.quality
	algo.rki
	algo.rogerson
	algo.summary
	algo.twins
	all.equal
	animate
	anscombe.residuals
	arlCusum
	backprojNP
	bestCombination
	boda
	bodaDelay
	calibrationTest
	campyDE
	categoricalCUSUM
	checkResidualProcess
	clapply
	coeflist
	deleval
	discpoly
	disProg2sts
	earsC
	epidata
	epidataCS
	epidataCS_aggregate
	epidataCS_animate
	epidataCS_permute
	epidataCS_plot
	epidataCS_update
	epidata_animate
	epidata_intersperse
	epidata_plot
	epidata_summary
	fanplot
	farringtonFlexible
	find.kh
	findH
	findK
	fluBYBW
	formatDate
	formatPval
	glm_epidataCS
	ha
	hagelloch
	hepatitisA
	hhh4
	hhh4_formula
	hhh4_methods
	hhh4_plot
	hhh4_predict
	hhh4_simulate
	hhh4_simulate_plot
	hhh4_simulate_scores
	hhh4_update
	hhh4_validation
	hhh4_W
	hhh4_W_utils
	husO104Hosp
	imdepi
	imdepifit
	influMen
	intensityplot
	intersectPolyCircle
	isoWeekYear
	knox
	ks.plot.unif
	layout.labels
	linelist2sts
	LRCUSUM.runlength
	m1
	magic.dim
	makeControl
	marks
	measles.weser
	measlesDE
	meningo.age
	MMRcoverageDE
	momo
	multiplicity
	multiplicity.Spatial
	nbOrder
	nowcast
	pairedbinCUSUM
	permutationTest
	pit
	plapply
	plot.atwins
	poly2adjmat
	polyAtBorder
	primeFactors
	print.algoQV
	R0
	ranef
	refvalIdxByDate
	residualsCT
	rotaBB
	salmAllOnset
	salmHospitalized
	salmNewport
	salmonella.agona
	scores
	shadar
	sim.pointSource
	sim.seasonalNoise
	stcd
	stK
	sts-class
	stsBP-class
	stsNC-class
	stsNClist_animate
	stsNewport
	stsplot
	stsplot_space
	stsplot_time
	stsSlot-generics
	stsXtrct
	sts_animate
	sts_creation
	sts_ggplot
	sts_observation
	surveillance.options
	tidy.sts
	toLatex.sts
	twinSIR
	twinSIR_intensityplot
	twinSIR_methods
	twinSIR_profile
	twinSIR_simulation
	twinstim
	twinstim_epitest
	twinstim_iaf
	twinstim_iafplot
	twinstim_intensity
	twinstim_methods
	twinstim_plot
	twinstim_profile
	twinstim_siaf
	twinstim_simEndemicEvents
	twinstim_simulation
	twinstim_step
	twinstim_tiaf
	twinstim_update
	unionSpatialPolygons
	untie
	wrap.algo
	zetaweights
	Index

