## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE---- # library(pannotator) # # options(shiny.port = httpuv::randomPort(), shiny.launch.browser = .rs.invokeShinyWindowExternal) # # run_app() ## ----echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE------- # # library(dplyr) # library(mapview) # library(RColorBrewer) # library(sf) # # # df_annotation <- readRDS("C:/user_1_annotations.rds") # read in the .rds file # df_annotation <- st_as_sf(df_annotation, wkt = "geometry",crs = 4326) #define # #the geometry # # df_annotation$dd2 <- as.numeric(df_annotation$dd2) # dd2 = -999 where crowns # # have not been assessed for health (NA); range = 0 for no live leaves (entirely # # dead) to 100 for entire crown healthy with green leaves # # df_annotation <- subset(df_annotation, dd2 > -1 ) # select only records where # # Allocasuarina crowns have been assessed for health; that is, excluding NA records # # # mapviewOptions(basemaps = c("Esri.WorldImagery"), # vector.palette = colorRampPalette(c("red","orange", "yellow", "green")), # layers.control.pos = "topright") # # # mapview(df_annotation, zcol = "dd2 ", na.rm = TRUE) # ## ----echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE------- # #read in the species data file# # # species_data <- read_csv("Calibration_species.csv", show_col_types = FALSE) # # # confirm that there are 79 plots of species data # cat("The number of rows in the dataframe is", nrow(species_data), "\n") # # # # now determine the relationship between plot-level species counts in the field survey versus camera survey counts. abline adds a linear model to the plot # # # plot(species_data$No_Field_species, species_data$No_Camera_species, # main = "Plot-level species richness", # xlab = "No. of species (Field Survey)", # ylab = "No. of species (Camera Survey)", # pch = 16, # Use filled circles as data points # col = "black", # Set point color # ylim = c(0, 8), # Set y-axis limits # xlim = c(0, 8)) # Set x-axis limits # abline(lm(No_Camera_species ~ No_Field_species, data = species_data), col = "red") # # # view the linear model statistics # # model <- lm(No_Camera_species ~ No_Field_species, data = species_data) # # model_summary <- summary(model) # print(model_summary) #