
Package ‘survML’
October 31, 2024

Title Tools for Flexible Survival Analysis Using Machine Learning

Version 1.2.0

Description Statistical tools for analyzing time-to-event data using
machine learning. Implements survival stacking for conditional
survival estimation, standardized survival function estimation for
current status data, and methods for algorithm-agnostic variable
importance. See Wolock CJ, Gilbert PB, Simon N,
and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends SuperLearner (>= 2.0.28),

Imports Iso (>= 0.0.18.1), haldensify (>= 0.2.3), fdrtool (>= 1.2.17),
ChernoffDist (>= 0.1.0), dplyr (>= 1.0.10), gtools (>= 3.9.5),
mboost (>= 2.9.0), survival (>= 3.5.0), stats (>= 4.3.2),
methods (>= 4.3.2)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2 (>= 3.4.0),
gam (>= 1.22.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/cwolock/survML,

https://cwolock.github.io/survML/

BugReports https://github.com/cwolock/survML/issues

NeedsCompilation no

Author Charles Wolock [aut, cre, cph]
(<https://orcid.org/0000-0003-3527-1102>),

Avi Kenny [ctb] (<https://orcid.org/0000-0002-9465-7307>)

Maintainer Charles Wolock <cwolock@gmail.com>

Repository CRAN

Date/Publication 2024-10-31 00:20:01 UTC

1

https://doi.org/10.1080/10618600.2024.2304070
https://github.com/cwolock/survML
https://cwolock.github.io/survML/
https://github.com/cwolock/survML/issues
https://orcid.org/0000-0003-3527-1102
https://orcid.org/0000-0002-9465-7307

2 crossfit_oracle_preds

Contents
crossfit_oracle_preds . 2
crossfit_surv_preds . 3
currstatCIR . 4
DR_pseudo_outcome_regression . 6
generate_folds . 7
predict.stackG . 7
predict.stackL . 9
stackG . 11
stackL . 15
vim . 18
vim_accuracy . 21
vim_AUC . 23
vim_brier . 25
vim_cindex . 26
vim_rsquared . 28
vim_survival_time_mse . 30

Index 32

crossfit_oracle_preds Generate cross-fitted oracle prediction function estimates

Description

Generate cross-fitted oracle prediction function estimates

Usage

crossfit_oracle_preds(
time,
event,
X,
folds,
nuisance_preds,
pred_generator,
...

)

Arguments

time n x 1 numeric vector of observed follow-up times. If there is censoring, these
are the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed.

X n x p data.frame of observed covariate values

folds n x 1 numeric vector of folds identifiers for cross-fitting

crossfit_surv_preds 3

nuisance_preds Named list of conditional event and censoring survival functions that will be
used to estimate the oracle prediction function.

pred_generator Function to be used to estimate oracle prediction function.

... Additional arguments to be passed to pred_generator.

Value

Named list of cross-fitted oracle prediction estimates

crossfit_surv_preds Generate cross-fitted conditional survival predictions

Description

Generate cross-fitted conditional survival predictions

Usage

crossfit_surv_preds(time, event, X, newtimes, folds, pred_generator, ...)

Arguments

time n x 1 numeric vector of observed follow-up times. If there is censoring, these
are the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed.

X n x p data.frame of observed covariate values

newtimes Numeric vector of times on which to estimate the conditional survival functions

folds n x 1 numeric vector of folds identifiers for cross-fitting

pred_generator Function to be used to estimate conditional survival function.

... Additional arguments to be passed to pred_generator.

Value

Named list of cross-fitted conditional survival predictions

4 currstatCIR

currstatCIR Estimate a survival function under current status sampling

Description

Estimate a survival function under current status sampling

Usage

currstatCIR(
time,
event,
X,
SL_control = list(SL.library = c("SL.mean", "SL.glm"), V = 3),
HAL_control = list(n_bins = c(5), grid_type = c("equal_mass"), V = 3),
deriv_method = "m-spline",
eval_region,
n_eval_pts = 101,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed monitoring times. For individuals that were
never monitored, this can be set to any arbitrary value, including NA, as long as
the corresponding event variable is NA.

event n x 1 numeric vector of status indicators of whether an event was observed prior
to the monitoring time. This value must be NA for individuals that were never
monitored.

X n x p dataframe of observed covariate values.

SL_control List of SuperLearner control parameters. This should be a named list; see
SuperLearner documentation for further information.

HAL_control List of haldensify control parameters. This should be a named list; see haldensify
documentation for further information.

deriv_method Method for computing derivative. Options are "m-spline" (the default, fit a
smoothing spline to the estimated function and differentiate the smooth approx-
imation), "linear" (linearly interpolate the estimated function and use the slope
of that line), and "line" (use the slope of the line connecting the endpoints of
the estimated function).

eval_region Region over which to estimate the survival function.

n_eval_pts Number of points in grid on which to evaluate survival function. The points will
be evenly spaced, on the quantile scale, between the endpoints of eval_region.

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

currstatCIR 5

Value

Data frame giving results, with columns:

t Time at which survival function is estimated

S_hat_est Survival function estimate

S_hat_cil Lower bound of confidence interval

S_hat_ciu Upper bound of confidence interval

Examples

Not run: # This is a small simulation example
set.seed(123)
n <- 300
x <- cbind(2*rbinom(n, size = 1, prob = 0.5)-1,

2*rbinom(n, size = 1, prob = 0.5)-1)
t <- rweibull(n,

shape = 0.75,
scale = exp(0.4*x[,1] - 0.2*x[,2]))

y <- rweibull(n,
shape = 0.75,
scale = exp(0.4*x[,1] - 0.2*x[,2]))

round y to nearest quantile of y, just so there aren't so many unique values
quants <- quantile(y, probs = seq(0, 1, by = 0.05), type = 1)
for (i in 1:length(y)){

y[i] <- quants[which.min(abs(y[i] - quants))]
}
delta <- as.numeric(t <= y)

dat <- data.frame(y = y, delta = delta, x1 = x[,1], x2 = x[,2])

dat$delta[dat$y > 1.8] <- NA
dat$y[dat$y > 1.8] <- NA
eval_region <- c(0.05, 1.5)
res <- survML::currstatCIR(time = dat$y,

event = dat$delta,
X = dat[,3:4],
SL_control = list(SL.library = c("SL.mean", "SL.glm"),

V = 3),
HAL_control = list(n_bins = c(5),

grid_type = c("equal_mass"),
V = 3),

eval_region = eval_region)

xvals = res$t
yvals = res$S_hat_est
fn=stepfun(xvals, c(yvals[1], yvals))
plot.function(fn, from=min(xvals), to=max(xvals))
End(Not run)

6 DR_pseudo_outcome_regression

DR_pseudo_outcome_regression

Generate oracle prediction function estimates using doubly-robust
pseudo-outcome regression with SuperLearner

Description

Generate oracle prediction function estimates using doubly-robust pseudo-outcome regression with
SuperLearner

Usage

DR_pseudo_outcome_regression(
time,
event,
X,
newX,
approx_times,
S_hat,
G_hat,
newtimes,
outcome,
SL.library,
V

)

Arguments

time n x 1 numeric vector of observed follow-up times. If there is censoring, these
are the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed.

X n x p data.frame of observed covariate values

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

approx_times Numeric vector of length J2 giving times at which to approximate integral ap-
pearing in the pseudo-outcomes

S_hat n x J2 matrix of conditional event time survival function estimates

G_hat n x J2 matrix of conditional censoring time survival function estimates

newtimes Numeric vector of times at which to generate oracle prediction function esti-
mates

outcome Outcome type, either "survival_probability" or "restricted_survival_time"

SL.library Super Learner library

V Number of cross-validation folds, to be passed to SuperLearner

generate_folds 7

Value

Matrix of predictions.

generate_folds Generate cross-fitting and sample-splitting folds

Description

Generate cross-fitting and sample-splitting folds

Usage

generate_folds(n, V, sample_split)

Arguments

n Total sample size

V Number of cross-fitting folds to use

sample_split Logical, whether or not sample-splitting is being used

Value

Named list of cross-fitting and sample-splitting folds

predict.stackG Obtain predicted conditional survival and cumulative hazard func-
tions from a global survival stacking object

Description

Obtain predicted conditional survival and cumulative hazard functions from a global survival stack-
ing object

Usage

S3 method for class 'stackG'
predict(
object,
newX,
newtimes,
surv_form = object$surv_form,
time_grid_approx = object$time_grid_approx,
...

)

8 predict.stackG

Arguments

object Object of class stackG

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

surv_form Mapping from hazard estimate to survival estimate. Can be either "PI" (product
integral mapping) or "exp" (exponentiated cumulative hazard estimate). De-
faults to the value saved in object.

time_grid_approx

Numeric vector of times at which to approximate product integral or cumulative
hazard interval. Defaults to the value saved in object.

... Further arguments passed to or from other methods.

Value

A named list with the following components:

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

S_C_preds An m x k matrix of estimated censoring time survival probabilities at the m co-
variate vector values and k times provided by the user in newX and newtimes,
respectively.

Lambda_T_preds An m x k matrix of estimated event time cumulative hazard function values at
the m covariate vector values and k times provided by the user in newX and
newtimes, respectively.

Lambda_C_preds An m x k matrix of estimated censoring time cumulative hazard function values
at the m covariate vector values and k times provided by the user in newX and
newtimes, respectively.

time_grid_approx

The approximation grid for the product integral or cumulative hazard integral,
(user-specified).

surv_form Exponential or product-integral form (user-specified).

See Also

stackG

Examples

This is a small simulation example
set.seed(123)
n <- 250
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

predict.stackL 9

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)
event <- as.numeric(T <= C)

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")

fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
surv_form = "exp",
learner = "SuperLearner",
SL_control = list(SL.library = SL.library,

V = 5))

preds <- predict(object = fit,
newX = X,
newtimes = seq(0, 15, 0.1))

plot(preds$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

10 predict.stackL

predict.stackL Obtain predicted conditional survival function from a local survival
stacking object

Description

Obtain predicted conditional survival function from a local survival stacking object

Usage

S3 method for class 'stackL'
predict(object, newX, newtimes, ...)

Arguments

object Object of class stackL

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

... Further arguments passed to or from other methods.

Value

A named list with the following components:

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

See Also

stackL

Examples

This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

stackG 11

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)
event <- as.numeric(T <= C)

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")

fit <- stackL(time = time,
event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
SL_control = list(SL.library = SL.library,

V = 5))

preds <- predict(object = fit,
newX = X,
newtimes = seq(0, 15, 0.1))

plot(preds$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

stackG Estimate a conditional survival function using global survival stacking

Description

Estimate a conditional survival function using global survival stacking

Usage

stackG(
time,

12 stackG

event = rep(1, length(time)),
entry = NULL,
X,
newX = NULL,
newtimes = NULL,
direction = "prospective",
time_grid_fit = NULL,
bin_size = NULL,
time_basis,
time_grid_approx = sort(unique(time)),
surv_form = "PI",
learner = "SuperLearner",
SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV

= FALSE),
tau = NULL

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

entry Study entry variable, if applicable. Defaults to NULL, indicating that there is no
truncation.

X n x p data.frame of observed covariate values on which to train the estimator.

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

direction Whether the data come from a prospective or retrospective study. This deter-
mines whether the data are treated as subject to left truncation and right censor-
ing ("prospective") or right truncation alone ("retrospective").

time_grid_fit Named list of numeric vectors of times of times on which to discretize for esti-
mation of cumulative probability functions. This is an alternative to bin_size
and allows for specially tailored time grids rather than simply using a quan-
tile bin size. The list consists of vectors named F_Y_1_grid, F_Y_0_grid,
G_W_1_grid, and G_W_0_grid. These denote, respectively, the grids used to
estimate the conditional CDF of the time variable among uncensored and cen-
sored observations, and the grids used to estimate the conditional distribution of
the entry variable among uncensored and censored observations.

bin_size Size of time bin on which to discretize for estimation of cumulative probability
functions. Can be a number between 0 and 1, indicating the size of quantile
grid (e.g. 0.1 estimates the cumulative probability functions on a grid based on
deciles of observed times). If NULL, creates a grid of all observed times.

stackG 13

time_basis How to treat time for training the binary classifier. Options are "continuous"
and "dummy", meaning an indicator variable is included for each time in the time
grid.

time_grid_approx

Numeric vector of times at which to approximate product integral or cumulative
hazard interval. Defaults to times argument.

surv_form Mapping from hazard estimate to survival estimate. Can be either "PI" (product
integral mapping) or "exp" (exponentiated cumulative hazard estimate).

learner Which binary regression algorithm to use. Currently, only SuperLearner is
supported, but more learners will be added. See below for algorithm-specific
arguments.

SL_control Named list of parameters controlling the Super Learner fitting process. These
parameters are passed directly to the SuperLearner function. Parameters in-
clude SL.library (library of algorithms to include in the binary classification
Super Learner), V (Number of cross validation folds on which to train the Su-
per Learner classifier, defaults to 10), method (Method for estimating coeffi-
cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical
indicating whether to stratify by outcome in SuperLearner’s cross-validation
scheme), and obsWeights (observation weights, passed directly to prediction
algorithms by SuperLearner).

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation. Rather than dealing with right truncation separately than left
truncation, it is simpler to estimate the survival function of tau - time. Defaults
to NULL, in which case the maximum study entry time is chosen as the reference
point.

Value

A named list of class stackG, with the following components:

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

S_C_preds An m x k matrix of estimated censoring time survival probabilities at the m co-
variate vector values and k times provided by the user in newX and newtimes,
respectively.

Lambda_T_preds An m x k matrix of estimated event time cumulative hazard function values at
the m covariate vector values and k times provided by the user in newX and
newtimes, respectively.

Lambda_C_preds An m x k matrix of estimated censoring time cumulative hazard function values
at the m covariate vector values and k times provided by the user in newX and
newtimes, respectively.

time_grid_approx

The approximation grid for the product integral or cumulative hazard integral,
(user-specified).

direction Whether the data come from a prospective or retrospective study (user-specified).

14 stackG

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation (user-specified).

surv_form Exponential or product-integral form (user-specified).

time_basis Whether time is included in the regression as continuous or dummy (user-specified).

SL_control Named list of parameters controlling the Super Learner fitting process (user-
specified).

fits A named list of fitted regression objects corresponding to the constituent re-
gressions needed for global survival stacking. Includes P_Delta (probability of
event given covariates), F_Y_1 (conditional cdf of follow-up times given covari-
ates among uncensored), F_Y_0 (conditional cdf of follow-up times given co-
variates among censored), G_W_1 (conditional distribution of entry times given
covariates and follow-up time among uncensored), G_W_0 (conditional distri-
bution of entry times given covariates and follow-up time among uncensored).
Each of these objects includes estimated coefficients from the SuperLearner
fit, as well as the time grid used to create the stacked dataset (where applicable).

References

Wolock C.J., Gilbert P.B., Simon N., and Carone, M. (2024). "A framework for leveraging machine
learning tools to estimate personalized survival curves."

See Also

predict.stackG for stackG prediction method.

Examples

This is a small simulation example
set.seed(123)
n <- 250
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)
event <- as.numeric(T <= C)

stackL 15

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")

fit <- stackG(time = time,
event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
time_grid_approx = sort(unique(time)),
surv_form = "exp",
learner = "SuperLearner",
SL_control = list(SL.library = SL.library,

V = 5))

plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

stackL Estimate a conditional survival function via local survival stacking

Description

Estimate a conditional survival function via local survival stacking

Usage

stackL(
time,
event = rep(1, length(time)),
entry = NULL,
X,
newX,
newtimes,
direction = "prospective",
bin_size = NULL,
time_basis = "continuous",
learner = "SuperLearner",
SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV

16 stackL

= FALSE),
tau = NULL

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

entry Study entry variable, if applicable. Defaults to NULL, indicating that there is no
truncation.

X n x p data.frame of observed covariate values on which to train the estimator.

newX m x p data.frame of new observed covariate values at which to obtain m predic-
tions for the estimated algorithm. Must have the same names and structure as
X.

newtimes k x 1 numeric vector of times at which to obtain k predicted conditional sur-
vivals.

direction Whether the data come from a prospective or retrospective study. This deter-
mines whether the data are treated as subject to left truncation and right censor-
ing ("prospective") or right truncation alone ("retrospective").

bin_size Size of bins for the discretization of time. A value between 0 and 1 indicating the
size of observed event time quantiles on which to grid times (e.g. 0.02 creates
a grid of 50 times evenly spaced on the quantile scaled). If NULL, defaults to
every observed event time.

time_basis How to treat time for training the binary classifier. Options are "continuous"
and "dummy", meaning an indicator variable is included for each time in the time
grid.

learner Which binary regression algorithm to use. Currently, only SuperLearner is
supported, but more learners will be added. See below for algorithm-specific
arguments.

SL_control Named list of parameters controlling the Super Learner fitting process. These
parameters are passed directly to the SuperLearner function. Parameters in-
clude SL.library (library of algorithms to include in the binary classification
Super Learner), V (Number of cross validation folds on which to train the Su-
per Learner classifier, defaults to 10), method (Method for estimating coeffi-
cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical
indicating whether to stratify by outcome in SuperLearner’s cross-validation
scheme), and obsWeights (observation weights, passed directly to prediction
algorithms by SuperLearner).

tau The maximum time of interest in a study, used for retrospective conditional
survival estimation. Rather than dealing with right truncation separately than left
truncation, it is simpler to estimate the survival function of tau - time. Defaults
to NULL, in which case the maximum study entry time is chosen as the reference
point.

stackL 17

Value

A named list of class stackL.

S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate
vector values and k times provided by the user in newX and newtimes, respec-
tively.

fit The Super Learner fit for binary classification on the stacked dataset.

References

Polley E.C. and van der Laan M.J. (2011). "Super Learning for Right-Censored Data" in Targeted
Learning.

Craig E., Zhong C., and Tibshirani R. (2021). "Survival stacking: casting survival analysis as a
classification problem."

See Also

predict.stackL for stackL prediction method.

Examples

This is a small simulation example
set.seed(123)
n <- 500
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

S0 <- function(t, x){
pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)

}
T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

G0 <- function(t, x) {
as.numeric(t < 15) *.9*pexp(t,

rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
lower.tail=FALSE)

}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

entry <- runif(n, 0, 15)

time <- pmin(T, C)
event <- as.numeric(T <= C)

sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]
event <- event[sampled]
entry <- entry[sampled]

Note that this a very small Super Learner library, for computational purposes.

18 vim

SL.library <- c("SL.mean", "SL.glm")

fit <- stackL(time = time,
event = event,
entry = entry,
X = X,
newX = X,
newtimes = seq(0, 15, .1),
direction = "prospective",
bin_size = 0.1,
time_basis = "continuous",
SL_control = list(SL.library = SL.library,

V = 5))

plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')

vim Estimate AUC VIM

Description

Estimate AUC VIM

Usage

vim(
type,
time,
event,
X,
landmark_times = stats::quantile(time[event == 1], probs = c(0.25, 0.5, 0.75)),
restriction_time = max(time[event == 1]),
approx_times = NULL,
large_feature_vector,
small_feature_vector,
conditional_surv_preds = NULL,
large_oracle_preds = NULL,
small_oracle_preds = NULL,
conditional_surv_generator = NULL,
conditional_surv_generator_control = NULL,
large_oracle_generator = NULL,
large_oracle_generator_control = NULL,
small_oracle_generator = NULL,
small_oracle_generator_control = NULL,
cf_folds = NULL,
cf_fold_num = 5,

vim 19

sample_split = TRUE,
ss_folds = NULL,
robust = TRUE,
scale_est = FALSE,
alpha = 0.05,
verbose = FALSE

)

Arguments

type Type of VIM to compute. Options include "accuracy", "AUC", "Brier", "R-squared"
"C-index", and "survival_time_MSE".

time n x 1 numeric vector of observed follow-up times. If there is censoring, these
are the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed.

X n x p data.frame of observed covariate values

landmark_times Numeric vector of length J1 giving landmark times at which to estimate VIM
("accuracy", "AUC", "Brier", "R-squared").

restriction_time

Maximum follow-up time for calculation of "C-index" and "survival_time_MSE".

approx_times Numeric vector of length J2 giving times at which to approximate integrals.
Defaults to a grid of 100 timepoints, evenly spaced on the quantile scale of the
distribution of observed event times.

large_feature_vector

Numeric vector giving indices of features to include in the ’large’ prediction
model.

small_feature_vector

Numeric vector giving indices of features to include in the ’small’ prediction
model. Must be a subset of large_feature_vector.

conditional_surv_preds

User-provided estimates of the conditional survival functions of the event and
censoring variables given the full covariate vector (if not using the vim() func-
tion to compute these nuisance estimates). Must be a named list of lists with
elements S_hat, S_hat_train, G_hat, and G_hat_train. Each of these is it-
self a list of length K, where K is the number of cross-fitting folds. Each element
of these lists is a matrix with J2 columns and number of rows equal to either
the number of samples in the kth fold (for S_hat or G_hat) or the number of
samples used to compute the nuisance estimator for the kth fold.

large_oracle_preds

User-provided estimates of the oracle prediction function using large_feature_vector.
Must be a named list of lists with elements f_hat and f_hat_train. Each of
these is itself a list of length K. Each element of these lists is a matrix with J1
columns (for landmark time VIMs) or 1 column (for "C-index" and "survival_time_MSE").

small_oracle_preds

User-provided estimates of the oracle prediction function using small_feature_vector.
Must be a named list of lists with elements f_hat and f_hat_train. Each of

20 vim

these is itself a list of length K. Each element of these lists is a matrix with J1
columns (for landmark time VIMs) or 1 column (for "C-index" and "survival_time_MSE").

conditional_surv_generator

A user-written function to estimate the conditional survival functions of the
event and censoring variables. Must take arguments time, event, folds (cross-
fitting fold identifiers), and newtimes (times at which to generate predictions).

conditional_surv_generator_control

A list of arguments to pass to conditional_surv_generator.
large_oracle_generator

A user-written function to estimate the oracle prediction function using large_feature_vector.Must
take arguments time, event, and folds (cross-fitting fold identifiers).

large_oracle_generator_control

A list of arguments to pass to large_oracle_generator.
small_oracle_generator

A user-written function to estimate the oracle prediction function using small_feature_vector.Must
take arguments time, event, and folds (cross-fitting fold identifiers).

small_oracle_generator_control

A list of arguments to pass to small_oracle_generator.
cf_folds Numeric vector of length n giving cross-fitting folds
cf_fold_num The number of cross-fitting folds, if not providing cf_folds

sample_split Logical indicating whether or not to sample split
ss_folds Numeric vector of length n giving sample-splitting folds
robust Logical, whether or not to use the doubly-robust debiasing approach. This op-

tion is meant for illustration purposes only — it should be left as TRUE.
scale_est Logical, whether or not to force the VIM estimate to be nonnegative
alpha The level at which to compute confidence intervals and hypothesis tests. De-

faults to 0.05
verbose Whether to print progress messages.

Value

Named list with the following elements:

result Data frame giving results. See the documentation of the individual vim_* func-
tions for details.

folds A named list giving the cross-fitting fold IDs (cf_folds) and sample-splitting
fold IDs (ss_folds).

approx_times A vector of times used to approximate integrals appearing in the form of the
VIM estimator.

conditional_surv_preds

A named list containing the estimated conditional event and censoring survival
functions.

large_oracle_preds

A named list containing the estimated large oracle prediction function.
small_oracle_preds

A named list containing the estimated small oracle prediction function.

vim_accuracy 21

See Also

vim_accuracy vim_AUC vim_brier vim_cindex vim_rsquared vim_survival_time_mse

Examples

This is a small simulation example
set.seed(123)
n <- 100
X <- data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))

T <- rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))

C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15

time <- pmin(T, C)
event <- as.numeric(T <= C)

landmark times for AUC
landmark_times <- c(3)

output <- vim(type = "AUC",
time = time,
event = event,
X = X,
landmark_times = landmark_times,
large_feature_vector = 1:2,
small_feature_vector = 2,

conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")),
cf_fold_num = 2,
sample_split = FALSE,
scale_est = TRUE)

print(output$result)

vim_accuracy Estimate classification accuracy VIM

Description

Estimate classification accuracy VIM

Usage

vim_accuracy(
time,
event,

22 vim_accuracy

approx_times,
landmark_times,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
sample_split,
ss_folds,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.

landmark_times Numeric vector of length J2 giving times at which to estimate accuracy

f_hat Full oracle predictions (n x J1 matrix)

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

sample_split Logical indicating whether or not to sample split

ss_folds Numeric vector of length n giving sample-splitting folds

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

Value

A data frame giving results, with the following columns:

landmark_time Time at which AUC is evaluated.

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.

vim_AUC 23

large_predictiveness

Estimated predictiveness of the large oracle prediction function.
small_predictiveness

Estimated predictiveness of the small oracle prediction function.

vim VIM type.
large_feature_vector

Group of features available for the large oracle prediction function.
small_feature_vector

Group of features available for the small oracle prediction function.

vim_AUC Estimate AUC VIM

Description

Estimate AUC VIM

Usage

vim_AUC(
time,
event,
approx_times,
landmark_times,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
sample_split,
ss_folds,
robust = TRUE,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.

landmark_times Numeric vector of length J2 giving times at which to estimate AUC

f_hat Full oracle predictions (n x J1 matrix)

24 vim_AUC

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

sample_split Logical indicating whether or not to sample split

ss_folds Numeric vector of length n giving sample-splitting folds

robust Logical, whether or not to use the doubly-robust debiasing approach. This op-
tion is meant for illustration purposes only — it should be left as TRUE.

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

Value

A data frame giving results, with the following columns:

landmark_time Time at which AUC is evaluated.

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.

large_predictiveness

Estimated predictiveness of the large oracle prediction function.

small_predictiveness

Estimated predictiveness of the small oracle prediction function.

vim VIM type.

large_feature_vector

Group of features available for the large oracle prediction function.

small_feature_vector

Group of features available for the small oracle prediction function.

See Also

vim for example usage

vim_brier 25

vim_brier Estimate Brier score VIM

Description

Estimate Brier score VIM

Usage

vim_brier(
time,
event,
approx_times,
landmark_times,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
ss_folds,
sample_split,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.

landmark_times Numeric vector of length J2 giving times at which to estimate Brier score

f_hat Full oracle predictions (n x J1 matrix)

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

ss_folds Numeric vector of length n giving sample-splitting folds

sample_split Logical indicating whether or not to sample split

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

26 vim_cindex

Value

A data frame giving results, with the following columns:

landmark_time Time at which AUC is evaluated.

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.
large_predictiveness

Estimated predictiveness of the large oracle prediction function.
small_predictiveness

Estimated predictiveness of the small oracle prediction function.

vim VIM type.
large_feature_vector

Group of features available for the large oracle prediction function.
small_feature_vector

Group of features available for the small oracle prediction function.

See Also

vim for example usage

vim_cindex Estimate concordance index VIM

Description

Estimate concordance index VIM

Usage

vim_cindex(
time,
event,
approx_times,
restriction_time,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
sample_split,

vim_cindex 27

ss_folds,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.
restriction_time

Restriction time (upper bound for event times to be compared in computing the
C-index)

f_hat Full oracle predictions (n x J1 matrix)

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

sample_split Logical indicating whether or not to sample split

ss_folds Numeric vector of length n giving sample-splitting folds

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

Value

A data frame giving results, with the following columns:

restriction_time

Restriction time (upper bound for event times to be compared in computing the
C-index).

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.
large_predictiveness

Estimated predictiveness of the large oracle prediction function.
small_predictiveness

Estimated predictiveness of the small oracle prediction function.

28 vim_rsquared

vim VIM type.
large_feature_vector

Group of features available for the large oracle prediction function.
small_feature_vector

Group of features available for the small oracle prediction function.

See Also

vim for example usage

vim_rsquared Estimate R-squared (proportion of explained variance) VIM based on
event occurrence by a landmark time

Description

Estimate R-squared (proportion of explained variance) VIM based on event occurrence by a land-
mark time

Usage

vim_rsquared(
time,
event,
approx_times,
landmark_times,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
ss_folds,
sample_split,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.

landmark_times Numeric vector of length J2 giving times at which to estimate Brier score

f_hat Full oracle predictions (n x J1 matrix)

vim_rsquared 29

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

ss_folds Numeric vector of length n giving sample-splitting folds

sample_split Logical indicating whether or not to sample split

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

Value

A data frame giving results, with the following columns:

landmark_time Time at which AUC is evaluated.

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.

large_predictiveness

Estimated predictiveness of the large oracle prediction function.

small_predictiveness

Estimated predictiveness of the small oracle prediction function.

vim VIM type.

large_feature_vector

Group of features available for the large oracle prediction function.

small_feature_vector

Group of features available for the small oracle prediction function.

See Also

vim for example usage

30 vim_survival_time_mse

vim_survival_time_mse Estimate restricted predicted survival time MSE VIM

Description

Estimate restricted predicted survival time MSE VIM

Usage

vim_survival_time_mse(
time,
event,
approx_times,
restriction_time,
f_hat,
fs_hat,
S_hat,
G_hat,
cf_folds,
sample_split,
ss_folds,
scale_est = FALSE,
alpha = 0.05

)

Arguments

time n x 1 numeric vector of observed follow-up times If there is censoring, these are
the minimum of the event and censoring times.

event n x 1 numeric vector of status indicators of whether an event was observed. De-
faults to a vector of 1s, i.e. no censoring.

approx_times Numeric vector of length J1 giving times at which to approximate integrals.
restriction_time

restriction time

f_hat Full oracle predictions (n x J1 matrix)

fs_hat Residual oracle predictions (n x J1 matrix)

S_hat Estimates of conditional event time survival function (n x J2 matrix)

G_hat Estimate of conditional censoring time survival function (n x J2 matrix)

cf_folds Numeric vector of length n giving cross-fitting folds

sample_split Logical indicating whether or not to sample split

ss_folds Numeric vector of length n giving sample-splitting folds

scale_est Logical, whether or not to force the VIM estimate to be nonnegative

alpha The level at which to compute confidence intervals and hypothesis tests. De-
faults to 0.05

vim_survival_time_mse 31

Value

A data frame giving results, with the following columns:

restriction_time

Restriction time (upper bound for event times to be compared in computing the
restricted survival time).

est VIM point estimate.

var_est Estimated variance of the VIM estimate.

cil Lower bound of the VIM confidence interval.

ciu Upper bound of the VIM confidence interval.

cil_1sided Lower bound of a one-sided confidence interval.

p p-value corresponding to a hypothesis test of null importance.
large_predictiveness

Estimated predictiveness of the large oracle prediction function.
small_predictiveness

Estimated predictiveness of the small oracle prediction function.

vim VIM type.
large_feature_vector

Group of features available for the large oracle prediction function.
small_feature_vector

Group of features available for the small oracle prediction function.

See Also

vim for example usage

Index

crossfit_oracle_preds, 2
crossfit_surv_preds, 3
currstatCIR, 4

DR_pseudo_outcome_regression, 6

generate_folds, 7

predict.stackG, 7, 14
predict.stackL, 9, 17

stackG, 8, 11
stackL, 10, 15

vim, 18, 24, 26, 28, 29, 31
vim_accuracy, 21, 21
vim_AUC, 21, 23
vim_brier, 21, 25
vim_cindex, 21, 26
vim_rsquared, 21, 28
vim_survival_time_mse, 21, 30

32

	crossfit_oracle_preds
	crossfit_surv_preds
	currstatCIR
	DR_pseudo_outcome_regression
	generate_folds
	predict.stackG
	predict.stackL
	stackG
	stackL
	vim
	vim_accuracy
	vim_AUC
	vim_brier
	vim_cindex
	vim_rsquared
	vim_survival_time_mse
	Index

