## ----step2-------------------------------------------------------------------- Phi <- matrix(c(.4, .1, .2, .3), ncol = 2, byrow = T) # The .2 refers to our standardized cross-lagged effect of interest within_cor <- 0.3 ICC <- 0.5 RI_cor <- 0.3 ## ----setup, message=FALSE----------------------------------------------------- library(powRICLPM) ## ----step2-check-------------------------------------------------------------- # Check `Phi` argument check_Phi(Phi) ## ----analysis, eval = F------------------------------------------------------- # # Set number of replications # n_reps <- 100 # # output <- powRICLPM( # target_power = 0.8, # search_lower = 500, # search_upper = 1000, # search_step = 50, # time_points = c(3, 4), # ICC = ICC, # RI_cor = RI_cor, # Phi = Phi, # within_cor = 0.3, # reps = n_reps # ) ## ----future-setup, eval = F--------------------------------------------------- # # Load `future` and `progressr` packages # library(future) # library(progressr) # # # Check how many cores are available # future::availableCores() # # # Plan powRICLPM analysis to run on 1 core less than number of available cores # plan(multisession, workers = 7) # For the case of 8 available cores # # # Run the powRICLPM analysis # with_progress({ # Subscribe to progress updates # output <- powRICLPM( # target_power = 0.8, # search_lower = 500, # search_upper = 1000, # search_step = 50, # time_points = c(3, 4), # ICC = ICC, # RI_cor = RI_cor, # Phi = Phi, # within_cor = 0.3, # reps = n_reps # ) # }) # # # Revert back to sequential execution of code # plan(sequential) ## ----summary, eval = F-------------------------------------------------------- # # Summary of study design # summary(output) # # # Summary of results for a specific parameter, across simulation conditions # summary(output, parameter = "wB2~wA1") # # # Summary of all parameter for a specific simulation condition # summary(output, sample_size = 500, time_points = 4, ICC = 0.5, reliability = 1) # ## ----give, eval = F----------------------------------------------------------- # # Extract experimental conditions # give(output, what = "conditions") # # # Extract estimation problems # give(output, what = "estimation_problems") # # # Extract results for cross-lagged effect "wB2~wA1" # give(output, what = "results", parameter = "wB2~wA1") # # # Extract parameter names # give(output, what = "names") ## ----plot, eval = FALSE------------------------------------------------------- # # Create basic plot of powRICLPM object # p <- plot(output, parameter = "wB2~wA1") # p # # # Adjust plot aesthetics # p2 <- p + # ggplot2::labs( # title = "Power analysis for RI-CLPM", # caption = paste0("Based on ", n_reps, " replications.") # ) + # ggplot2::scale_color_discrete("Time points") + # ggplot2::guides( # color = ggplot2::guide_legend(title = "Time points", nrow = 1), # shape = ggplot2::guide_legend(title = "Reliability", nrow = 1), # fill = "none" # ) + # ggplot2::scale_x_continuous( # name = "Sample size", # breaks = seq(500, 1000, 50), # guide = ggplot2::guide_axis(n.dodge = 2) # ) # p2