Data analysis in the paper of Bai and Wu (2023b).
Hong Kong circulatory and respiratory data.
library(mlrv)
library(foreach)
library(magrittr)
data(hk_data)
colnames(hk_data) = c("SO2","NO2","Dust","Ozone","Temperature",
"Humidity","num_circu","num_respir","Hospital Admission",
"w1","w2","w3","w4","w5","w6")
n = nrow(hk_data)
t = (1:n)/n
hk = list()
hk$x = as.matrix(cbind(rep(1,n), scale(hk_data[,1:3])))
hk$y = hk_data$`Hospital Admission`
pvmatrix = matrix(nrow=2, ncol=4)
###inistialization
setting = list(B = 5000, gcv = 1, neighbour = 1)
setting$lb = floor(10/7*n^(4/15)) - setting$neighbour
setting$ub = max(floor(25/7*n^(4/15))+ setting$neighbour,
setting$lb+2*setting$neighbour+1)
setting$lrvmethod =0.
i=1
# print(rule_of_thumb(y= hk$y, x = hk$x))
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x), setting, mvselect = -2)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.2838"
## [1] "RS"
## [1] "p-value 0.2896"
## [1] "VS"
## [1] "p-value 0.1148"
## [1] "KS"
## [1] "p-value 0.4124"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x), setting, mvselect = -2)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.6866"
## [1] "RS"
## [1] "p-value 0.8066"
## [1] "VS"
## [1] "p-value 0.5126"
## [1] "KS"
## [1] "p-value 0.8346"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.2838 | 0.2896 | 0.1148 | 0.4124 |
diff | 0.6866 | 0.8066 | 0.5126 | 0.8346 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:23:49 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.284 & 0.290 & 0.115 & 0.412 \\
## diff & 0.687 & 0.807 & 0.513 & 0.835 \\
## \hline
## \end{tabular}
## \end{table}
Using parameter `shift’ to multiply the GCV selected bandwidth by a factor. - Shift = 1.2 with plug-in estimator.
pvmatrix = matrix(nrow=2, ncol=4)
setting$lrvmethod = 0
i=1
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, shift = 1.2)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.4256"
## [1] "RS"
## [1] "p-value 0.3638"
## [1] "VS"
## [1] "p-value 0.118"
## [1] "KS"
## [1] "p-value 0.561"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, verbose_dist = TRUE, shift = 1.2)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "gcv 0.193398841583897"
## [1] "m 14 tau_n 0.332134206312301"
## [1] "test statistic: 141.654657280933"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.81 107.33 215.16 368.80 460.94 5186.84
## [1] "p-value 0.6462"
## [1] "RS"
## [1] "gcv 0.193398841583897"
## [1] "m 15 tau_n 0.332134206312301"
## [1] "test statistic: 1067.76713443354"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 535.2 1023.8 1232.0 1302.6 1508.2 3383.7
## [1] "p-value 0.6994"
## [1] "VS"
## [1] "gcv 0.193398841583897"
## [1] "m 17 tau_n 0.332134206312301"
## [1] "test statistic: 103.342038019402"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.94 70.04 110.26 152.36 187.41 1230.74
## [1] "p-value 0.538"
## [1] "KS"
## [1] "gcv 0.193398841583897"
## [1] "m 17 tau_n 0.382134206312301"
## [1] "test statistic: 671.676091515897"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 352.6 720.4 923.3 1007.3 1213.0 3363.9
## [1] "p-value 0.8108"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.4256 | 0.3638 | 0.118 | 0.5610 |
diff | 0.6462 | 0.6994 | 0.538 | 0.8108 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:25:13 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.426 & 0.364 & 0.118 & 0.561 \\
## diff & 0.646 & 0.699 & 0.538 & 0.811 \\
## \hline
## \end{tabular}
## \end{table}
pvmatrix = matrix(nrow=2, ncol=4)
setting$lrvmethod =0
i=1
for(type in c("KPSS","RS","VS","KS")){
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, shift = 0.8)
print(paste("p-value",result_reg))
pvmatrix[1,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "p-value 0.2458"
## [1] "RS"
## [1] "p-value 0.1662"
## [1] "VS"
## [1] "p-value 0.1234"
## [1] "KS"
## [1] "p-value 0.2726"
setting$lrvmethod =1
i=1
for(type in c("KPSS","RS","VS","KS"))
{
setting$type = type
print(type)
result_reg = heter_covariate(list(y= hk$y, x = hk$x),
setting,
mvselect = -2, verbose_dist = TRUE, shift = 0.8)
print(paste("p-value",result_reg))
pvmatrix[2,i] = result_reg
i = i + 1
}
## [1] "KPSS"
## [1] "gcv 0.128932561055931"
## [1] "m 8 tau_n 0.382134206312301"
## [1] "test statistic: 166.543448031107"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.78 99.10 200.38 331.58 421.82 3152.45
## [1] "p-value 0.571"
## [1] "RS"
## [1] "gcv 0.128932561055931"
## [1] "m 18 tau_n 0.382134206312301"
## [1] "test statistic: 998.08124125936"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 699.6 1276.2 1535.9 1614.1 1874.8 3730.1
## [1] "p-value 0.9464"
## [1] "VS"
## [1] "gcv 0.128932561055931"
## [1] "m 9 tau_n 0.332134206312301"
## [1] "test statistic: 78.0587445148255"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 14.07 63.32 110.68 157.21 199.91 1498.85
## [1] "p-value 0.6586"
## [1] "KS"
## [1] "gcv 0.128932561055931"
## [1] "m 9 tau_n 0.332134206312301"
## [1] "test statistic: 709.345279801765"
## [1] "Bootstrap distribution"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 290.6 695.8 910.2 986.8 1200.7 2953.0
## [1] "p-value 0.7344"
rownames(pvmatrix) = c("plug","diff")
colnames(pvmatrix) = c("KPSS","RS","VS","KS")
knitr::kable(pvmatrix,type="latex")
KPSS | RS | VS | KS | |
---|---|---|---|---|
plug | 0.2458 | 0.1662 | 0.1234 | 0.2726 |
diff | 0.5710 | 0.9464 | 0.6586 | 0.7344 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package
## % Tue Jul 30 21:26:26 2024
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## \hline
## & KPSS & RS & VS & KS \\
## \hline
## plug & 0.246 & 0.166 & 0.123 & 0.273 \\
## diff & 0.571 & 0.946 & 0.659 & 0.734 \\
## \hline
## \end{tabular}
## \end{table}
Test if the coefficient function of “SO2”,“NO2”,“Dust” of the second year is constant.
hk$x = as.matrix(cbind(rep(1,n), (hk_data[,1:3])))
hk$y = hk_data$`Hospital Admission`
setting$type = 0
setting$bw_set = c(0.1, 0.35)
setting$eta = 0.2
setting$lrvmethod = 1
setting$lb = 10
setting$ub = 15
hk1 = list()
hk1$x = hk$x[366:730,]
hk1$y = hk$y[366:730]
p1 <- heter_gradient(hk1, setting, mvselect = -2, verbose = T)
## [1] "m 12 tau_n 0.364293094094381"
## [1] 10464.35
## V1
## Min. : 1537
## 1st Qu.: 3809
## Median : 4838
## Mean : 5239
## 3rd Qu.: 6296
## Max. :15552
## [1] 0.0158