Package ‘mlir3pipelines’

July 1, 2024

Title Preprocessing Operators and Pipelines for 'mlr3'
Version 0.6.0

Description Dataflow programming toolkit that enriches 'mlr3' with a diverse
set of pipelining operators ('PipeOps') that can be composed into graphs.
Operations exist for data preprocessing, model fitting, and ensemble
learning. Graphs can themselves be treated as 'mlr3' 'Learners' and can
therefore be resampled, benchmarked, and tuned.

License LGPL-3

URL https://mlr3pipelines.mlr-org.com,
https://github.com/mlr-org/mlr3pipelines

BugReports https://github.com/mlr-org/mlr3pipelines/issues
Depends R (>=3.1.0)

Imports backports, checkmate, data.table, digest, 1gr, mlr3 (>=
0.20.0), mlr3misc (>= 0.9.0), paradox, R6, withr

Suggests ggplot2, glmnet, igraph, knitr, Ime4, mlbench, bbotk (>=
0.3.0), mlr3filters (>= 0.1.1), mlr3learners, mlr3measures,
nloptr, quanteda, rmarkdown, rpart, stopwords, testthat,
visNetwork, bestNormalize, fastiICA, kernlab, smotefamily,
evaluate, NMF, MASS, kknn, GenSA, methods, vtreat, future,
htmlwidgets

ByteCompile true
Encoding UTF-8
Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no
RoxygenNote 7.3.2
VignetteBuilder knitr

Collate 'Graph.R''GraphLearner.R' 'mlr_pipeops.R' 'multiplicity.R’
'utils.R' 'PipeOp.R' 'PipeOpEnsemble.R' LearnerAvg.R'
'NO_OP.R' 'PipeOpTaskPreproc.R' PipeOpBoxCox.R'

1


https://mlr3pipelines.mlr-org.com
https://github.com/mlr-org/mlr3pipelines
https://github.com/mlr-org/mlr3pipelines/issues

Contents

'PipeOpBranch.R' 'PipeOpChunk.R' 'PipeOpClassBalancing.R'
'PipeOpClassWeights.R' PipeOpClassifAvg.R' 'PipeOpColApply.R'
'"PipeOpColRoles.R' 'PipeOpCollapseFactors.R' PipeOpCopy.R'
'"PipeOpDateFeatures.R' 'PipeOpEncode.R' 'PipeOpEncodelmpact.R'
'PipeOpEncodeLmer.R' 'PipeOpFeatureUnion.R' PipeOpFilter.R'
'PipeOpFixFactors.R' 'PipeOpHistBin.R' PipeOpICA.R’
'"PipeOpImpute.R' 'PipeOpImputeConstant.R' 'PipeOpIlmputeHist.R'
'PipeOpImputeLearner.R' PipeOpImputeMean.R’
'"PipeOpImputeMedian.R' PipeOpImputeMode.R' PipeOpImputeOOR.R'
'PipeOpImputeSample.R' 'PipeOpKernelPCA.R' 'PipeOpLearner.R’
'PipeOpLearnerCV.R' 'PipeOpMissinglndicators.R'
'"PipeOpModelMatrix.R' 'PipeOpMultiplicity.R' 'PipeOpMutate.R'
PipeOpNMFE.R' 'PipeOpNOP.R' 'PipeOpOVR.R' 'PipeOpPCA.R'
'"PipeOpProxy.R' 'PipeOpQuantileBin.R'
'"PipeOpRandomProjection.R' 'PipeOpRandomResponse.R’
'PipeOpRegrAvg.R' PipeOpRemoveConstants.R'
'"PipeOpRenameColumns.R' 'PipeOpScale.R' 'PipeOpScaleMaxAbs.R'
'PipeOpScaleRange.R' 'PipeOpSelect.R' 'PipeOpSmote.R'
'"PipeOpSpatialSign.R' PipeOpSubsample.R'
'"PipeOpTextVectorizer.R' PipeOpThreshold.R' 'PipeOpTrafo.R'
"PipeOpTuneThreshold.R' PipeOpUnbranch.R' 'PipeOpVtreat.R'
"PipeOpYeoJohnson.R' 'Selector.R' 'assert_graph.R'

'bibentries.R' 'greplicate.R' 'gunion.R' 'mlr_graphs.R'

‘operators.R' 'pipeline_bagging.R' 'pipeline_branch.R'
'pipeline_convert_types.R' 'pipeline_greplicate.R'

'pipeline_ovr.R' 'pipeline_robustify.R' 'pipeline_stacking.R'
'pipeline_targettrafo.R' 'po.R' 'ppl.R' 'reexports.R’

'typecheck.R' 'zzz.R'

Author Martin Binder [aut, cre],

Florian Pfisterer [aut] (<https://orcid.org/0000-0001-8867-762X>),
Lennart Schneider [aut] (<https://orcid.org/0000-0003-4152-5308>),
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),
Sebastian Fischer [aut] (<https://orcid.org/0000-0002-9609-3197>),
Susanne Dandl [aut]

Maintainer Martin Binder <mlr.developer@mb706.com>
Repository CRAN
Date/Publication 2024-07-01 13:30:02 UTC

Contents

mir3pipelines-package . . . . . . ... 5
add_class_hierarchy_cache . . . . . . . . . .. .. .. ... 6
as.Multiplicity . . . . . . . . o e e e 6
assert_graph . . . . ... e 7
ASSETE_PIPEOP -« « v v v o e e e e e e e e e e e e e e e e e e e e e 7

as_graph . . .. 8


https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0002-9609-3197

Contents

3
AS_PIPEOP + v v v e e e e e e e e e e e e e e e e e e e e 9
chain_graphs . . . . . . . L 10
filter_ noop . . . . . . . 11
Graph . . . . . e 11
greplicate . . . . . .. L e e e e e 15
GUIIOM . . o v v vt et e e e e e e e e e e e 16
is.Multiplicity . . . . . . . . o 17
IS_NOOD « v v vt e e e e e e e e e e e 17
mlr_graphs . . . . . .. e 18
mlr_graphs_bagging . . . . . . . . . .. 19
mlr_graphs_branch . . . . . . . . ... 20
mlr_graphs_convert_types . . . . . . . . o o v it e e e e e 21
mlr_graphs_greplicate . . . . . . . . . .. 23
mlr_graphs_ovr . . . . . . . e 24
mlr_graphs_robustify . . . . . . . ... 25
mlr_graphs_stacking . . . . . . . ... L 27
mlr_graphs_targettrafo . . . . . .. ..o 28
mlr_learners_avg . . . . . . ... e e e e e e e e e e 30
mlr_learners_graph . . . . . . .. L 31
MIr_PIPeops . . . . o o e 33
mlr_pipeops_boXCOX . . . . . . ... e 35
mlr_pipeops_branch . . . . . . . ... L 37
mlr_pipeops_chunk . . . . . . ..o 39
mlr_pipeops_classbalancing . . . . . . .. ... oL 41
mlr_pipeops_classifavg . . . . . . . ... 43
mlr_pipeops_classweights . . . . . . . . ... oL 45
mlr_pipeops_colapply . . . . . . . . . 48
mlr_pipeops_collapsefactors . . . . . . . . ... oL 50
mlr_pipeops_colroles . . . . . . . ... 52
mlr_pipeopS_COPY . . .« o v o i e e e e e 54
mlr_pipeops_datefeatures . . . . . . . ..o 56
mlr_pipeops_encode . . . . . . ... e e e e e e 58
mlr_pipeops_encodeimpact . . . . . . . . ... oL 61
mlr_pipeops_encodelmer . . . . . . .. ... oL 63
mlr_pipeops_featureunion . . . . . . ... oL 65
mlr_pipeops_filter . . . . . . ... L 68
mlr_pipeops_fixfactors . . . . . . . ... 71
mlr_pipeops_histbin . . . . . ... 72
MIF_PIPEOPS_ICA . . .« v v o o et e e e e e e e e e e e e e 74
mlr_pipeops_imputeconstant . . . . . . . . . . ... e e e 77
mlr_pipeops_imputehist . . . . . ..o 79
mlr_pipeops_imputelearner . . . . . . . . . . . ... e e 80
mlr_pipeops_imputemean . . . . . . . . . . . .ot e e e e e e e e e e 83
mlr_pipeops_imputemedian . . . . . .. ... 85
mlr_pipeops_imputemode . . . . . ... e 87
MIr_pipeops_iMPUteOOTr . . . . . v v v v v vt e e e e e e e e e e e e e 88
mlr_pipeops_imputesample . . . . . . ..o 91

mlr_pipeops_kernelpca . . . . . . . .. 92



Contents

mlr_pipeops_learner . . . . . . . . ... e e e 94
mlr_pipeops_learner_cv . . . . . ... L 97
mlr_pipeops_missind . . . . . ... 100
mlr_pipeops_modelmatrix . . . . . . . . ... e 102
mlr_pipeops_multiplicityexply . . . . . . . . .. ... oL 104
mlr_pipeops_multiplicityimply . . . . . . . . . ... Lo 106
mlr_pipeops_mutate . . . . . . . ... e e e e 108
mlr_pipeops_nmf . . . . ... e 110
MIF_PIPEOPS_NOP .« .« « v v v o e e e e e e e e e e e e e e e e e 112
mlr_pipeops_ovrsplit . . . . . ... 114
mlr_pipeops_OVIunite . . . . . . . . . ..o e 116
MIT_PIPEOPS_PCA « v v v v v e e e e e e e e e e e e e e e e e e e 118
MIr_PIPEOPS_PIrOXY . « « o v o o o it e e e e e e e e 120
mlr_pipeops_quantilebin . . . . .. .. oL o 122
mlr_pipeops_randomprojection . . . . . . . . . .. ... e e 124
mlr_pipeops_randomresponse . . . . . . . ... ..ol e 126
mMIr_pipeops_regravg . . . . . . . o it e e e e e e e e e 128
mlr_pipeops_removeconsStantS . . . . . . . . . .. e e e e e e e e e e e 130
mlr_pipeops_renamecolumns . . . . . . . . . ... .. e e 132
mlr_pipeops_replicate . . . . . . . . ... 133
mlr_pipeops_scale . . . . . . ... 135
mlr_pipeops_scalemaxabs . . . . . . . . ... 137
mlr_pipeops_scalerange . . . . . . . . ... oL 139
mlr_pipeops_select . . . . . . . .. 141
MIr_pIpeoPsS_SMOLE . . . . . . v v i v e e e e e e e e e e e e e e e e e 143
mlr_pipeops_spatialsign . . . . . . ... e 145
mlr_pipeops_subsample . . . . .. ... 146
mlr_pipeops_targetinvert . . . . . . . . . . ... e e e 148
mlr_pipeops_targetmutate . . . . . . . . ... L. e e e e 150
mlr_pipeops_targettrafoscalerange . . . . . . .. ... Lo 152
mlr_pipeops_teXtVeCctoriZer . . . . . . . . .« o v vt e e e 154
mlr_pipeops_threshold . . . . . . . . . . ... .. 158
mlr_pipeops_tunethreshold . . . . . . . ... ... o L oo 160
mlr_pipeops_unbranch . . . . . .. ..o 162
mlr_pipeops_updatetarget . . . . . . . ... e 164
MIr_pipeops_VIreat . . . . . . . . o ot e e e e e e e e 166
mlr_pipeops_yeojohnson . . . . . . .. .. Lo oL 169
Multiplicity . . . . . . . e 171
NO_OP . . . 172
PipeOp . . . . . e 173
PipeOpEnsemble . . . . . . . . . . .. 179
PipeOplmpute . . . . . . . . . . . e 181
PipeOpTargetTrafo . . . . . . . . . . . . . e 184
PipeOpTaskPreproc . . . . . . . . . . . e 187
PipeOpTaskPreprocSimple . . . . . . . . . .. ... 191
PO o o e e e 194
PPl . . e 196

register_autoconvert_function . . . . . ... ... oL 197



mlr3pipelines-package 5

reset_autoConVert_IegiSter . . . . . . . . v v v i e e e e e e e e e e e 198
reset_class_hierarchy_cache . . . . . . ... .. ... ... L. 198
Selector . . . . . .. e e e 199
set_validate.GraphLearner . . . . . . . . . . . . . ... ... 202
Do>>T0 . . o e e e e e e e e e e e e 203
Index 206

mlr3pipelines-package mlr3pipelines: Preprocessing Operators and Pipelines for 'mir3’

Description

Dataflow programming toolkit that enriches *'mlr3’ with a diverse set of pipelining operators (" PipeOps’)
that can be composed into graphs. Operations exist for data preprocessing, model fitting, and ensem-

ble learning. Graphs can themselves be treated as 'mlr3’ "Learners’ and can therefore be resampled,
benchmarked, and tuned.

Author(s)

Maintainer: Martin Binder <mlr.developer@mb706.com>

Authors:

* Florian Pfisterer <pfistererf@googlemail.com> (ORCID)
e Lennart Schneider <lennart.sch@web.de> (ORCID)

e Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

* Michel Lang <michellang@gmail.com> (ORCID)

¢ Sebastian Fischer <sebf . fischer@gmail.com> (ORCID)

¢ Susanne Dandl <dandl. susanne@googlemail.com>

See Also
Useful links:
e https://mlr3pipelines.mlr-org.com

e https://github.com/mlr-org/mlr3pipelines

* Report bugs at https://github.com/mlr-org/mlr3pipelines/issues


https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0002-9609-3197
https://mlr3pipelines.mlr-org.com
https://github.com/mlr-org/mlr3pipelines
https://github.com/mlr-org/mlr3pipelines/issues

6 as.Multiplicity

add_class_hierarchy_cache
Add a Class Hierarchy to the Cache

Description

Add a class hierarchy to the class hierarchy cache. This is necessary whenever an S3 class’s class
hierarchy is important when inferring compatibility between types.

Usage

add_class_hierarchy_cache(hierarchy)

Arguments
hierarchy character the class hierarchy to add; should correspond to the class() of the
lowest object in the hierarchy.
Value
NULL
See Also

Other class hierarchy operations: register_autoconvert_function(), reset_autoconvert_register(),
reset_class_hierarchy_cache()

Examples

# This lets mlr3pipelines handle "data.table” as "data.frame”.
# This is an example and not necessary, because mlr3pipelines adds it by default.

add_class_hierarchy_cache(c("data.table”, "data.frame"))

as.Multiplicity Convert an object to a Multiplicity

Description

Convert an object to aMultiplicity.

Usage

as.Multiplicity(x)



assert_graph 7

Arguments
X (any)
Object to convert.
Value

Multiplicity

assert_graph Assertion for mlr3pipelines Graph

Description

Function that checks that a given object is a Graph and throws an error if not.

Usage

assert_graph(x)

Arguments
X (any)
Object to check.
Value

Graph invisible(x)

See Also

Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_pipeop(), chain_graphs(),
greplicate(), gunion(), mlr_graphs_greplicate

assert_pipeop Assertion for mlr3pipelines PipeOp

Description

Function that checks that a given object is a PipeOp and throws an error if not.

Usage

assert_pipeop(x)



8 as_graph

Arguments
X (any)
Object to check.
Value

PipeOp invisible(x)

See Also

Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_graph(), chain_graphs(),
greplicate(), gunion(), mlr_graphs_greplicate

as_graph Conversion to mlr3pipelines Graph

Description

The argument is turned into a Graph if possible. If clone is TRUE, a deep copy is made if the
incoming object is a Graph to ensure the resulting object is a different reference from the incoming
object.

as_graph() is an S3 method and can therefore be implemented by other packages that may add
objects that can naturally be converted to Graphs.

By default, as_graph() tries to

 apply gunion() to x if it is a 1ist, which recursively applies as_graph() to all list elements
first

 create a Graph with only one element if x is a PipeOp or can be converted to one using
as_pipeop().

Usage

as_graph(x, clone = FALSE)

Arguments
X (any)
Object to convert.
clone (logical(1))
Whether to return a (deep copied) clone if x is a Graph.
Value

Graph x or a deep clone of it.



as_pipeop 9

See Also

Other Graph operators: %>>%(), as_pipeop(), assert_graph(), assert_pipeop(), chain_graphs(),
greplicate(), gunion(), mlr_graphs_greplicate

as_pipeop Conversion to mlr3pipelines PipeOp

Description

The argument is turned into a PipeOp if possible. If clone is TRUE, a deep copy is made if the
incoming object is a PipeOp to ensure the resulting object is a different reference from the incoming
object.

as_pipeop() is an S3 method and can therefore be implemented by other packages that may add
objects that can naturally be converted to PipeOps. Objects that can be converted are for example
Learner (using PipeOpLearner) or Filter (using PipeOpFilter).

Usage

as_pipeop(x, clone = FALSE)

Arguments
X (any)
Object to convert.
clone (logical(1))
Whether to return a (deep copied) clone if x is a PipeOp.
Value

PipeOp x or a deep clone of it.

See Also

Other Graph operators: %>>%(), as_graph(), assert_graph(), assert_pipeop(), chain_graphs(),
greplicate(), gunion(), mlr_graphs_greplicate



10 chain_graphs

chain_graphs Chain a Series of Graphs

Description

Takes an arbitrary amount of Graphs or PipeOps (or objects that can be automatically converted into
Graphs or PipeOps, see as_graph() and as_pipeop()) as inputs and joins them in a serial Graph,
as if connecting them using %>>%.

Care is taken to avoid unnecessarily cloning of components. A call of chain_graphs(list(gl,
g2, g3, g4, ...), in_place = FALSE) isequivalentto g1 %>>% g2 %>>!% g3 %>>1% g4 %>>1% .. ..
A call of chain_graphs(list(gl, g2, g3, g4, ...), in_place = FALSE) is equivalent to g1 %>>!%
g2 %>>1% g3 %>>1% g4 %>>1% . .. (differing in the first operator being %>>!% as well).

Usage

chain_graphs(graphs, in_place = FALSE)

Arguments

graphs list of (Graph | PipeOp INULL | ...)
List of elements which are the Graphs to be joined. Elements must be con-
vertible to Graph or PipeOp using as_graph() and as_pipeop(). NULL is the
neutral element of %>>% and skipped.

in_place (logical(1))
Whether to try to avoid cloning the first element of graphs, similar to the differ-
ence of %>>1% over %>>%. This can only be avoided if graphs[[11]] is already
a Graph. Beware that, if chain_graphs() fails because of id collisions, then
graphs[[1]] will possibly be in an incompletely modified state when in_place
is TRUE.

Value

Graph the resulting Graph, or NULL if there are no non-null values in graphs.

See Also

Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_graph(), assert_pipeop(),
greplicate(), gunion(), mlr_graphs_greplicate



filter_noop 11

filter_noop Remove NO_OPs from a List

Description

Remove all NO_OP elements from a 1ist.

Usage

filter_noop(x)

Arguments
X list
List to filter.
Value

list: The input list, with all NO_OP elements removed.

See Also

Other Path Branching: NO_OP, is_noop(), mlr_pipeops_branch, mlr_pipeops_unbranch

Graph Graph Base Class

Description

A Graph is a representation of a machine learning pipeline graph. It can be trained, and subse-
quently used for prediction.

A Graph is most useful when used together with Learner objects encapsulated as PipeOpLearner.
In this case, the Graph produces Prediction data during its $predict() phase and can be used as
a Learner itself (using the GraphLearner wrapper). However, the Graph can also be used without
Learner objects to simply perform preprocessing of data, and, in principle, does not even need to
handle data at all but can be used for general processes with dependency structure (although the
PipeOps for this would need to be written).

Format

R6Class.

Construction

Graph$new()



12 Graph

Internals

A Graph is made up of a list of PipeOps, and a data.table of edges. Both for training and
prediction, the Graph performs topological sorting of the PipeOps and executes their respective
$train() or $predict() functions in order, moving the PipeOp results along the edges as input to
other PipeOps.

Fields

e pipeops :: named list of PipeOp
Contains all PipeOps in the Graph, named by the PipeOp’s $ids.

e edges:: data.table with columns src_id (character), src_channel (character), dst_id
(character), dst_channel (character)
Table of connections between the PipeOps. A data.table. src_id and dst_id are $ids
of PipeOps that must be present in the $pipeops list. src_channel and dst_channel must
respectively be $output and $input channel names of the respective PipeOps.

e is_trained:: logical(1)
Is the Graph, i.e. are all of its PipeOps, trained, and can the Graph be used for prediction?

e lhs:: character
Ids of the ’left-hand-side’ PipeOps that have some unconnected input channels and therefore
act as Graph input layer.

* rhs:: character
Ids of the ’right-hand-side’ PipeOps that have some unconnected output channels and therefore
act as Graph output layer.

e input:: data.table with columns name (character), train (character), predict (character),
op.id (character), channel.name (character)
Input channels of the Graph. For each channel lists the name, input type during training, input
type during prediction, PipeOp $id of the PipeOp the channel pertains to, and channel name
as the PipeOp knows it.

e output :: data.table with columns name (character), train (character), predict (character),
op.id (character), channel.name (character)
Output channels of the Graph. For each channel lists the name, output type during training,
output type during prediction, PipeOp $id of the PipeOp the channel pertains to, and channel
name as the PipeOp knows it.

* packages :: character
Set of all required packages for the various methods in the Graph, a set union of all required
packages of all contained PipeOp objects.

* state:: named list
Get / Set the $state of each of the members of PipeOp.

* param_set :: ParamSet
Parameters and parameter constraints. Parameter values are in $param_set$values. These
are the union of $param_sets of all PipeOps in the Graph. Parameter names as seen by
the Graph have the naming scheme <PipeOp$id>.<PipeOp original parameter name>.
Changing $param_set$values also propagates the changes directly to the contained PipeOps
and is an alternative to changing a PipeOps $param_set$values directly.



Graph 13

e hash :: character(1)
Stores a checksum calculated on the Graph configuration, which includes all PipeOp hashes
(and therefore their $param_set$values) and a hash of $edges.

e phash :: character(1)
Stores a checksum calculated on the Graph configuration, which includes all PipeOp hashes
except their $param_set$values, and a hash of $edges.

e keep_results:: logical(1)
Whether to store intermediate results in the PipeOp’s $.result slot, mostly for debugging
purposes. Default FALSE.

e man :: character(1)
Identifying string of the help page that shows with help().

Methods

e ids(sorted = FALSE)
(logical(1)) -> character
Get IDs of all PipeOps. This is in order that PipeOps were added if sorted is FALSE, and
topologically sorted if sorted is TRUE.

e add_pipeop(op, clone = TRUE)
(PipeOp | Learner | Filter | ..., logical(1)) -> self
Mutates Graph by adding a PipeOp to the Graph. This does not add any edges, so the new
PipeOp will not be connected within the Graph at first.
Instead of supplying a PipeOp directly, an object that can naturally be converted to a PipeOp
can also be supplied, e.g. aLearner oraFilter;see as_pipeop(). The argument given as op
is cloned if clone is TRUE (default); to access a Graph’s PipeOps by-reference, use $pipeops.
Note that $add_pipeop() is a relatively low-level operation, it is recommended to build
graphs using %>>%.

e add_edge(src_id, dst_id, src_channel =NULL, dst_channel =NULL)
(character (1), character(1), character (1) Inumeric(1) INULL, character (1) Inumeric(1)
| NULL) -> self
Add an edge from PipeOp src_id, and its channel src_channel (identified by its name or
number as listed in the PipeOp’s $output), to PipeOp dst_id’s channel dst_channel (iden-
tified by its name or number as listed in the PipeOp’s $input). If source or destination PipeOp
have only one input / output channel and src_channel / dst_channel are therefore unam-
biguous, they can be omitted (i.e. left as NULL).

e chain(gs, clone = TRUE)
(list of Graphs, logical(1)) -> self
Takes a list of Graphs or PipeOps (or objects that can be automatically converted into Graphs
or PipeOps, see as_graph() and as_pipeop()) as inputs and joins them in a serial Graph
coming after self, as if connecting them using %>>%.

e plot(html)
(logical(1))->NULL
Plot the Graph, using either the igraph package (for html = FALSE, default) or the visNetwork
package for html = TRUE producing a htmlWidget. The htmlWidget can be rescaled using
visOptions.

e print(dot = FALSE, dotname = "dot"”, fontsize = 24L)
(logical(1), character(1), integer(1)) -> NULL



14 Graph

Print a representation of the Graph on the console. If dot is FALSE, output is a table with one
row for each contained PipeOp and columns ID ($id of PipeOp), State (short representation
of $state of PipeOp), sccssors (PipeOps that take their input directly from the PipeOp on
this line), and prdcssors (the PipeOps that produce the data that is read as input by the PipeOp
on this line). If dot is TRUE, print a DOT representation of the Graph on the console. The DOT
output can be named via the argument dotname and the fontsize can also be specified.

e set_names(old, new)
(character, character) -> self
Rename PipeOps: Change ID of each PipeOp as identified by old to the corresponding item
in new. This should be used instead of changing a PipeOp’s $id value directly!

nn

e update_ids(prefix ="", postfix="")
(character, character) -> self
Pre- or postfix PipeOp’s existing ids. Both prefix and postfix default to

nn

, 1.e. no changes.

e train(input, single_input = TRUE)

(any, logical(1))->named list

Train Graph by traversing the Graphs’ edges and calling all the PipeOp’s $train methods
in turn. Return a named list of outputs for each unconnected PipeOp out-channel, named
according to the Graph’s $output name column. During training, the $state member of each
PipeOps will be set and the $is_trained slot of the Graph (and each individual PipeOp) will
consequently be set to TRUE.

If single_input is TRUE, the input value will be sent to each unconnected PipeOp’s input
channel (as listed in the Graph’s $input). Typically, input should be a Task, although this
is dependent on the PipeOps in the Graph. If single_input is FALSE, then input should
be a 1ist with the same length as the Graph’s $input table has rows; each list item will be
sent to a corresponding input channel of the Graph. If input is a named list, names must
correspond to input channel names ($input$name) and inputs will be sent to the channels by
name; otherwise they will be sent to the channels in order in which they are listed in $input.

e predict(input, single_input = TRUE)
(any, logical(1))-> list of any
Predict with the Graph by calling all the PipeOp’s $train methods. Input and output, as well
as the function of the single_input argument, are analogous to $train().

e help(help_type)
(character (1)) -> help file
Displays the help file of the concrete PipeOp instance. help_type is one of "text"”, "html”,
"pdf" and behaves as the help_type argument of R’s help().

See Also
Other mlr3pipelines backend related: PipeOp, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple,
mlr_graphs, mlr_pipeops, mlr_pipeops_updatetarget
Examples
library("mlr3")
g = Graph$new()$

add_pipeop(PipeOpScale$new(id = "scale"))$
add_pipeop(PipeOpPCA$new(id = "pca”))$



greplicate 15

add_edge("scale”, "pca")
g$input
g$output

task = tsk("iris")
trained = g$train(task)
trained[[1]]$data()

task$filter(1:10)
predicted = g$predict(task)
predicted[[1]]$data()

greplicate Create Disjoint Graph Union of Copies of a Graph

Description

Create a new Graph containing n copies of the input Graph / PipeOp. To avoid ID collisions, PipeOp
IDs are suffixed with _i where i ranges from 1 to n.

This function is deprecated and will be removed in the next version in favor of using pipeline_greplicate
/ ppl("greplicate").

Usage

greplicate(graph, n)

Arguments
graph Graph
Graph to replicate.
n integer (1) Number of copies to create.
Value

Graph containing n copies of input graph.

See Also

Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_graph(), assert_pipeop(),
chain_graphs(), gunion(), mlr_graphs_greplicate



16 gunion

gunion Disjoint Union of Graphs

Description

Takes an arbitrary amount of Graphs or PipeOps (or objects that can be automatically converted into
Graphs or PipeOps, see as_graph() and as_pipeop()) as inputs and joins them in a new Graph.

The PipeOps of the input Graphs are not joined with new edges across Graphs, so if length(graphs)
> 1, the resulting Graph will be disconnected.

This operation always creates deep copies of its input arguments, so they cannot be modified by
reference afterwards. To access individual PipeOps after composition, use the resulting Graph’s
$pipeops list.

Usage

gunion(graphs, in_place = FALSE)

Arguments

graphs list of (Graph | PipeOp INULL | ...)
List of elements which are the Graphs to be joined. Elements must be con-
vertible to Graph or PipeOp using as_graph() and as_pipeop(). NULL val-
ues automatically get converted to PipeOpNOP with a random ID of the format
nop_*xxx**xxx, The list can be named, in which case the IDs of the elements
are prefixed with the names, separated by a dot (.).

in_place (logical(1) I logical)
Whether to try to avoid cloning the first element of graphs, similar to the differ-
ence of %>>1% over %>>%. This can only be avoided if graphs[[1]1] is already a
Graph.
Unlike chain_graphs(), gunion() does all checks before mutating graphs[[1]1],
so it will not leave graphs[[1]] in an incompletely modified state when it fails.
in_place may also be of length graph, in which case it determines for each
element of graphs whether it is cloned. This is for internal usage and is not
recommended.

Value

Graph the resulting Graph.

See Also

Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_graph(), assert_pipeop(),
chain_graphs(), greplicate(), mlr_graphs_greplicate



is.Multiplicity

17

is.Multiplicity Check if an object is a Multiplicity

Description

Check if an object is aMultiplicity.

Usage

is.Multiplicity(x)

Arguments
X (any)
Object to check.
Value

logical(1)

is_noop Test for NO_OP

Description

Test whether a given object is a NO_OP.

Usage
is_noop(x)
Arguments
X any
Object to test.
Value

logical (1): Whether x is a NO_OP.

See Also

Other Path Branching: NO_OP, filter_noop(), mlr_pipeops_branch, mlr_pipeops_unbranch



18 mlr_graphs

mlr_graphs Dictionary of (sub-)graphs

Description

A simple Dictionary storing objects of class Graph. The dictionary contains a collection of
often-used graph structures, and it’s aim is solely to make often-used functions more accessible.
Each Graph has an associated help page, which can be accessed via ?mlr_graphs_<key>, i.e.
?mlr_graphs_bagging.

Format

R6Class object inheriting from mlr3misc: :Dictionary.

Methods

Methods inherited from Dictionary, as well as:

e add(key, value)
(character (1), function)
Adds constructor value to the dictionary with key key, potentially overwriting a previously
stored item.

S3 methods

* as.data.table(dict)
Dictionary ->data.table::data.table
Returns a data. table with column key (character).

See Also

Other mlr3pipelines backend related: Graph, PipeOp, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_updatetarget

Other Dictionaries: mlr_pipeops

Examples

library(mlr3)
lrn = 1rn("regr.rpart")
task = mlr_tasks$get("boston_housing")

# Robustify the learner for the task.

gr = pipeline_robustify(task, 1lrn) %>>% po("learner”, lrn)

# or equivalently

gr = mlr_graphs$get("robustify”, task = task, learner = 1lrn) %>>% po(lrn)
# or equivalently

gr = ppl("robustify”, task, lrn) %>>% po("learner”, 1lrn)

# all Graphs currently in the dictionary:



mlr_graphs_bagging 19

as.data.table(mlr_graphs)

mlr_graphs_bagging Create a bagging learner

Description
Creates a Graph that performs bagging for a supplied graph. This is done as follows:

* Subsample the data in each step using PipeOpSubsample, afterwards apply graph

* Replicate this step iterations times (in parallel via multiplicities)

* Average outputs of replicated graphs predictions using the averager (note that setting collect_multipliciy
= TRUE is required)

All input arguments are cloned and have no references in common with the returned Graph.

Usage
pipeline_bagging(
graph,
iterations = 10,
frac = 0.7,

averager = NULL,
replace = FALSE

)
Arguments

graph PipeOp | Graph
A PipeOpLearner or Graph to create a robustifying pipeline for. Outputs from
the replicated graphs are connected with the averager.

iterations integer(1)
Number of bagging iterations. Defaults to 10.

frac numeric(1)
Percentage of rows to keep during subsampling. See PipeOpSubsample for
more information. Defaults to 0.7.

averager PipeOp | Graph
A PipeOp or Graph that averages the predictions from the replicated and sub-
sampled graph’s. In the simplest case, po("”classifavg”) and po("regravg")
can be used in order to perform simple averaging of classification and regression
predictions respectively. If NULL (default), no averager is added to the end of the
graph. Note that setting collect_multipliciy = TRUE during construction of
the averager is required.

replace logical(1)

Whether to sample with replacement. Default FALSE.



20

Value

Graph

Examples

library(mlr3)

mlr_graphs_branch

lrn_po = po("learner”, 1lrn("regr.rpart”))

task = mlr_tasks$get("boston_housing")

gr = pipeline_bagging(lrn_po, 3, averager = po("regravg”, collect_multiplicity = TRUE))
resample(task, GraphLearner$new(gr), rsmp("holdout”))$aggregate()

# The original bagging method uses boosting by sampling with replacement.
gr = ppl(”"bagging”, lrn_po, frac = 1, replace = TRUE,

averager = po("regravg”, collect_multiplicity = TRUE))
resample(task, GraphLearner$new(gr), rsmp(”"holdout”))$aggregate()

mlr_graphs_branch

Branch Between Alternative Paths

Description

Create a multiplexed graph.

All input arguments are cloned and have no references in common with the returned Graph.

Usage

pipeline_branch(graphs, prefix_branchops = "", prefix_paths = FALSE)
Arguments

graphs list of Graph

Multiple graphs, possibly named. They all must have exactly one output. If any
of the arguments are named, then all must have unique names.

prefix_branchops

prefix_paths

character(1)

Optional id prefix to prepend to PipeOpBranch and PipeOpUnbranch id. Their

resulting IDs will be "[prefix_branchops]branch” and "[prefix_branchopsJunbranch”.
Defaultis "".

logical (1) | character(1)

Whether to add prefixes to graph IDs when performing gunion. Can be helpful
to avoid ID clashes in resulting graph. Default FALSE. If this is TRUE, the prefixes
are taken from the names of the input arguments if present or "poX"” where X
counts up. If this is a character(1), it is a prefix that is added to the PipeOp
IDs additionally to the input argument list.



mlr_graphs_convert_types 21

Value

Graph

Examples

library("mlr3")

po_pca = po("pca”)
po_nop = po("nop")

branches = pipeline_branch(list(pca = po_pca, nothing = po_nop))
# gives the same as
branches = c("pca”, "nothing")
po("branch”, branches) %>>%
gunion(list(po_pca, po_nop)) %>>%
po("unbranch”, branches)

pipeline_branch(list(pca = po_pca, nothing = po_nop),
prefix_branchops = "br_", prefix_paths = "xy_")

# gives the same as

po("branch”, branches, id = "br_branch”) %>>%
gunion(list(xy_pca = po_pca, xy_nothing = po_nop)) %>>%
po("unbranch”, branches, id = "br_unbranch”)

mlr_graphs_convert_types
Convert Column Types

Description

Converts all columns of type type_from to type_to, using the corresponding R function (e.g.
as.numeric(), as.factor()). It is possible to further subset the columns that should be affected
using the affect_columns argument. The resulting Graph contains a PipeOpColApply, followed
if appropriate, by a PipeOpFixFactors.

Unlike R’s as. factor () function, ppl("convert_types”) will convert ordered types into (un-
ordered) factor vectors.

Usage
pipeline_convert_types(
type_from,
type_to,
affect_columns = NULL,
id = NULL,

fixfactors = NULL,
more_args = list()



22 mlr_graphs_convert_types

Arguments
type_from character
Which column types to convert. May be any combination of "logical”, "integer"”,
"numeric”, "factor”, "ordered”, "character”, or "POSIXct".
type_to character(1)

Which type to convert to. Must be a scalar value, exactly one of the types al-
lowed in type_from.

affect_columns function | Selector | NULL
Which columns to affect. This argument can further restrict the columns being
converted, beyond the type_from argument. Must be a Selector-like function,
which takes a Task as argument and returns a character of features to use.

id character (1) | NULL
ID to give to the constructed PipeOps. Defaults to an ID built automatically
from type_from and type_to. If a PipeOpFixFactors is appended, its ID will
be paste@(id, "_ff").

fixfactors logical (1) INULL

Whether to append a PipeOpFixFactors. Defaults to TRUE if and only if type_to
is "factor"” or "ordered”.

more_args list
Additional arguments to give to the conversion function. This could e.g. be used
to pass the timezone to as.POSIXct.

Value

Graph

Examples

library("mlr3")

data_chr = data.table::data.table(
x = factor(letters[1:3]),
y = letters[1:3],
z = letters[1:3]
)
task_chr = TaskClassif$new("task_chr", data_chr, "x")
str(task_chr$data())

graph = ppl("convert_types”, "character”, "factor")
str(graph$train(task_chr)[[1]1]$data())

graph_z = ppl("convert_types”, "character”, "factor”,
affect_columns = selector_name("z"))
graph_z$train(task_chr)[[1]1]$data()

# ~affect_columns™ and ~“type_from™ are both applied. The following
# looks for a 'numeric' column with name 'z', which is not present;
# the task is therefore unchanged.

graph_z = ppl(”convert_types”, "numeric", "factor”,



mlr_graphs_greplicate 23

affect_columns = selector_name("z"))
graph_z$train(task_chr)[[1]]$data()

mlr_graphs_greplicate Create Disjoint Graph Union of Copies of a Graph

Description

Create a new Graph containing n copies of the input Graph / PipeOp. To avoid ID collisions, PipeOp
IDs are suffixed with _i where i ranges from 1 to n.

All input arguments are cloned and have no references in common with the returned Graph.

Usage

pipeline_greplicate(graph, n)

Arguments
graph Graph
Graph to replicate.
n integer (1) Number of copies to create.
Value

Graph containing n copies of input graph.

See Also
Other Graph operators: %>>%(), as_graph(), as_pipeop(), assert_graph(), assert_pipeop(),
chain_graphs(), greplicate(), gunion()

Examples

library("mlr3")

po_pca = po("pca")
pipeline_greplicate(po_pca, n = 2)



24 mlr_graphs_ovr

mlr_graphs_ovr Create A Graph to Perform "One vs. Rest" classification.

Description

Create a new Graph for a classification Task to perform "One vs. Rest" classification.

All input arguments are cloned and have no references in common with the returned Graph.

Usage
pipeline_ovr(graph)

Arguments
graph Graph
Graph being wrapped between PipeOpOVRSplit and PipeOpOVRUnite. The
Graph should return NULL during training and a classification Prediction during
prediction.
Value
Graph
Examples

library("mlr3")
task = tsk("wine")

learner = lrn("classif.rpart”)
learner$predict_type = "prob”

# Simple OVR

gl = pipeline_ovr(learner)
gl$train(task)
gl1$predict(task)

# Bagged Learners
gr = po("replicate”, reps = 3) %>>%
po("subsample”) %>>%
learner %>>%
po("classifavg”, collect_multiplicity = TRUE)
g2 = pipeline_ovr(gr)
g2$train(task)
g2%$predict(task)

# Bagging outside OVR
g3 = po("replicate”, reps = 3) %>>%
pipeline_ovr(po("subsample”) %>>% learner) %>>%



mlr_graphs_robustity 25

po("classifavg”, collect_multiplicity = TRUE)
g3$train(task)
g3$predict(task)

mlr_graphs_robustify  Robustify a learner

Description

Creates a Graph that can be used to robustify any subsequent learner. Performs the following steps:

* Drops empty factor levels using PipeOpFixFactors
* Imputes numeric features using PipeOpImputeHist and PipeOpMissInd
* Imputes factor features using PipeOpImputeOOR

* Encodes factors using one-hot-encoding. Factors with a cardinality > max_cardinality are
collapsed using PipeOpCollapseFactors

The graph is built conservatively, i.e. the function always tries to assure everything works. If a
learner is provided, some steps can be left out, i.e. if the learner can deal with factor variables, no
encoding is performed.

All input arguments are cloned and have no references in common with the returned Graph.

Usage

pipeline_robustify(
task = NULL,
learner = NULL,
impute_missings = NULL,
factors_to_numeric = NULL,
max_cardinality = 1000,

ordered_action = "factor”,
character_action = "factor”,
POSIXct_action = "numeric”
)
Arguments
task Task
A Task to create a robustifying pipeline for. Optional, if omitted, the "worst
possible" Task is assumed and the full pipeline is created.
learner Learner

A learner to create a robustifying pipeline for. Optional, if omitted, the "worst
possible" Learner is assumed and a more conservative pipeline is built.



26

impute_missings

mlr_graphs_robustity

logical (1) INULL

Should missing values be imputed? Defaults to NULL: imputes if the task has
missing values (or factors that are not encoded to numerics) and the learner can
not handle them.

factors_to_numeric

max_cardinality

ordered_action

logical (1) INULL

Should (ordered and unordered) factors be encoded? Defaults to NULL: encodes
if the task has factors (or character columns that get converted to factor) and the
learner can not handle factors.

integer(1)
Maximum number of factor levels allowed. See above. Default: 1000.

character (1)

How to handle ordered columns: "factor” (default) or "factor!": convert
to factor columns; "numeric” or "numeric!”: convert to numeric columns;
"integer"” or "integer!": convert to integer columns; "ignore"” or "ignore!":
ignore. When task is given and has no ordered columns, or when learner is

given and can handle ordered, then "factor”, "numeric” and "integer" are

treated like "ignore”. This means it is necessary to add the exclamation point

to override Task or Learner properties when given. "ignore” and "ignore!”

therefore behave completely identically, "ignore!" is only present for consis-

tency.

When ordered features are converted to factor, then they are treated like

factor features further down in the pipeline, and are possibly eventually con-

verted to numerics, but in a different way: factors get one-hot encoded, ordered_action
= "numeric” converts ordered using as.numeric to their integer-valued rank.

character_action

POSIXct_action

character(1)

How to handle character columns: "factor" (default) or "factor!": convert
to factor columns; "matrix” or "matrix!": Use PipeOpTextVectorizer.
"ignore” or "ignore!": ignore. When task is given and has no character
columns, or when learner is given and can handle character, then "factor”
and "matrix” are treated like "ignore”. This means it is necessary to add the
exclamation point to override Task or Learner properties when given. "ignore”
and "ignore!"” therefore behave completely identically, "ignore!" is only present
for consistency.

When character columns are converted to factor, then they are treated like
factor further down in the pipeline, and are possibly eventually converted to
numerics, using one-hot encoding.

character (1)

How to handle POSIXct columns: "numeric"” (default) or "numeric!": convert

to numeric columns; "datefeatures” or "datefeatures!”: Use PipeOpDateFeatures.
"ignore"” or "ignore!": ignore. When task is given and has no POSIXct
columns, or when learner is given and can handle POSIXct, then "numeric”

and "datefeatures” are treated like "ignore”. This means it is necessary to

add the exclamation point to override Task or Learner properties when given.
"ignore" and "ignore!" therefore behave completely identically, "ignore!”



mlr_graphs_stacking 27

is only present for consistency.

Value

Graph

Examples

library(mlr3)

lrn = 1rn("regr.rpart”)

task = mlr_tasks$get("boston_housing")

gr = pipeline_robustify(task, 1lrn) %>>% po("learner”, lrn)
resample(task, GraphLearner$new(gr), rsmp("holdout”))

mlr_graphs_stacking Create A Graph to Perform Stacking.

Description

Create a new Graph for stacking. A stacked learner uses predictions of several base learners and fits
a super learner using these predictions as features in order to predict the outcome.

All input arguments are cloned and have no references in common with the returned Graph.

Usage

pipeline_stacking(
base_learners,
super_learner,

method = "cv”,
folds = 3,
use_features = TRUE
)
Arguments

base_learners list of Learner
A list of base learners.

super_learner Learner
The super learner that makes the final prediction based on the base learners.

method character(1)
"cv" (default) for building a super learner using cross-validated predictions of
the base learners or "insample” for building a super learner using the predic-
tions of the base learners trained on all training data.



28 mlr_graphs_targettrafo

folds integer(1)
Number of cross-validation folds. Only used for method = "cv". Default 3.

use_features logical(1)
Whether the original features should also be passed to the super learner. Default
TRUE.

Value

Graph

Examples

if (requireNamespace("kknn")) {
library(mlr3)
library(mlr3learners)

base_learners = list(
Irn("classif.rpart”, predict_type = "prob"),
1rn("classif.kknn", predict_type = "prob")
)

super_learner = 1rn("classif.log_reg")

graph_stack = pipeline_stacking(base_learners, super_learner)
graph_learner = as_learner(graph_stack)
graph_learner$train(tsk("german_credit”))

}

mlr_graphs_targettrafo
Transform and Re-Transform the Target Variable

Description

Wraps a Graph that transforms a target during training and inverts the transformation during pre-
diction. This is done as follows:

* Specify a transformation and inversion function using any subclass of PipeOpTargetTrafo,
defaults to PipeOpTargetMutate, afterwards apply graph.
* At the very end, during prediction the transformation is inverted using PipeOpTargetInvert.

* To set a transformation and inversion function for PipeOpTargetMutate see the parameters
trafo and inverter of the param_set of the resulting Graph.

Note that the input graph is not explicitly checked to actually return a Prediction during
prediction.

All input arguments are cloned and have no references in common with the returned Graph.



mlr_graphs_targettrafo 29

Usage
pipeline_targettrafo(
graph,
trafo_pipeop = PipeOpTargetMutate$new(),
id_prefix = ""
)
Arguments
graph PipeOpLearner | Graph

A PipeOpLearner or Graph to wrap between a transformation and re-transformation
of the target variable.

trafo_pipeop PipeOp
A PipeOp that is a subclass of PipeOpTargetTrafo. Defaultis PipeOpTargetMutate.

id_prefix character(1)
Optional id prefix to prepend to PipeOpTargetInvert ID. The resulting ID will
be "[id_prefix]Jtargetinvert”. Defaultis "".

Value

Graph

Examples

library("mlr3")

tt = pipeline_targettrafo(PipeOpLearner$new(LearnerRegrRpart$new()))
tt$param_set$values$targetmutate.trafo = function(x) log(x, base = 2)
tt$param_set$values$targetmutate.inverter = function(x) list(response = 2 * x$response)

# gives the same as

g = Graph$new()

g$add_pipeop(PipeOpTargetMutate$new(param_vals = list(
trafo = function(x) log(x, base = 2),
inverter = function(x) list(response = 2 * x$response))
)

)
g$add_pipeop(LearnerRegrRpart$new())

g$add_pipeop(PipeOpTargetInvert$new())

g$add_edge(src_id = "targetmutate”, dst_id = "targetinvert”,
src_channel = 1, dst_channel = 1)

g$add_edge(src_id = "targetmutate”, dst_id = "regr.rpart”,
src_channel = 2, dst_channel = 1)

g$add_edge(src_id = "regr.rpart”, dst_id = "targetinvert”,
src_channel = 1, dst_channel = 2)



30 mlr_learners_avg

mlr_learners_avg Optimized Weighted Average of Features for Classification and Re-
gression

Description

Computes a weighted average of inputs. Used in the context of computing weighted averages of
predictions.

Predictions are averaged using weights (in order of appearance in the data) which are optimized
using nonlinear optimization from the package nloptr for a measure provided in measure. (defaults
to classif.ce for LearnerClassifAvg and regr.mse for LearnerRegrAvg). Learned weights
can be obtained from $model. This Learner implements and generalizes an approach proposed in
LeDell (2015) that uses non-linear optimization in order to learn base-learner weights that optimize
a given performance metric (e.g AUC). The approach is similar but not exactly the same as the one
implemented as AUC in the SuperLearner R package (when metric is "classif.auc"). For a
more detailed analysis and the general idea, the reader is referred to LeDell (2015).

Note, that weights always sum to 1 by division by sum(weights) before weighting incoming fea-
tures.

Usage

mlr_learners_classif.avg

mlr_learners_regr.avg

Format

R6Class object inheriting from mlr3: :LearnerClassif/mlr3::Learner.

Parameters

The parameters are the parameters inherited from LearnerClassif, as well as:

* measure :: Measure | character
Measure to optimize for. Will be converted to a Measure in case it is character. Initialized
to "classif.ce", i.e. misclassification error for classification and "regr.mse”, i.e. mean
squared error for regression.

e optimizer :: Optimizer | character(1)
Optimizer used to find optimal thresholds. If character, converts to Optimizer via opt.
Initialized to OptimizerNLoptr. Nloptr hyperparameters are initialized to xtol_rel = 1e-8,
algorithm = "NLOPT_LN_COBYLA" and equal initial weights for each learner. For more fine-
grained control, it is recommended to supply a instantiated Optimizer.

* log_level :: character(1) | integer(1)
Set a temporary log-level for 1gr: :get_logger ("bbotk"). Initialized to: "warn".


https://CRAN.R-project.org/package=nloptr
https://CRAN.R-project.org/package=SuperLearner

mlr_learners_graph 31

Methods

* LearnerClassifAvg$new(), id = "classif.avg")
(chr) -> self
Constructor.

* LearnerRegrAvg$new(), id = "regr.avg")
(chr) -> self
Constructor.
References
LeDell, Erin (2015). Scalable Ensemble Learning and Computationally Efficient Variance Estima-
tion. Ph.D. thesis, UC Berkeley.
See Also

Other Learners: mlr_learners_graph

Other Ensembles: PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_ovrunite, mlr_pipeops_regravg

mlr_learners_graph Encapsulate a Graph as a Learner

Description

A Learner that encapsulates a Graph to be used in mlr3 resampling and benchmarks.

The Graph must return a single Prediction on its $predict() call. The result of the $train()
call is discarded, only the internal state changes during training are used.

The predict_type of a GraphLearner can be obtained or set via it’s predict_type active bind-
ing. Setting a new predict type will try to set the predict_type in all relevant PipeOp / Learner
encapsulated within the Graph. Similarly, the predict_type of a Graph will always be the smallest
denominator in the Graph.

A GraphLearner is always constructed in an untrained state. When the graph argument has a
non-NULL $state, it is ignored.
Format

R6Class object inheriting from mlr3: :Learner.

Construction

GraphLearner$new(graph, id = NULL, param_vals = list(), task_type = NULL, predict_type = NULL)

e graph :: Graph | PipeOp
Graph to wrap. Can be a PipeOp, which is automatically converted to a Graph. This argument
is usually cloned, unless clone_graph is FALSE; to access the Graph inside GraphLearner
by-reference, use $graph.



32

Fields

mlr_learners_graph

id :: character (1) Identifier of the resulting Learner.

param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings . Default 1ist().

task_type :: character(1)
What task_type the GraphLearner should have; usually automatically inferred for Graphs
that are simple enough.

predict_type :: character(1)

What predict_type the GraphLearner should have; usually automatically inferred for Graphs
that are simple enough.

clone_graph :: logical(1)

Whether to clone graph upon construction. Unintentionally changing graph by reference
can lead to unexpected behaviour, so TRUE (default) is recommended. In particular, note that
the $state of $graph is set to NULL by reference on construction of GraphLearner, during
$train(), and during $predict() when clone_graph is FALSE.

Fields inherited from PipeOp, as well as:

Methods

graph :: Graph

Graph that is being wrapped. This field contains the prototype of the Graph that is being
trained, but does not contain the model. Use graph_model to access the trained Graph after
$train(). Read-only.

graph_model :: Learner
Graph that is being wrapped. This Graph contains a trained state after $train(). Read-only.

internal_tuned_values :: named list() or NULL
The internal tuned parameter values collected from all PipeOps. NULL is returned if the learner
is not trained or none of the wrapped learners supports internal tuning.

internal_valid_scores :: named 1ist() or NULL

The internal validation scores as retrieved from the PipeOps. The names are prefixed with
the respective IDs of the PipeOps. NULL is returned if the learner is not trained or none of the
wrapped learners supports internal validation.

validate :: numeric(1), "predefined”, "test"” or NULL

How to construct the validation data. This also has to be configured for the individual PipeOps
such as PipeOpLearner, see set_validate.GraphLearner. For more details on the possible
values, see mlr3::Learner.

marshaled :: logical(1)
Whether the learner is marshaled.

marshal(...)
(any) -> self
Marshal the model.

unmarshal(...)
(any) -> self
Unmarshal the model.



mlr_pipeops 33

Internals

as_graph() is called on the graph argument, so it can technically also be a 1ist of things, which
is automatically converted to a Graph via gunion(); however, this will usually not result in a
valid Graph that can work as a Learner. graph can furthermore be a Learner, which is then
automatically wrapped in a Graph, which is then again wrapped in a GraphlLearner object; this
usually only adds overhead and is not recommended.

See Also

Other Learners: mlr_learners_avg
Examples
library("mlr3")
graph = po("pca”) %>>% lrn("classif.rpart")

1r = GraphLearner$new(graph)
1r = as_learner(graph) # equivalent

lr$train(tsk(”iris™))

lr$graph$state # untrained version!
# The following is therefore NULL:
1r$graph$pipeops$classif.rpart$learner_model$model

# To access the trained model from the PipeOpLearner's Learner, use:
1r$graph_model$pipeops$classif.rpart$learner_model$model

# Feature importance (of principal components):
1r$graph_model$pipeops$classif.rpart$learner_model$importance()

mlr_pipeops Dictionary of PipeOps

Description
A simple Dictionary storing objects of class PipeOp. Each PipeOp has an associated help page,
see mlr_pipeops_[id].

Format

R6Class object inheriting from mlr3misc: :Dictionary.

Fields
Fields inherited from Dictionary, as well as:

* metainf :: environment
Environment that stores the metainf argument of the $add() method. Only for internal use.



34 mlr_pipeops

Methods
Methods inherited from Dictionary, as well as:

e add(key, value, metainf = NULL)
(character (1), R6ClassGenerator, NULL | 1ist)
Adds constructor value to the dictionary with key key, potentially overwriting a previously
stored item. If metainf is not NULL (the default), it must be a 1ist of arguments that will
be given to the value constructor (i.e. value$new()) when it needs to be constructed for
as.data. table PipeOp listing.

S3 methods

* as.data.table(dict)
Dictionary ->data.table::data.table
Returns a data.table with columns key (character), packages (character), input.num
(integer), output.num(integer), input. type.train (character), input.type.predict
(character), output. type.train (character), output. type.predict (character).

See Also

Other mlr3pipelines backend related: Graph, PipeOp, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_graphs, mlr_pipeops_updatetarget

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Dictionaries: mlr_graphs
Examples
library("mlr3")
mlr_pipeops$get(”learner”, lrn("classif.rpart”))

# equivalent:
po("learner"”, learner = lrn("classif.rpart”))



mlr_pipeops_boxcox 35

# all PipeOps currently in the dictionary:
as.data.table(mlr_pipeops)[, c("key”, "input.num”, "output.num”, "packages")]

mlr_pipeops_boxcox Box-Cox Transformation of Numeric Features

Description

Conducts a Box-Cox transformation on numeric features. The lambda parameter of the transfor-
mation is estimated during training and used for both training and prediction transformation. See
bestNormalize: :boxcox() for details.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpBoxCox$new(id = "boxcox”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "boxcox".

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric features replaced by their transformed ver-
sions.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as a list of class boxcox for each column, which is transformed.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* standardize :: logical(1)
Whether to center and scale the transformed values to attempt a standard normal distribution.
For details see boxcox ().

e eps :: numeric(1)
Tolerance parameter to identify if lambda parameter is equal to zero. For details see boxcox ().



36 mlr_pipeops_boxcox

e lower :: numeric(1)
Lower value for estimation of lambda parameter. For details see boxcox ().

e upper :: numeric(1)
Upper value for estimation of lambda parameter. For details see boxcox().

Internals

Uses the bestNormalize: :boxcox function.

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing,
mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pop = po("boxcox")

task$data()
pop$train(list(task))[[1]1$data()

pop$state



mlr_pipeops_branch 37

mlr_pipeops_branch Path Branching

Description

Perform alternative path branching: PipeOpBranch has multiple output channels that connect to
different paths in a Graph. At any time, only one of these paths will be taken for execution. At
the end of the different paths, the PipeOpUnbranch PipeOp must be used to indicate the end of
alternative paths.

Not to be confused with PipeOpCopy, the naming scheme is a bit unfortunate.

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpBranch$new(options, id = "branch”, param_vals = list())

e options :: numeric(1) | character
If options is an integer number, it determines the number of output channels / options that
are created, named output1...output<n>. The $selection parameter will then be an integer.
If options is a character, it determines the names of channels directly. The $selection
parameter will then be factorial.

e id:: character(1)
Identifier of resulting object, default "branch”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels
PipeOpBranch has one input channel named "input”, taking any input ("*") both during training
and prediction.

PipeOpBranch has multiple output channels depending on the options construction argument,
named "output1”, "output2”, ... if options is numeric, and named after each options value if
options is a character. All output channels produce the object given as input ("*") or NO_OP,
both during training and prediction.

State

The $state is left empty (1ist()).



38 mlr_pipeops_branch

Parameters

e selection :: numeric(1) | character(1)
Selection of branching path to take. Is a ParamInt if the options parameter during con-
struction was a numeric(1), and ranges from 1 to options. Is a ParamFct if the options
parameter was a character and its possible values are the options values. Initialized to ei-
ther 1 (if the options construction argument is numeric (1)) or the first element of options
(if it is character).

Internals

Alternative path branching is handled by the PipeOp backend. To indicate that a path should not
be taken, PipeOpBranch returns the NO_OP object on its output channel. The PipeOp handles
each NO_OP input by automatically returning a NO_OP output without calling private$.train()
or private$.predict(), until PipeOpUnbranch is reached. PipeOpUnbranch will then take mul-
tiple inputs, all except one of which must be a NO_OP, and forward the only non-NO_OP object on its
output.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_chunk, mlr_pipeops_classbalancing,
mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer,mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Path Branching: NO_OP, filter_noop(), is_noop(), mlr_pipeops_unbranch



mlr_pipeops_chunk 39

Examples

library("mlr3")

pca = po("pca”)
nop = po("nop")
choices = c("pca”, "nothing")

gr = po("branch”, choices) %>>%
gunion(list(pca, nop)) %>>%
po("unbranch”, choices)

n n

gr$param_set$values$branch.selection = "pca
gr$train(tsk("iris"))
gr$param_set$values$branch.selection = "nothing”
gr$train(tsk("iris"))

mlr_pipeops_chunk Chunk Input into Multiple Outputs

Description

Chunks its input into outnum chunks. Creates outnum Tasks during training, and simply passes on
the input during outnum times during prediction.

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpChunk$new(outnum, id = "chunk”, param_vals = list())

e outnum:: numeric(1)
Number of output channels, and therefore number of chunks created.

e id:: character(1)
Identifier of resulting object, default "chunk".
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output

PipeOpChunk has one input channel named "input”, taking a Task both during training and pre-
diction.

PipeOpChunk has multiple output channels depending on the options construction argument, named
"output1”, "output2”, ... All output channels produce (respectively disjoint, random) subsets of
the input Task during training, and pass on the original Task during prediction.



40 mlr_pipeops_chunk

State

The $state is left empty (1ist()).

Parameters

e shuffle:: logical(1)
Should the data be shuffled before chunking? Initialized to TRUE.

Internals

Uses the mlr3misc: : chunk_vector() function.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_classbalancing
mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer,mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("wine")
opc = mlr_pipeops$get(”chunk”, 2)

# watch the row number: 89 during training (task is chunked)...



mlr_pipeops_classbalancing 41

opc$train(list(task))

# ... 178 during predict (task is copied)
opc$predict(list(task))

mlr_pipeops_classbalancing
Class Balancing

Description

Both undersamples a Task to keep only a fraction of the rows of the majority class, as well as
oversamples (repeats data points) rows of the minority class.

Sampling happens only during training phase. Class-balancing a Task by sampling may be benefi-
cial for classification with imbalanced training data.
Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpClassBalancing$new(id = "classbalancing”, param_vals = list())

e id:: character (1) Identifier of the resulting object, default "classbalancing”

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif
is used as input and output during training and prediction.

The output during training is the input Task with added or removed rows to balance target classes.
The output during prediction is the unchanged input.
State

The $state is a named 1ist with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc; however, the affect_columns
parameter is not present. Further parameters are:

* ratio:: numeric(1)
Ratio of number of rows of classes to keep, relative to the $reference value. Initialized to 1.



42 mlr_pipeops_classbalancing

e reference :: numeric(1)
What the $ratio value is measured against. Can be "all” (mean instance count of all classes),
"major” (instance count of class with most instances), "minor” (instance count of class with
fewest instances), "nonmajor" (average instance count of all classes except the major one),
"nonminor” (average instance count of all classes except the minor one), and "one"” ($ratio
determines the number of instances to have, per class). Initialized to "all".

e adjust :: numeric(1)
Which classes to up / downsample. Can be "all” (up and downsample all to match re-

quired instance count), "major”, "minor"”, "nonmajor"”, "nonminor” (see respective values
for $reference), "upsample” (only upsample), and "downsample”. Initialized to "all".

e shuffle:: logical(1)
Whether to shuffle the rows of the resulting task. In case the data is upsampled and shuffle
= FALSE, the resulting task will have the original rows (which were not removed in down-
sampling) in the original order, followed by all newly added rows ordered by target class.
Initialized to TRUE.

Internals

Up / downsampling happens as follows: At first, a "target class count" is calculated, by taking
the mean class count of all classes indicated by the reference parameter (e.g. if reference is
"nonmajor": the mean class count of all classes that are not the "major" class, i.e. the class with the
most samples) and multiplying this with the value of the ratio parameter. If reference is "one”,
then the "target class count" is just the value of ratio (i.e. 1 * ratio).

Then for each class that is referenced by the adjust parameter (e.g. if adjust is "nonminor":
each class that is not the class with the fewest samples), PipeOpClassBalancing either throws
out samples (downsampling), or adds additional rows that are equal to randomly chosen samples
(upsampling), until the number of samples for these classes equals the "target class count".

Uses task$filter() to remove rows. When identical rows are added during upsampling, then
the task$row_roles$use can not be used to duplicate rows because of [inaudible]; instead the
task$rbind() function is used, and a new data.table is attached that contains all rows that are
being duplicated exactly as many times as they are being added.

Fields

Only fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode,
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,



mlr_pipeops_classifavg 43

mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("spam”)
opb = po("classhalancing”)

# target class counts
table(task$truth())

# double the instances in the minority class (spam)

opb$param_set$values = list(ratio = 2, reference = "minor”,
adjust = "minor"”, shuffle = FALSE)

result = opb$train(list(task))[[1L]]

table(result$truth())

# up or downsample all classes until exactly 20 per class remain

opb$param_set$values = list(ratio = 20, reference = "one",
adjust = "all", shuffle = FALSE)

result = opb$train(list(task))[[1]1]

table(result$truth())

mlr_pipeops_classifavg
Majority Vote Prediction

Description

Perform (weighted) majority vote prediction from classification Predictions by connecting PipeOpClassifAvg
to multiple PipeOpLearner outputs.

Always returns a "prob” prediction, regardless of the incoming Learner’s $predict_type. The
label of the class with the highest predicted probability is selected as the "response” prediction.
If the Learner’s $predict_type is set to "prob”, the prediction obtained is also a "prob” type
prediction with the probability predicted to be a weighted average of incoming predictions.

All incoming Learner’s $predict_type must agree.



44 mlr_pipeops_classifavg

Weights can be set as a parameter; if none are provided, defaults to equal weights for each predic-
tion. Defaults to equal weights for each model.

Ife

Format

R6Class inheriting from PipeOpEnsemble/PipeOp.

Construction

PipeOpClassifAvg$new(innum = @, collect_multiplicity = FALSE, id = "classifavg"”, param_vals = list())

® innum:: numeric(1)
Determines the number of input channels. If innum is O (default), a vararg input channel is
created that can take an arbitrary number of inputs.

e collect_multiplicity :: logical(l)
If TRUE, the input is a Multiplicity collecting channel. This means, a Multiplicity input,
instead of multiple normal inputs, is accepted and the members are aggregated. This requires
innum to be 0. Default is FALSE.

e id:: character (1) Identifier of the resulting object, default "classifavg".

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpEnsemble. Instead of aPrediction,aPredictionClassif
is used as input and output during prediction.

State

The $state is left empty (1ist()).

Parameters

The parameters are the parameters inherited from the PipeOpEnsemble.

Internals

Inherits from PipeOpEnsemble by implementing the private$weighted_avg_predictions() method.

Fields

Only fields inherited from PipeOpEnsemble/PipeOp.

Methods

Only methods inherited from PipeOpEnsemble/PipeOp.



mlr_pipeops_classweights 45

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactor:
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_featureunion,
mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_regravg, mlr_pipeops_replicate

Other Ensembles: PipeOpEnsemble, mlr_learners_avg, mlr_pipeops_ovrunite, mlr_pipeops_regravg

Examples

library("mlr3")

# Simple Bagging
gr = ppl("greplicate”,
po("subsample”) %>>%
po("learner”, 1lrn("classif.rpart”)),
n=3
) %>>%
po("classifavg")

resample(tsk("iris"), GraphLearner$new(gr), rsmp("holdout”))

mlr_pipeops_classweights
Class Weights for Sample Weighting




46 mlr_pipeops_classweights

Description

Adds a class weight column to the Task that different Learners may be able to use for sample
weighting. Sample weights are added to each sample according to the target class.

Only binary classification tasks are supported.

Caution: when constructed naively without parameter, the weights are all setto 1. The minor_weight
parameter must be adjusted for this PipeOp to be useful.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpClassWeights$new(id = "classweights”, param_vals = list())

e id:: character (1) Identifier of the resulting object, default "classweights”

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif
is used as input and output during training and prediction.

The output during training is the input Task with added weights column according to target class.
The output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc; however, the affect_columns
parameter is not present. Further parameters are:

* minor_weight :: numeric(1)
Weight given to samples of the minor class. Major class samples have weight 1. Initialized to
1.

Internals

Introduces, or overwrites, the "weights" column in the Task. However, the Learner method needs
to respect weights for this to have an effect.

The newly introduced column is named .WEIGHTS; there will be a naming conflict if this column
already exists and is not a weight column itself.



mlr_pipeops_classweights 47

Fields

Only fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_colapply, mlr_pipeops_collapsefactors,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("spam”)
opb = po("classweights")

# task weights
task$weights

# double the instances in the minority class (spam)
opb$param_set$values$minor_weight = 2

result = opb$train(list(task))[[1L]]

result$weights



48 mlr_pipeops_colapply

mlr_pipeops_colapply Apply a Function to each Column of a Task

Description

Applies a function to each column of a task. Use the affect_columns parameter inherited from
PipeOpTaskPreprocSimple to limit the columns this function should be applied to. This can be
used for simple parameter transformations or type conversions (e.g. as.numeric).

The same function is applied during training and prediction. One important relationship for ma-
chine learning preprocessing is that during the prediction phase, the preprocessing on each data row
should be independent of other rows. Therefore, the applicator function should always return
a vector / list where each result component only depends on the corresponding input component
and not on other components. As a rule of thumb, if the function f generates output different from
Vectorize(f), it is not a function that should be used for applicator.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpColApply$new(id = "colapply”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "colapply”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreprocSimple.

The output is the input Task with features changed according to the applicator parameter.

State

The $stateis anamed list with the $state elements inherited from PipeOpTaskPreprocSimple.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as:

e applicator :: function
Function to apply to each column of the task. The return value should be a vector of the same
length as the input, i.e., the function vectorizes over the input. A typical example would be
as.numeric.
The return value can also be a matrix, data.frame, or data. table. In this case, the length



mlr_pipeops_colapply 49

of the input must match the number of returned rows. The names of the resulting features of
the output Task is based on the (column) name(s) of the return value of the applicator func-
tion, prefixed with the original feature name separated by a dot (.). Use Vectorize to create
a vectorizing function from any function that ordinarily only takes one element input.

Internals

Calls map on the data, using the value of applicator as f. and coerces the output via as.data. table.

Fields

Only fields inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_collapsefact
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
poca = po("colapply”, applicator = as.character)
poca$train(list(task))[[1]1] # types are converted

# function that does not vectorize
f1 = function(x) {
# we could use “ifelse” here, but that is not the point



50 mlr_pipeops_collapsefactors

if (x>1){
g

} else {
Hbll

}

3
poca$param_set$values$applicator = Vectorize(f1)
poca$train(list(task))[[1]1$data()

# only affect Petal.* columns
poca$param_set$values$affect_columns = selector_grep(”*Petal”)
poca$train(list(task))[[1]1]1$data()

# function returning multiple columns
f2 = function(x) {

cbind(floor = floor(x), ceiling = ceiling(x))
3
poca$param_set$values$applicator = f2
poca$param_set$values$affect_columns = selector_all()
poca$train(list(task))[[1]1$data()

mlr_pipeops_collapsefactors
Collapse Factors

Description

Collapses factors of type factor, ordered: Collapses the rarest factors in the training samples, until
target_level_count levels remain. Levels that have prevalence above no_collapse_above_prevalence
are retained, however. For factor variables, these are collapsed to the next larger level, for ordered
variables, rare variables are collapsed to the neighbouring class, whichever has fewer samples.

Levels not seen during training are not touched during prediction; Therefore it is useful to combine
this with the PipeOpFixFactors.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpCollapseFactors$new(id = "collapsefactors”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "collapsefactors”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_collapsefactors 51

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with rare affected factor and ordered feature levels collapsed.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e collapse_map :: named list of named list of character
List of factor level maps. For each factor, collapse_map contains a named 1ist that indicates
what levels of the input task get mapped to what levels of the output task. If collapse_map

has an entry feat_1 with an entry a=c("x", "y"), it means that levels "x" and "y" get
collapsed to level "a" in feature "feat_1".

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* no_collapse_above_prevalence :: numeric(1)
Fraction of samples below which factor levels get collapsed. Default is 1, which causes all
levels to be collapsed until target_level_count remain.

* target_level_count :: integer(1)
Number of levels to retain. Default is 2.

Internals

Makes use of the fact that levels(fact_var) = list(target1 =c("sourcel”, "source2"), target2
= "source2") causes renaming of level "sourcel” and "source2” both to "target1”, and also
"source2"” to "target2".

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,



52 mlr_pipeops_colroles

mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

mlr_pipeops_colroles Change Column Roles of a Task

Description

Changes the column roles of the input Task according to new_role.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpColRoles$new(id = "colroles”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "colroles”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with transformed column roles according to new_role.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.



mlr_pipeops_colroles 53

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* new_role:: list
Named list of new column roles. The names must match the column names of the input
task that will later be trained/predicted on. Each entry of the list must contain a character
vector with possible values of mlr_reflections$task_col_roles. If the value is given as
character(), the column will be dropped from the input task. Changing the role of a column
results in this column loosing its previous role(s). Setting a new target variable or changing
the role of an existing target variable is not supported.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode,
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("boston_housing")
pop = po("colroles”, param_vals = list(
new_role = list(town = c("order”, "feature"))

)

pop$train(list(task))



54 mlr_pipeops_copy

mlr_pipeops_copy Copy Input Multiple Times

Description

Copies its input outnum times. This PipeOp usually not needed, because copying happens automat-
ically when one PipeOp is followed by multiple different PipeOps. However, when constructing
big Graphs using the %>>%-operator, PipeOpCopy can be helpful to specify which PipeOp gets con-
nected to which.

Format

R6Class object inheriting from PipeOp.

Construction
PipeOpCopy$new(outnum, id = "copy"”, param_vals = list())
e outnum:: numeric(1)
Number of output channels, and therefore number of copies being made.

e id:: character(1)
Identifier of resulting object, default "copy”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpCopy has one input channel named "input”, taking any input ("*") both during training and
prediction.

PipeOpCopy has multiple output channels depending on the outnum construction argument, named
"outputl”, "output2”, ... All output channels produce the object given as input ("*").

State
The $state is left empty (1ist()).

Parameters

PipeOpCopy has no parameters.

Internals

Note that copies are not clones, but only reference copies. This affects R6-objects: If R6 objects
are copied using PipeOpCopy, they must be cloned before



mlr_pipeops_copy 55

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_datefeatures, mlr_pipeops_encode,
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Placeholder Pipeops: mlr_pipeops_nop

Examples

# The following copies the output of 'scale' automatically to both
# 'pca' and 'nop'
po("scale"”) %>>%
gunion(list(
po("pca”),
po("nop")
D)

The following would not work: the '%>>%'-operator does not know
which output to connect to which input
> gunion(list(
> po("scale"),
po("select”)
)) %>>%
gunion(list(
po("pca”),
po("nop”),
po("imputemean")

e E E E E

V V V V V V



56 mlr_pipeops_datefeatures

# > ))
# Instead, the 'copy' operator makes clear which output gets copied.
gunion(list(

po("scale") %>>% mlr_pipeops$get(”copy”, outnum = 2),
po("select"”)
)) %>>%
gunion(list(
po("pca”),
po("nop”),
po("imputemean”)

)

mlr_pipeops_datefeatures
Preprocess Date Features

Description

Based on POSIXct columns of the data, a set of date related features is computed and added to the
feature set of the output task. If no POSIXct column is found, the original task is returned unal-
tered. This functionality is based on the add_datepart() and add_cyclic_datepart() functions
from the fastai library. If operation on only particular POSIXct columns is requested, use the
affect_columns parameter inherited from PipeOpTaskPreprocSimple.

If cyclic = TRUE, cyclic features are computed for the features "month”, "week_of_year"”, "day_of_year",
"day_of_month”, "day_of_week", "hour”, "minute” and "second”. This means that for each

feature x, two additional features are computed, namely the sine and cosine transformation of 2 *

pi * x / max_x (here max_x is the largest possible value the feature could take on + 1, assuming the

lowest possible value is given by 0, e.g., for hours from O to 23, this is 24). This is useful to respect

the cyclical nature of features such as seconds, i.e., second 21 and second 22 are one second apart,

but so are second 60 and second 1 of the next minute.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpDateFeatures$new(id = "datefeatures”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "datefeatures”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_datefeatures 57

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreprocSimple.

The output is the input Task with date-related features computed and added to the feature set of the
output task and the POSIXct columns of the data removed from the feature set (depending on the
value of keep_date_var).

State

The $state is anamed 1ist with the $state elements inherited from PipeOpTaskPreprocSimple.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as:

Internals

keep_date_var :: logical(1)
Should the POSIXct columns be kept as features? Default FALSE.

cyclic:: logical(1)

Should cyclic features be computed? See Internals. Default FALSE.
year :: logical(1)

Should the year be extracted as a feature? Default TRUE.

month :: logical(1)

Should the month be extracted as a feature? Default TRUE.
week_of_year :: logical(1)

Should the week of the year be extracted as a feature? Default TRUE.
day_of_year :: logical(1)

Should the day of the year be extracted as a feature? Default TRUE.

day_of_month :: logical(1)
Should the day of the month be extracted as a feature? Default TRUE.

day_of_week :: logical(1)
Should the day of the week be extracted as a feature? Default TRUE.

hour :: logical(1)

Should the hour be extracted as a feature? Default TRUE.

minute :: logical(1)

Should the minute be extracted as a feature? Default TRUE.

second :: logical(1)

Should the second be extracted as a feature? Default TRUE.

is_day :: logical(1)

Should a feature be extracted indicating whether it is day time (06:00am - 08:00pm)? Default
TRUE.

The cyclic feature transformation always assumes that values range from 0, so some values (e.g.
day of the month) are shifted before sine/cosine transform.



58 mlr_pipeops_encode

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Fields

Only fields inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_encode,
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

dat = iris

set.seed(1)

dat$date = sample(seq(as.POSIXct("2020-02-01"), to = as.POSIXct("2020-02-29"), by = "hour"),
size = 150L)

task = TaskClassif$new("iris_date”, backend = dat, target = "Species”)

pop = po("datefeatures”, param_vals = list(cyclic = FALSE, minute = FALSE, second = FALSE))
pop$train(list(task))

pop$state

mlr_pipeops_encode Factor Encoding




mlr_pipeops_encode 59

Description

Encodes columns of type factor and ordered.

Possible encodings are "one-hot"” encoding, as well as encoding according to stats: :contr.helmert(),
stats::contr.poly(), stats::contr.sum() and stats::contr.treatment(). Newly created
columns are named via pattern [column-name].[x] where x is the respective factor level for
"one-hot" and "treatment” encoding, and an integer sequence otherwise.

Use the PipeOpTaskPreproc $affect_columns functionality to only encode a subset of columns,
or only encode columns of a certain type.

character-type features can be encoded by converting them factor features first, using ppl ("convert_types”,
"character”, "factor").

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpEncode$new(id = "encode”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "encode”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected factor and ordered parameters encoded according
to the method parameter.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e constrasts :: named list of matrix
List of contrast matrices, one for each affected discrete feature. The rows of each matrix
correspond to (training task) levels, the the columns to the new columns that replace the old
discrete feature. See stats::contrasts.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* method :: character(1)
Initialized to "one-hot". One of:

— "one-hot": create a new column for each factor level.



60 mlr_pipeops_encode

— "treatment": create n—1 columns leaving out the first factor level of each factor variable
(see stats::contr.treatment()).

— "helmert”: create columns according to Helmert contrasts (see stats: :contr.helmert()).
— "poly": create columns with contrasts based on orthogonal polynomials (see stats: :contr.poly()).
— "sum": create columns with contrasts summing to zero, (see stats::contr.sum()).

Internals

Uses the stats: :contrasts functions. This is relatively inefficient for features with a large number
of levels.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

data = data.table::data.table(x = factor(letters[1:3]), y = factor(letters[1:3]))
task = TaskClassif$new("task”, data, "x")

poe = po("encode")

# poe is initialized with encoding: "one-hot”
poe$train(list(task))[[1]11$data()

# other kinds of encoding:
poe$param_set$values$method = "treatment”



mlr_pipeops_encodeimpact 61

poe$train(list(task))[[1]11$data()

poe$param_set$values$method = "helmert”
poe$train(list(task))[[1]11$data()

poe$param_set$values$method = "poly”
poe$train(list(task))[[1]]1$data()

n

poe$param_set$values$method = "sum
poe$train(list(task))[[1]11$data()

# converting character-columns
data_chr = data.table::data.table(x = factor(letters[1:3]), y = letters[1:3])
task_chr = TaskClassif$new("task_chr", data_chr, "x")

goe = ppl("convert_types”, "character”, "factor") %>>% po("encode")

goe$train(task_chr)[[1]1$data()

mlr_pipeops_encodeimpact
Conditional Target Value Impact Encoding

Description

Encodes columns of type factor, character and ordered.

Impact coding for classification Tasks converts factor levels of each (factorial) column to the dif-
ference between each target level’s conditional log-likelihood given this level, and the target level’s
global log-likelihood.

Impact coding for regression Tasks converts factor levels of each (factorial) column to the difference
between the target’s conditional mean given this level, and the target’s global mean.

Treats new levels during prediction like missing values.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpEncodeImpact$new(id = "encodeimpact”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "encodeimpact”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



62 mlr_pipeops_encodeimpact

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected factor, character or ordered parameters encoded.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e impact :: anamed list
A list with an element for each affected feature:
For regression each element is a single column matrix of impact values for each level of that
feature.
For classification, it is a list with an element for each feature level, which is a vector giving
the impact of this feature level on each outcome level.

Parameters

e smoothing :: numeric(1)
A finite positive value used for smoothing. Mostly relevant for classification Tasks if a factor
does not coincide with a target factor level (and would otherwise give an infinite logit value).
Initialized to 1e-4.

e impute_zero :: logical(1)
If TRUE, impute missing values as impact 0; otherwise the respective impact is coded as NA.
Default FALSE.

Internals

Uses Laplace smoothing, mostly to avoid infinite values for classification Task.

Methods

Only methods inherited PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter,
mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,



mlr_pipeops_encodelmer 63

mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")
poe = po("”encodeimpact”)

task = TaskClassif$new("task”,
data.table: :data.table(
x = factor(c("a", "a", "a", "b", "b")),
y = factor(c("a", "a", "b", "b", "b™))),
N

poe$train(list(task))[[1]11$data()

poe$state

mlr_pipeops_encodelmer
Impact Encoding with Random Intercept Models

Description

Encodes columns of type factor, character and ordered.

PipeOpEncodeLmer() converts factor levels of each factorial column to the estimated coefficients
of a simple random intercept model. Models are fitted with the glmer function of the Ime4 package
and are of the type target ~ 1+ (1 | factor). If the task is a regression task, the numeric target
variable is used as dependent variable and the factor is used for grouping. If the task is a classifi-
cation task, the target variable is used as dependent variable and the factor is used for grouping. If
the target variable is multiclass, for each level of the multiclass target variable, binary "one vs. rest"
models are fitted.

For training, multiple models can be estimated in a cross-validation scheme to ensure that the same
factor level does not always result in identical values in the converted numerical feature. For pre-
diction, a global model (which was fitted on all observations during training) is used for each factor.
New factor levels are converted to the value of the intercept coefficient of the global model for
prediction. NAs are ignored by the CPO.

Use the PipeOpTaskPreproc $affect_columns functionality to only encode a subset of columns,
or only encode columns of a certain type.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.



64 mlr_pipeops_encodelmer

Construction
PipeOpEncodeLmer$new(id = "encodelmer”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "encodelmer”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected factor, character or ordered parameters encoded
according to the method parameter.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e target_levels :: character
Levels of the target columns.

e control :: anamed list
List of coefficients learned via glmer

Parameters

e fast_optim:: logical(1)
Initialized to TRUE. If "fast_optim" is TRUE (default), a faster (up to 50 percent) optimizer from
the nloptr package is used when fitting the Imer models. This uses additional stopping criteria
which can give suboptimal results.

Internals

Uses the 1me4: : glmer. This is relatively inefficient for features with a large number of levels.

Methods
Only methods inherited PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_featureunion, mlr_pipeops_filter,



mlr_pipeops_featureunion 65

mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")
poe = po("encodelmer”)

task = TaskClassif$new("task"”,
data.table: :data.table(
x = factor(c("a", "a", "a", "b", "b")),
y = factor(c("a", "a", "b", "b", "b"))),
N

poe$train(list(task))[[1]1]1$data()

poe$state

mlr_pipeops_featureunion
Aggregate Features from Multiple Inputs

Description

Aggregates features from all input tasks by cbind()ing them together into a single Task.

DataBackend primary keys and Task targets have to be equal across all Tasks. Only the target
column(s) of the first Task are kept.

If assert_targets_equal is TRUE then target column names are compared and an error is thrown
if they differ across inputs.

If input tasks share some feature names but these features are not identical an error is thrown. This
check is performed by first comparing the features names and if duplicates are found, also the values
of these possibly duplicated features. True duplicated features are only added a single time to the
output task.



66 mlr_pipeops_featureunion

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpFeatureUnion$new(innum = @, collect_multiplicity = FALSE, id = "featureunion”, param_vals = list(
assert_targets_equal = TRUE)

e innum:: numeric(1) | character
Determines the number of input channels. If innum is O (default), a vararg input channel
is created that can take an arbitrary number of inputs. If innum is a character vector, the
number of input channels is the length of innum, and the columns of the result are prefixed
with the values.

e collect_multiplicity :: logical(l)
If TRUE, the input is a Multiplicity collecting channel. This means, a Multiplicity input,
instead of multiple normal inputs, is accepted and the members are aggregated. This requires
innum to be 0. Default is FALSE.

e id:: character(1)
Identifier of the resulting object, default "featureunion”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

* assert_targets_equal :: logical(1)
If assert_targets_equal is TRUE (Default), task target column names are checked for agree-
ment. Disagreeing target column names are usually a bug, so this should often be left at the
default.

Input and Output Channels

PipeOpFeatureUnion has multiple input channels depending on the innum construction argument,
named "input1”, "input2”, ... if innum is nonzero; if innum is 0, there is only one vararg input
channel named ". . .". All input channels take a Task both during training and prediction.

PipeOpFeatureUnion has one output channel named "output”, producing a Task both during
training and prediction.

The output is a Task constructed by cbind()ing all features from all input Tasks, both during
training and prediction.

State

The $state is left empty (List()).

Parameters

PipeOpFeatureUnion has no Parameters.



mlr_pipeops_featureunion 67

Internals

PipeOpFeatureUnion uses the Task $cbind() method to bind the input values beyond the first
input to the first Task. This means if the Tasks are database-backed, all of them except the first will
be fetched into R memory for this. This behaviour may change in the future.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_filter,
mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_multiplicit
mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_regravg,
mlr_pipeops_replicate

Examples

library("mlr3")

taskl = tsk("iris")

gr = gunion(list(
po("nop”),
po("pca")

)) %>>% po("featureunion™)

gr$train(task1)



68 mlr_pipeops_filter

task2 = tsk("iris")
task3 = tsk("iris")
po = po("featureunion”, innum = c("a", "b"))

po$train(list(task2, task3))

mlr_pipeops_filter Feature Filtering

Description

Feature filtering using amlr3filters: :Filter object, see the mlr3filters package.

If aFilter can only operate on a subset of columns based on column type, then only these features
are considered and filtered. nfeat and frac will count for the features of the type that the Filter
can operate on; this means e.g. that setting nfeat to 0 will only remove features of the type that the
Filter can work with.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpFilter$new(filter, id = filter$id, param_vals = list())

o filter:: Filter
Filter used for feature filtering. This argument is always cloned; to access the Filter inside
PipeOpFilter by-reference, use $filter.

e id:: character (1) Identifier of the resulting object, defaulting to the id of the Filter being
used.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with features removed that were filtered out.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:


https://CRAN.R-project.org/package=mlr3filters

mlr_pipeops_filter 69

* scores :: named numeric
Scores calculated for all features of the training Task which are being used as cutoff for feature
filtering. If frac or nfeat is given, the underlying Filter may choose to not calculate scores
for all features that are given. This only includes features on which the Filter can operate;
e.g. if the Filter can only operate on numeric features, then scores for factorial features will
not be given.

» features :: character
Names of features that are being kept. Features of types that the Filter can not operate on
are always being kept.

Parameters

The parameters are the parameters inherited from the PipeOpTaskPreproc, as well as the parame-
ters of the Filter used by this object. Besides, parameters introduced are:

e filter.nfeat :: numeric(1)
Number of features to select. Mutually exclusive with frac, cutoff, and permuted.

e filter.frac:: numeric(1)
Fraction of features to keep. Mutually exclusive with nfeat, cutoff, and permuted.

e filter.cutoff :: numeric(1)
Minimum value of filter heuristic for which to keep features. Mutually exclusive with nfeat,
frac, and permuted.

e filter.permuted :: integer(1)
If this parameter is set, a random permutation of each feature is added to the task before
applying the filter. All features selected before the permuted-th permuted features is selected
are kept. This is similar to the approach in Wu (2007) and Thomas (2017). Mutually exclusive
with nfeat, frac, and cutoff.

Note that at least one of filter.nfeat, filter.frac, filter.cutoff, and filter.permuted
must be given.

Internals

This does not use the $.select_cols feature of PipeOpTaskPreproc to select only features com-
patible with the Filter; instead the whole Task is used by private$.get_state() and subset
internally.

Fields

Fields inherited from PipeOpTaskPreproc, as well as:

o filter :: Filter
Filter that is being used for feature filtering. Do not use this slot to get to the feature filtering
scores after training; instead, use $state$scores. Read-only.

Methods

Methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.



70 mlr_pipeops_filter

References

Wu Y, Boos DD, Stefanski LA (2007). “Controlling Variable Selection by the Addition of Pseu-
dovariables.” Journal of the American Statistical Association, 102(477), 235-243. doi:10.1198/
016214506000000843.

Thomas J, Hepp T, Mayr A, Bischl B (2017). “Probing for Sparse and Fast Variable Selection
with Model-Based Boosting.” Computational and Mathematical Methods in Medicine, 2017, 1-8.
doi:10.1155/2017/14214009.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")
library("mlr3filters”)

# setup PipeOpFilter to keep the 5 most important
# features of the spam task w.r.t. their AUC

task = tsk("spam”)

filter = flt("auc")

po = po("filter"”, filter = filter)

po$param_set

po$param_set$values$filter.nfeat = 5

# filter the task
filtered_task = po$train(list(task))[[11]

# filtered task + extracted AUC scores
filtered_task$feature_names


https://doi.org/10.1198/016214506000000843
https://doi.org/10.1198/016214506000000843
https://doi.org/10.1155/2017/1421409

mlr_pipeops_fixfactors 71

head(po$state$scores, 10)

# feature selection embedded in a 3-fold cross validation

# keep 30% of features based on their AUC score

task = tsk("spam")

gr = po("filter”, filter = flt("auc"), filter.frac = 0.5) %>>%
po("learner”, 1lrn("classif.rpart”))

learner = GraphLearner$new(gr)

rr = resample(task, learner, rsmp(”holdout”), store_models = TRUE)

rr$learners[[1]]$model$auc$scores

mlr_pipeops_fixfactors
Fix Factor Levels

Description

Fixes factors of type factor, ordered: Makes sure the factor levels during prediction are the same
as during training; possibly dropping empty training factor levels before.

Note this may introduce missing values during prediction if unseen factor levels are found.
Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpFixFactors$new(id = "fixfactors”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "fixfactors”.

e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.
The output is the input Task with all affected factor and ordered feature levels fixed.
State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e levels :: named list of character
List of factor levels of each affected factor or ordered feature that will be fixed.



72 mlr_pipeops_histbin

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e droplevels :: logical(1)
Whether to drop empty factor levels of the training task. Default TRUE

Internals

Changes factor levels of columns and attaches them with a new data. table backend and the virtual
cbind() backend.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

mlr_pipeops_histbin Split Numeric Features into Equally Spaced Bins

Description

Splits numeric features into equally spaced bins. See graphics: :hist() for details. Values that fall
out of the training data range during prediction are binned with the lowest / highest bin respectively.



mlr_pipeops_histbin 73

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpHistBin$new(id = "histbin”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "histbin".

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric features replaced by their binned versions.

State
The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as

well as:

* breaks :: list
List of intervals representing the bins for each numeric feature.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* breaks :: character(1) | numeric | function
Either a character (1) string naming an algorithm to compute the number of cells, a numeric(1)
giving the number of breaks for the histogram, a vector numeric giving the breakpoints be-
tween the histogram cells, or a function to compute the vector of breakpoints or to compute
the number of cells. Default is algorithm "Sturges” (see grDevices: :nclass.Sturges()).

For details see hist().

Internals

Uses the graphics: :hist function.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.



74

mlr_pipeops_ica

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_ica, mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pop = po("histbin™)

task$data()
pop$train(list(task))[[1]1$data()

pop$state

mlr_pipeops_ica Independent Component Analysis

Description

Extracts statistically independent components from data. Only affects numerical features. See
fastICA::fastICA for details.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.



mlr_pipeops_ica 75

Construction

n

PipeOpICA$new(id = "ica", param_vals = list())

e id:: character(1)
Identifier of resulting object, default "ica”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric parameters replaced by independent compo-
nents.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as the elements of the function fastICA::fastICA(), with the exception of the $X and $S
slots. These are in particular:

e K::matrix

Matrix that projects data onto the first n. comp principal components. See fastICA().
* W:matrix

Estimated un-mixing matrix. See fastICA().
* A matrix

Estimated mixing matrix. See fastICA().

e center :: numeric
The mean of each numeric feature during training.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as the following
parameters based on fastICA():

* n.comp :: numeric(1)
Number of components to extract. Default is NULL, which sets it to the number of available
numeric columns.

e alg.typ:: character(1)
Algorithm type. One of "parallel" (default) or "deflation".

e fun:: character(1)
One of "logcosh" (default) or "exp".
* alpha :: numeric(1)
Inrange [1, 2], Used for negentropy calculation when fun is "logcosh". Default is 1.0.

e method :: character(1)
Internal calculation method. "C" (default) or "R". See fastICA().



76

mlr_pipeops_ica

* row.norm:: logical(1)

Logical value indicating whether rows should be standardized beforehand. Default is FALSE.
* maxit :: numeric(1)

Maximum number of iterations. Default is 200.
e tol :: numeric(1)

Tolerance for convergence, default is 1e-4.
* verbose logical(1)

Logical value indicating the level of output during the run of the algorithm. Default is FALSE.
e w.init:: matrix

Initial un-mixing matrix. See fastICA(). Default is NULL.

Internals

Uses the fastICA() function.

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pop = po("ica")

task$data()



mlr_pipeops_imputeconstant 77

pop$train(list(task))[[1]]1$data()

pop$state

mlr_pipeops_imputeconstant
Impute Features by a Constant

Description

Impute features by a constant value.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction

PipeOpImputeConstant$new(id = "imputeconstant”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "imputeconstant”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected features missing values imputed by the value of the
constant parameter.

State

The $state is a named list with the $state elements inherited from PipeOpImpute.

The $state$model contains the value of the constant parameter that is used for imputation.

Parameters
The parameters are the parameters inherited from PipeOpImpute, as well as:

e constant :: atomic(1)
The constant value that should be used for the imputation, atomic vector of length 1. The
atomic mode must match the type of the features that will be selected by the affect_columns
parameter and this will be checked during imputation. Initialized to " .MISSING".

e check_levels:: logical(1)
Should be checked whether the constant value is a valid level of factorial features (i.e., it
already is a level)? Raises an error if unsuccesful. This check is only performed for factorial
features (i.e., factor, ordered; skipped for character). Initialized to TRUE.



78 mlr_pipeops_imputeconstant

Internals

Adds an explicit new level to factor and ordered features, but not to character features, if
check_levels is FALSE and the level is not already present.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputehis:
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputehist, mlr_pipeops_imputelearner,
mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples

library("mlr3")

task = tsk("pima")
task$missings()

# impute missing values of the numeric feature "glucose” by the constant value -999
po = po("imputeconstant”, param_vals = list(
constant = -999, affect_columns = selector_name("glucose"”))
)
new_task = po$train(list(task = task))[[1]1]
new_task$missings()
new_task$data(cols = "glucose")[[1]1]



mlr_pipeops_imputehist 79

mlr_pipeops_imputehist
Impute Numerical Features by Histogram

Description

Impute numerical features by histogram.

During training, a histogram is fitted using R’s hist () function. The fitted histogram is then sam-
pled from for imputation. This is an approximation to sampling from the empirical training data
distribution (i.e. sampling from training data with replacement), but is much more memory efficient
for large datasets, since the $state does not need to save the training data.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction
PipeOpImputeHist$new(id = "imputehist”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "imputehist”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected numeric features missing values imputed by (column-
wise) histogram.

State

The $state is a named list with the $state elements inherited from PipeOpImpute.

The $state$model is a named list of lists containing elements $counts and $breaks.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the graphics: :hist() function. Features that are entirely NA are imputed as 0.



80 mlr_pipeops_imputelearner

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputelearner,
mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples

library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputehist”)
new_task = po$train(list(task = task))[[1]1]

new_task$missings()

po$state$model

mlr_pipeops_imputelearner
Impute Features by Fitting a Learner




mlr_pipeops_imputelearner 81

Description

Impute features by fitting a Learner for each feature. Uses the features indicated by the context_columns
parameter as features to train the imputation Learner. Note this parameter is part of the PipeOpImpute
base class and explained there.

Additionally, only features supported by the learner can be imputed; i.e. learners of type regr can
only impute features of type integer and numeric, while classif can impute features of type
factor, ordered and logical.

The Learner used for imputation is trained on all context_columns; if these contain missing
values, the Learner typically either needs to be able to handle missing values itself, or needs to do
its own imputation (see examples).

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction

PipeOpImputelLearner$new(learner, id = NULL, param_vals = list())

e id:: character(1)

Identifier of resulting object, default "impute. ", followed by the id of the Learner.

* learner:: Learner|character(1) Learner to wrap, or a string identifying a Learner in the
mlr3::mlr_learners Dictionary. The Learner usually needs to be able to handle missing
values, i.e. have the missings property, unless care is taken that context_columns do not
contain missings; see examples.

This argument is always cloned; to access the Learner inside PipeOpImputelLearner by-
reference, use $1learner.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with missing values from all affected features imputed by the trained
model.

State

The $state is a named 1ist with the $state elements inherited from PipeOpImpute.

The $state$models is a named list of models created by the Learner’s $.train() function for
each column. If a column consists of missing values only during training, the model is @ or the
levels of the feature; these are used for sampling during prediction.

This state is given the class "pipeop_impute_learner_state".



82 mlr_pipeops_imputelearner

Parameters

The parameters are the parameters inherited from PipeOpImpute, in addition to the parameters of
the Learner used for imputation.

Internals

Uses the $train and $predict functions of the provided learner. Features that are entirely NA are
imputed as @ or randomly sampled from available (factor / logical) levels.

The Learner does not necessarily need to handle missing values in cases where context_columns
is chosen well (or there is only one column with missing values present).

Fields

Fields inherited from PipeOpTaskPreproc/PipeOp, as well as:

* learner :: Learner
Learner that is being wrapped. Read-only.

* learner_models :: 1list of Learner | NULL
Learner that is being wrapped. This list is named by features for which a Learner was fitted,
and contains the same Learner, but with different respective models for each feature. If this
PipeOp is not trained, this is an empty 1ist. For features that were entirely NA during training,
the 1ist contains NULL elements.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode
mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson



mlr_pipeops_imputemean 83

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples

library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputelearner”, lrn("regr.rpart"”))
new_task = po$train(list(task = task))[[1]1]
new_task$missings()

# '$state' of the "regr.rpart” Learner, trained to predict the 'mass' column:
po$state$model$mass

library("mlr3learners”)
# to use the "regr.kknn” Learner, prefix it with its own imputation method!
# The "imputehist” PipeOp is used to train "regr.kknn"; predictions of this
# trained Learner are then used to impute the missing values in the Task.
po = po("imputelearner”,

po("imputehist”) %>>% lrn("regr.kknn")
)

new_task = po$train(list(task = task))[[1]1]
new_task$missings()

mlr_pipeops_imputemean
Impute Numerical Features by their Mean

Description

Impute numerical features by their mean.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.
Construction
PipeOpImputeMean$new(id = "imputemean”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "imputemean”.



84 mlr_pipeops_imputemean

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected numeric features missing values imputed by (column-
wise) mean.

State

The $state is a named 1ist with the $state elements inherited from PipeOpImpute.

The $state$model is a named list of numeric(1) indicating the mean of the respective feature.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the mean() function. Features that are entirely NA are imputed as 0.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,

mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:

mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemedian, mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,

mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityir

mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,

mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:

mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson



mlr_pipeops_imputemedian 85

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples
library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputemean")
new_task = po$train(list(task = task))[[1]]

new_task$missings()

po$state$model

mlr_pipeops_imputemedian
Impute Numerical Features by their Median

Description

Impute numerical features by their median.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction

PipeOpImputeMedian$new(id = "imputemedian”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "imputemedian”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected numeric features missing values imputed by (column-
wise) median.
State

The $state is a named 1ist with the $state elements inherited from PipeOpImpute.

The $state$model is a named 1ist of numeric(1) indicating the median of the respective feature.



86 mlr_pipeops_imputemedian

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the stats: :median() function. Features that are entirely NA are imputed as ©.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemode,
mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemode, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples
library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputemedian”)
new_task = po$train(list(task = task))[[1]1]

new_task$missings()

po$state$model



mlr_pipeops_imputemode 87

mlr_pipeops_imputemode
Impute Features by their Mode

Description

Impute features by their mode. Supports factors as well as logical and numerical features. If
multiple modes are present then imputed values are sampled randomly from them.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction
PipeOpImputeMode$new(id = "imputemode”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "imputemode”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected features missing values imputed by (column-wise)
mode.

State

The $state is a named list with the $state elements inherited from PipeOpImpute.

The $state$model is a named 1ist of a vector of length one of the type of the feature, indicating
the mode of the respective feature.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Features that are entirely NA are imputed as the following: For factor or ordered, random levels
are sampled uniformly at random. For logicals, TRUE or FALSE are sampled uniformly at random.
Numerics and integers are imputed as 0.

Note that every random imputation is drawn independently, so different values may be imputed if
multiple values are missing.



88 mlr_pipeops_imputeoor

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputeoor,
mlr_pipeops_imputesample

Examples

library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputemode”)
new_task = po$train(list(task = task))[[1]1]

new_task$missings()

po$state$model

mlr_pipeops_imputeoor Out of Range Imputation




mlr_pipeops_imputeoor 89

Description

Impute factorial features by adding a new level " .MISSING".

Impute numerical features by constant values shifted below the minimum or above the maximum
by using min(z) — of fset — multiplier x dif f (range(x)) or maz(x) + of f set + multiplier x
dif f(range(x)).
This type of imputation is especially sensible in the context of tree-based methods, see also Ding &
Simonoff (2010).

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction
PipeOpImputeOOR$new(id = "imputeoor”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "imputeoor”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected features having missing values imputed as described
above.

State

The $state is a named list with the $state elements inherited from PipeOpImpute.

The $state$model contains either " .MISSING" used for character and factor (also ordered)
features or numeric(1) indicating the constant value used for imputation of integer and numeric
features.

Parameters

The parameters are the parameters inherited from PipeOpImpute, as well as:

e min:: logical(1)
Should integer and numeric features be shifted below the minimum? Initialized to TRUE.
If FALSE they are shifted above the maximum. See also the description above.

e offset :: numeric(1)
Numerical non-negative offset as used in the description above for integer and numeric
features. Initialized to 1.

e multiplier :: numeric(1)
Numerical non-negative multiplier as used in the description above for integer and numeric
features. Initialized to 1.



90 mlr_pipeops_imputeoor

Internals

Adds an explicit new level() to factor and ordered features, but not to character features. For
integer and numeric features uses the min, max, diff and range functions. integer and numeric
features that are entirely NA are imputed as 9.

Methods

Only methods inherited from PipeOpImpute/PipeOp.

References

Ding Y, Simonoff JS (2010). “An Investigation of Missing Data Methods for Classification Trees
Applied to Binary Response Data.” Journal of Machine Learning Research, 11(6), 131-170. https:
//jmlr.org/papers/vi11/dingl@a.html.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode,
mlr_pipeops_imputesample

Examples

library("mlr3")

set.seed(2409)

data = tsk("pima")$data()

data$y = factor(c(NA, sample(letters, size = 766, replace = TRUE), NA))
data$z = ordered(c(NA, sample(1:1@, size = 767, replace = TRUE)))

task = TaskClassif$new("task”, backend = data, target = "diabetes")
task$missings()

po = po("imputeoor™)


https://jmlr.org/papers/v11/ding10a.html
https://jmlr.org/papers/v11/ding10a.html

mlr_pipeops_imputesample 91

new_task = po$train(list(task = task))[[1]1]
new_task$missings()
new_task$data()

mlr_pipeops_imputesample
Impute Features by Sampling

Description

Impute features by sampling from non-missing training data.

Format

R6Class object inheriting from PipeOpImpute/PipeOp.

Construction
PipeOpImputeSample$new(id = "imputesample”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "imputesample”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

The output is the input Task with all affected numeric features missing values imputed by values
sampled (column-wise) from training data.

State
The $state is a named 1list with the $state elements inherited from PipeOpImpute.

The $state$model is a named list of training data with missings removed.

Parameters

The parameters are the parameters inherited from PipeOpImpute.

Internals

Uses the sample () function. Features that are entirely NA are imputed as the following: For factor
or ordered, random levels are sampled uniformly at random. For logicals, TRUE or FALSE are
sampled uniformly at random. Numerics and integers are imputed as ©.



92 mlr_pipeops_kernelpca

Methods

Only methods inherited from PipeOpImpute/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_kernelpca, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Imputation PipeOps: PipeOpImpute, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode,
mlr_pipeops_imputeoor

Examples
library("mlr3")

task = tsk("pima")
task$missings()

po = po("imputesample”)
new_task = po$train(list(task = task))[[11]
new_task$missings()

mlr_pipeops_kernelpca Kernelized Principle Component Analysis

Description

Extracts kernel principle components from data. Only affects numerical features. See kernlab::kpca
for details.



mlr_pipeops_kernelpca 93

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpKernelPCA$new(id = "kernelpca”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "kernelpca”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric parameters replaced by their principal com-
ponents.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as the returned S4 object of the function kernlab: :kpca().

The @rotated slot of the "kpca" object is overwritten with an empty matrix for memory efficiency.

The slots of the S4 object can be accessed by accessor function. See kernlab::kpca.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e kernel :: character(1)
The standard deviations of the principal components. See kpca().

e kpar :: list
List of hyper-parameters that are used with the kernel function. See kpca().

e features :: numeric(1)
Number of principal components to return. Default 0 means that all principal components are
returned. See kpca().

e th:: numeric(1)
The value of eigenvalue under which principal components are ignored. Default is 0.0001.
See kpca().

* na.action:: function
Function to specify NA action. Default is na.omit. See kpca().

Internals

Uses the kpca() function.



94 mlr_pipeops_learner

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_learner,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("iris")
pop = po("kernelpca”, features = 3) # only keep top 3 components

task$data()
pop$train(list(task))[[1]]1sdata()

mlr_pipeops_learner Wrap a Learner into a PipeOp

Description

Wraps anmlr3::Learner into a PipeOp.

Inherits the $param_set (and therefore $param_set$values) from the Learner it is constructed
from.

Using PipeOpLearner, it is possible to embed mlr3::Learners into Graphs, which themselves
can be turned into Learners using GraphLearner. This way, preprocessing and ensemble methods
can be included into a machine learning pipeline which then can be handled as singular object for
resampling, benchmarking and tuning.



mlr_pipeops_learner 95

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpLearner$new(learner, id = NULL, param_vals = list())

e learner:: Learner|character(1) Learner to wrap, or a string identifying a Learner in the
mlr3::mlr_learners Dictionary. This argument is always cloned; to access the Learner
inside PipeOpLearner by-reference, use $learner.

e id :: character (1) Identifier of the resulting object, internally defaulting to the id of the
Learner being wrapped.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpLearner has one input channel named "input”, taking a Task specific to the Learner type
given to learner during construction; both during training and prediction.

PipeOpLearner has one output channel named "output”, producing NULL during training and
a Prediction subclass during prediction; this subclass is specific to the Learner type given to
learner during construction.

The output during prediction is the Prediction on the prediction input data, produced by the
Learner trained on the training input data.

State

The $state is set to the $state slot of the Learner object. It is a named 1ist with members:
e model :: any
Model created by the Learner’s $.train() function.

e train_log :: data. table with columns class (character), msg (character)
Errors logged during training.

e train_time :: numeric(1)
Training time, in seconds.

e predict_log:: NULL | data.table with columns class (character), msg (character)
Errors logged during prediction.

e predict_time :: NULL | numeric(1) Prediction time, in seconds.

Parameters

The parameters are exactly the parameters of the Learner wrapped by this object.



96 mlr_pipeops_learner

Internals

The $state is currently not updated by prediction, so the $state$predict_logand $state$predict_time
will always be NULL.

Fields
Fields inherited from PipeOp, as well as:

* learner :: Learner
Learner that is being wrapped. Read-only.

* learner_model :: Learner
Learner that is being wrapped. This learner contains the model if the PipeOp is trained.
Read-only.

e validate :: "predefined” or NULL
This field can only be set for Learners that have the "validation” property. Setting the
field to "predefined” means that the wrapped Learner will use the internal validation task,
otherwise it will be ignored. Note that specifying how the validation data is created is possible
via the $validate field of the GraphLearner. For each PipeOp it is then only possible to
either use it ("predefined"”) or not use it (NULL). Also see set_validate.GraphLearner for
more information.

e internal_tuned_values :: named 1ist() or NULL
The internally tuned values if the wrapped Learner supports internal tuning, NULL otherwise.

e internal_valid_scores :: named 1ist() or NULL
The internal validation scores if the wrapped Learner supports internal validation, NULL oth-
erwise.

Methods

Methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,



mlr_pipeops_learner_cv 97

mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Meta PipeOps: mlr_pipeops_learner_cv

Examples

library("mlr3")

task = tsk("iris")
learner = 1rn("classif.rpart”, cp = 0.1)
lrn_po = mlr_pipeops$get("learner”, learner)

lrn_po$train(list(task))
lrn_po$predict(list(task))

mlr_pipeops_learner_cv

Wrap a Learner into a PipeOp with Cross-validated Predictions as
Features

Description

Wraps an mlr3: :Learner into a PipeOp.

Returns cross-validated predictions during training as a Task and stores a model of the Learner
trained on the whole data in $state. This is used to create a similar Task during prediction.

The Task gets features depending on the capsuled Learner’s $predict_type. If the Learner’s
$predict. type is "response”, a feature <ID>.response is created, for $predict.type "prob”
the <ID>.prob.<CLASS> features are created, and for $predict.type "se” the new columns are
<ID>.response and <ID>.se. <ID> denotes the $id of the PipeOpLearnerCV object.

Inherits the $param_set (and therefore $param_set$values) from the Learner it is constructed
from.

PipeOpLearnerCV can be used to create "stacking" or "super learning" Graphs that use the output
of one Learner as feature for another Learner. Because the PipeOpLearnerCV erases the original
input features, it is often useful to use PipeOpFeatureUnion to bind the prediction Task to the
original input Task.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.



98 mlr_pipeops_learner_cv

Construction

PipeOpLearnerCV$new(learner, id = NULL, param_vals = list())

* learner :: Learner
Learner to use for cross validation / prediction, or a string identifying a Learner in the
mlr3::mlr_learners Dictionary. This argument is always cloned; to access the Learner
inside PipeOpLearnerCV by-reference, use $learner.

e id :: character (1) Identifier of the resulting object, internally defaulting to the id of the
Learner being wrapped.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpLearnerCV has one input channel named "input”, taking a Task specific to the Learner
type given to learner during construction; both during training and prediction.

PipeOpLearnerCV has one output channel named "output"”, producing a Task specific to the
Learner type given to learner during construction; both during training and prediction.

The output is a task with the same target as the input task, with features replaced by predictions
made by the Learner. During training, this prediction is the out-of-sample prediction made by
resample, during prediction, this is the ordinary prediction made on the data by a Learner trained
on the training phase data.

State

The $state is set to the $state slot of the Learner object, together with the $state elements
inherited from the PipeOpTaskPreproc. It is a named 1ist with the inherited members, as well as:

e model :: any
Model created by the Learner’s $.train() function.

e train_log:: data.table with columns class (character), msg (character)
Errors logged during training.

e train_time :: numeric(1)
Training time, in seconds.

e predict_log :: NULL | data.table with columns class (character), msg (character)
Errors logged during prediction.

e predict_time :: NULL | numeric(1) Prediction time, in seconds.

This state is given the class "pipeop_learner_cv_state”.

Parameters

The parameters are the parameters inherited from the PipeOpTaskPreproc, as well as the parame-
ters of the Learner wrapped by this object. Besides that, parameters introduced are:



mlr_pipeops_learner_cv 99

* resampling.method :: character(1)
Which resampling method do we want to use. Currently only supports “cv” and "insample”.
"insample” generates predictions with the model trained on all training data.

e resampling.folds :: numeric(1)
Number of cross validation folds. Initialized to 3. Only used for resampling.method = "cv".

* keep_response :: logical(1)
Only effective during "prob” prediction: Whether to keep response values, if available. Ini-
tialized to FALSE.

Internals

The $state is currently not updated by prediction, so the $state$predict_logand $state$predict_time
will always be NULL.

Fields

Fields inherited from PipeOp, as well as:

* learner :: Learner
Learner that is being wrapped. Read-only.

e learner_model :: Learner
Learner that is being wrapped. This learner contains the model if the PipeOp is trained.
Read-only.

Methods
Methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html
Other Meta PipeOps: mlr_pipeops_learner

Examples
library("mlr3")

task = tsk("iris")
learner = lrn("classif.rpart”)

lrncv_po = po("learner_cv", learner)
lrncv_po$learner$predict_type = "response”

nop = mlr_pipeops$get(“nop”)

graph = gunion(list(
lrncv_po,
nop

)) %>>% po("featureunion”)



100 mlr_pipeops_missind

graph$train(task)

graph$pipeops$classif.rpart$learner$predict_type = "prob”

graph$train(task)

mlr_pipeops_missind Add Missing Indicator Columns

Description

Add missing indicator columns ("dummy columns") to the Task. Drops original features; should
probably be used in combination with PipeOpFeatureUnion and imputation PipeOps (see exam-

ples).
Note the affect_columns is initialized with selector_invert(selector_type(c("factor”,
"ordered"”, "character"))), since missing values in factorial columns are often indicated by

out-of-range imputation (PipeOpImputeOOR).

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpMissInd$new(id = "missind”, param_vals = list())

* id:: character (1) Identifier of the resulting object, defaulting to "missind”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

State
$state is a named 1ist with the $state elements inherited from PipeOpTaskPreproc, as well as:

e indicand_cols :: character
Names of columns for which indicator columns are added. If the which parameter is "all”,
this is just the names of all features, otherwise it is the names of all features that had missing

values during training.

Parameters

The parameters are the parameters inherited from the PipeOpTaskPreproc, as well as:

* which :: character(1)
Determines for which features the indicator columns are added. Can either be "missing_train”

(default), adding indicator columns for each feature that actually has missing values, or "all”,
adding indicator columns for all features.



mlr_pipeops_missind 101

* type :: character(1)
Determines the type of the newly created columns. Can be one of "factor” (default), "integer”,
"logical”, "numeric”.

Internals

is PipeOp should cover most cases where "dummy columns" or "missing indicators" are desired.
This PipeOp should t here "d 1 "or" dicators" d d
Some edge cases:

* If imputation for factorial features is performed and only numeric features should gain missing
indicators, the affect_columns parameter can be set to selector_type("numeric”).

* If missing indicators should only be added for features that have more than a fraction of x miss-
ing values, the PipeOpRemoveConstants can be used with affect_columns = selector_grep("*missing_")
and ratio = x.

Fields

Fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,mlr_pipeops_multiplicityir
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("pima")$select(c("insulin”, "triceps"”))



102 mlr_pipeops_modelmatrix

sum(complete.cases(task$data()))
task$missings()
tail(task$data())

po = po("missind")
new_task = po$train(list(task))[[1]1]

tail(new_task$data())
# proper imputation + missing indicators
impgraph = list(

po("imputesample”),

po("missind")

) %>>% po("featureunion”)

tail(impgraph$train(task)[[1]]$data())

mlr_pipeops_modelmatrix
Transform Columns by Constructing a Model Matrix

Description

Transforms columns using a given formula using the stats: :model.matrix() function.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpModelMatrix$new(id = "modelmatrix”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "modelmatrix”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with transformed columns according to the used formula.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.



mlr_pipeops_modelmatrix 103

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e formula :: formula
Formula to use. Higher order interactions can be created using constructs like ~. * 2. By
default, an (Intercept) column of all 1s is created, which can be avoided by adding @ + to
the term. See model.matrix().

Internals

Uses the model.matrix() function.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("iris")
pop = po("modelmatrix”, formula =~ . * 2)

task$data()
pop$train(list(task))[[1]1]$data()

pop$param_set$values$formula = ~ 0 + . * 2

pop$train(list(task))[[1]11$data()



104 mlr_pipeops_multiplicityexply

mlr_pipeops_multiplicityexply
Explicate a Multiplicity

Description

Explicate aMultiplicity by turning the input Multiplicity into multiple outputs.

This PipeOp has multiple output channels; the members of the input Multiplicity are forwarded
each along a single edge. Therefore, only multiplicities with exactly as many members as outnum
are accepted.

Note that Multiplicity is currently an experimental features and the implementation or Ul may
change.

Format

R6Class object inheriting from PipeOp.

Construction
PipeOpMultiplicityExply$new(outnum , id = "multiplicityexply”, param_vals = 1list())

e outnum:: numeric(1) | character
Determines the number of output channels.

e id:: character(1)
Identifier of the resulting object, default "multiplicityexply”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpMultiplicityExply has a single input channel named "input”, collectingaMultiplicity
of type any ("[*]") both during training and prediction.

PipeOpMultiplicityExply has multiple output channels depending on the outnum construction
argument, named "output1”, "output2” returning the elements of the unclassed inputMultiplicity.

State
The $state is left empty (list()).

Parameters

PipeOpMultiplicityExply has no Parameters.



mlr_pipeops_multiplicityexply 105

Internals

outnum should match the number of elements of the unclassed input Multiplicity.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_regravg,
mlr_pipeops_replicate

Other Experimental Features: Multiplicity(), mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_replicate

Examples

library("mlr3")

taskl = tsk("iris")

task2 = tsk("mtcars"”)

po = po("multiplicityexply”, outnum = 2)
po$train(list(Multiplicity(taskl, task2)))
po$predict(list(Multiplicity(taskl, task2)))



106 mlr_pipeops_multiplicityimply

mlr_pipeops_multiplicityimply
Implicate a Multiplicity

Description

Implicate a Multiplicity by returning the input(s) converted to aMultiplicity.

This PipeOp has multiple input channels; all inputs are collected into aMultiplicity and then are
forwarded along a single edge, causing the following PipeOps to be called multiple times, once for
each Multiplicity member.

Note that Multiplicity is currently an experimental features and the implementation or Ul may
change.

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpMultiplicityImply$new(innum =@, id = "multiplicityimply”, param_vals = list())

e innum:: numeric(1) | character
Determines the number of input channels. If innum is O (default), a vararg input channel
is created that can take an arbitrary number of inputs. If innum is a character vector, the
number of input channels is the length of innum.

e id:: character(1)
Identifier of the resulting object, default "multiplicityimply”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpMultiplicityImply has multiple input channels depending on the innum construction ar-
gument, named "input1”, "input2”, ... if innum is nonzero; if innum is O, there is only one
vararg input channel named "...". All input channels take any input ("*") both during training
and prediction.

PipeOpMultiplicityImply has one output channel named "output”, emitting a Multiplicity
of type any ("[*]"), i.e., returning the input(s) converted to a Multiplicity both during training
and prediction.

State

The $state is left empty (1ist()).



mlr_pipeops_multiplicityimply 107

Parameters

PipeOpMultiplicityImply has no Parameters.

Internals

If innum is not numeric, e.g., a character, the output Multiplicity will be named based on the
input channel names

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite,
mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityexply, mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_regravg,
mlr_pipeops_replicate

Other Experimental Features: Multiplicity(), mlr_pipeops_multiplicityexply, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_replicate

Examples

library("mlr3")

taskl = tsk("iris")

task2 = tsk("mtcars")

po = po("multiplicityimply")



108 mlr_pipeops_mutate

po$train(list(taskl, task2))
po$predict(list(taskl, task2))

mlr_pipeops_mutate Add Features According to Expressions

Description

Adds features according to expressions given as formulas that may depend on values of other fea-
tures. This can add new features, or can change existing features.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpMutate$new(id = "mutate”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "mutate”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with added and/or mutated features according to the mutation param-
eter.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* mutation :: named list of formula
Expressions for new features to create (or present features to change), in the form of formula.
Each element of the list is a formula with the name of the element naming the feature to create
or change, and the formula expression determining the result. This expression may reference
other features, as well as variables visible at the creation of the formula (see examples).
Initialized to 1ist ().

e delete_originals :: logical(1)
Whether to delete original features. Even when this is FALSE, present features may still be
overwritten. Initialized to FALSE.



mlr_pipeops_mutate 109

Internals

A formula created using the ~ operator always contains a reference to the environment in which
the formula is created. This makes it possible to use variables in the ~-expressions that both refer-
ence either column names or variable names.

Note that the formulas in mutation are evaluated sequentially. This allows for using variables
that were constructed during evaluation of a previous formula. However, if existing features are
changed, precedence is given to the original ones before the newly constructed ones.

Fields

Only fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

constant =1

pom = po("mutate”)

pom$param_set$values$mutation = list(
Sepal.Length_plus_constant = ~ Sepal.Length + constant,

Sepal.Area = ~ Sepal.Width * Sepal.Length,
Petal.Area = ~ Petal.Width * Petal.Length,
Sepal.Area_plus_Petal.Area = ~ Sepal.Area + Petal.Area



110 mlr_pipeops_nmf

pom$train(list(tsk(”iris")))[[1]]1$data()

mlr_pipeops_nmf Non-negative Matrix Factorization

Description

Extracts non-negative components from data by performing non-negative matrix factorization. Only
affects non-negative numerical features. See nmf () for details.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpNMF$new(id = "nmf", param_vals = list())
e id:: character(1)
Identifier of resulting object, default "nmf".

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric features replaced by their non-negative com-
ponents.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as the elements of the object returned by nmf ().

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
* rank :: integer(1)
Factorization rank, i.e., number of components. Initialized to 2. See nmf ().

* method :: character(1)
Specification of the NMF algorithm. Initialized to "brunet”. See nmf ().

* seed:: character(1) | integer(1) I 1ist() | object of class NMF | function()
Specification of the starting point. See nmf ().



mlr_pipeops_nmf 111

* nrun: integer(1)
Number of runs to performs. Default is 1. More than a single run allows for the computation
of a consensus matrix which will also be stored in the $state. See nmf ().

e debug :: logical(1)
Whether to toggle debug mode. Default is FALSE. See nmf ().

e keep.all :: logical(1)
Whether all factorizations are to be saved and returned. Default is FALSE. Only has an effect
if nrun > 1. See nmf ().

e parallel :: character(1) | integer (1) | logical(1)
Specification of parallel handling if nrun > 1. Initialized to FALSE, as it is recommended to
use mlr3’s future-based parallelization. See nmf ().

e parallel.required :: character(1) | integer (1) | logical(1)
Same as parallel, but an error is thrown if the computation cannot be performed in parallel
or with the specified number of processors. Initialized to FALSE, as it is recommended to use
mlr3’s future-based parallelization. See nmf ().

e shared.memory :: logical(1)
Whether shared memory should be enabled. See nmf ().

e simplifyCB:: logical(1)
Whether callback results should be simplified. Default is TRUE. See nmf ().

e track :: logical(1)
Whether error tracking should be enabled. Default is FALSE. See nmf ().

* verbose :: integer(1) | logical(1)
Specification of verbosity. Default is FALSE. See nmf ().

e pbackend :: character(1) | integer (1) I NULL
Specification of the parallel backend. It is recommended to use mlr3’s future-based paral-
lelization. See nmf ().

e callback | function()
Callback function that is called after each run (if nrun > 1). See nmf ().

Internals

Uses the nmf () function as well as basis(), coef () and ginv().

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:



112 mlr_pipeops_nop

mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nop, mlr_pipeops_ovrsplit
mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

if (requireNamespace("NMF")) {
library("mlr3")

task = tsk("iris")
pop = po("nmf")

task$data()
pop$train(list(task))[[1]1$data()

pop$state
3

mlr_pipeops_nop Simply Push Input Forward

Description
Simply pushes the input forward. Can be useful during Graph construction using the %>>%-operator
to specify which PipeOp gets connected to which.

Format

R6Class object inheriting from PipeOp.

Construction
PipeOpNOP$new(id = "nop"”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "nop”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_nop 113

Input and Output Channels

PipeOpNOP has one input channel named "input”, taking any input ("*") both during training and
prediction.

PipeOpNOP has one output channel named "output”, producing the object given as input ("*")
without changes.

State

The $state is left empty (1ist()).

Parameters

PipeOpNOP has no parameters.

Internals

PipeOpNOP is a useful "default” stand-in for a PipeOp/Graph that does nothing.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_ovrsplit
mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Placeholder Pipeops: mlr_pipeops_copy



114 mlr_pipeops_ovrsplit

Examples

library("mlr3")
nop = po("nop"”)
nop$train(list(1))

# use “gunion” and “%>>% to create a "bypass”
# next to "pca”
gr = gunion(list(
po("pca"”),
nop
)) %>>% po("featureunion")

gr$train(tsk(”iris”))[[111$data()

mlr_pipeops_ovrsplit  Split a Classification Task into Binary Classification Tasks

Description

Splits a classification Task into several binary classification Tasks to perform "One vs. Rest" classi-
fication. This works in combination with PipeOpOVRUnite.

For each target level a new binary classification Task is constructed with the respective target level
being the positive class and all other target levels being the new negative class "rest"”.

This PipeOp creates a Multiplicity, which means that subsequent PipeOps are executed multiple
times, once for each created binary Task, until a PipeOpOVRUnite is reached.

Note that Multiplicity is currently an experimental features and the implementation or Ul may
change.

Format

R6Class inheriting from PipeOp.

Construction

PipeOpOVRSplit$new(id = "ovrsplit”, param_vals = list())

e id:: character(1)
Identifier of the resulting object, default "ovrsplit”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_ovrsplit 115

Input and Output Channels
PipeOpOVRSplit has one input channel named "input” taking a TaskClassif both during training
and prediction.

PipeOpOVRSplit has one output channel named "output” returningaMultiplicity of TaskClassifs
both during training and prediction, i.e., the newly constructed binary classification Tasks.

State

The $state contains the original target levels of the TaskClassif supplied during training.

Parameters

PipeOpOVRSplit has no parameters.

Internals

The original target levels stored in the $state are also used during prediction when creating the
new binary classification Tasks.

The names of the element of the output Multiplicity are given by the levels of the target.

If a target level "rest” is present in the input TaskClassif, the negative class will be labeled as

"none

"rest.” (using as many "."* postfixes needed to yield a valid label).

Should be used in combination with PipeOpOVRUnite.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,



116 mlr_pipeops_ovrunite

mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrunite,
mlr_pipeops_regravg, mlr_pipeops_replicate

Other Experimental Features: Multiplicity(), mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply,
mlr_pipeops_ovrunite, mlr_pipeops_replicate

Examples

library(mlr3)

task = tsk("iris")

po = po("ovrsplit")
po$train(list(task))
po$predict(list(task))

mlr_pipeops_ovrunite  Unite Binary Classification Tasks

Description
Perform "One vs. Rest" classification by (weighted) majority vote prediction from classification
Predictions. This works in combination with PipeOpOVRSplit.

Weights can be set as a parameter; if none are provided, defaults to equal weights for each predic-
tion.

Always returns a "prob” prediction, regardless of the incoming Learner’s $predict_type. The
label of the class with the highest predicted probability is selected as the "response” prediction.

Missing values during prediction are treated as each class label being equally likely.

This PipeOp uses aMultiplicity input, which is created by PipeOpOVRSplit and causes PipeOps
on the way to this PipeOp to be called once for each individual binary Task.

Note that Multiplicity is currently an experimental features and the implementation or Ul may
change.
Format

R6Class inheriting from PipeOpEnsemble/PipeOp.

Construction
PipeOpOVRUnite$new(id = "ovrunite”, param_vals = list())
e id:: character(1)
Identifier of the resulting object, default "ovrunite”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_ovrunite 117

Input and Output Channels

Input and output channels are inherited from PipeOpEnsemble. Instead of aPrediction, aPredictionClassif
is used as input and output during prediction and PipeOpEnsemble’s collect parameter is initial-
ized with TRUE to allow for collecting a Multiplicity input.

State

The $state is left empty (List()).

Parameters

The parameters are the parameters inherited from the PipeOpEnsemble.

Internals

Inherits from PipeOpEnsemble by implementing the private$.predict() method.
Should be used in combination with PipeOpOVRSplit.

Fields

Only fields inherited from PipeOpEnsemble/PipeOp.

Methods

Only methods inherited from PipeOpEnsemble/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Ensembles: PipeOpEnsemble, mlr_learners_avg, mlr_pipeops_classifavg, mlr_pipeops_regravg



118 mlr_pipeops_pca

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit,
mlr_pipeops_regravg, mlr_pipeops_replicate

Other Experimental Features: Multiplicity (), mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply,
mlr_pipeops_ovrsplit, mlr_pipeops_replicate

Examples

library(mlr3)

task = tsk("iris")

gr = po("ovrsplit”) %>>% lrn("classif.rpart”) %>>% po("ovrunite")
gr$train(task)

gr$predict(task)

gr$pipeops$classif.rpart$learner$predict_type = "prob”
gr$predict(task)

mlr_pipeops_pca Principle Component Analysis

Description

Extracts principle components from data. Only affects numerical features. See stats: :prcomp()
for details.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpPCA$new(id = "pca", param_vals = list())
e id:: character(1)
Identifier of resulting object, default "pca”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric features replaced by their principal compo-
nents.



mlr_pipeops_pca 119

State

The $stateis a named 1ist with the $state elements inherited from PipeOpTaskPreproc, as well
as the elements of the class stats::prcomp, with the exception of the $x slot. These are in particular:

* sdev :: numeric
The standard deviations of the principal components.

* rotation :: matrix
The matrix of variable loadings.

e center :: numeric|logical(1)
The centering used, or FALSE.

e scale :: numeric|logical(1)
The scaling used, or FALSE.

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e center :: logical(1)
Indicating whether the features should be centered. Default is TRUE. See prcomp ().

e scale. :: logical(1)
Whether to scale features to unit variance before analysis. Default is FALSE, but scaling is
advisable. See prcomp().

* rank. :: integer(1)
Maximal number of principal components to be used. Default is NULL: use all components.
See prcomp().

Internals

Uses the prcomp() function.

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_proxy, mlr_pipeops_quantilebin,



120 mlr_pipeops_proxy

mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pop = po("pca”)

task$data()
pop$train(list(task))[[1]]1$data()

pop$state

mlr_pipeops_proxy Wrap another PipeOp or Graph as a Hyperparameter

Description

Wraps another PipeOp or Graph as determined by the content hyperparameter. Input is routed
through the content and the contents’ output is returned. The content hyperparameter can be
changed during tuning, this is useful as an alternative to PipeOpBranch.

Format

Abstract R6Class inheriting from PipeOp.

Construction

PipeOpProxy$new(innum = @, outnum = 1, id = "proxy"”, param_vals = list())

e innum:: numeric(1)\cr Determines the number of input channels. If innum‘isO
(default), a vararg input channel is created that can take an arbitrary number of inputs.

e outnum :: ‘numeric(1)
Determines the number of output channels.

e id:: character(1)
Identifier of resulting object. See $id slot of PipeOp.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_proxy 121

Input and Output Channels

PipeOpProxy has multiple input channels depending on the innum construction argument, named
"input1”, "input2”, ... if innum is nonzero; if innum is 0, there is only one vararg input channel

n

named "...".

PipeOpProxy has multiple output channels depending on the outnum construction argument, named
"outputl”, "output2”, ... The output is determined by the output of the content operation (a
PipeOp or Graph).

State

The $state is the trained content PipeOp or Graph.

Parameters

e content :: PipeOp | Graph
The PipeOp or Graph that is being proxied (or an object that is converted to a Graph by
as_graph()). Defaults to an instance of PipeOpFeatureUnion (combines all input if they are
Tasks).

Internals

The content will internally be coerced to a graph via as_graph () prior to train and predict.

The default value for content is PipeOpFeatureUnion,

Fields

Fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_quantilebin
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs



122 mlr_pipeops_quantilebin

mlr_pipeops_scalerange, mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")
library("mlr3learners”)

set.seed(1234)
task = tsk("iris")

# use a proxy for preprocessing and a proxy for learning, i.e.,

# no preprocessing and classif.kknn

g = po("proxy”, id = "preproc”, param_vals = list(content = po("nop"))) %>>%
po("proxy"”, id = "learner"”, param_vals = list(content = lrn("classif.kknn")))

rr_kknn = resample(task, learner = GraphLearner$new(g), resampling = rsmp("cv"”, folds = 3))

rr_kknn$aggregate(msr("”classif.ce"))

# use pca for preprocessing and classif.rpart as the learner
g$param_set$values$preproc.content = po("pca”)

g$param_set$values$learner.content = lrn("classif.rpart”)

rr_pca_rpart = resample(task, learner = GraphLearner$new(g), resampling = rsmp("cv"”, folds = 3))
rr_pca_rpart$aggregate(msr(”classif.ce"))

mlr_pipeops_quantilebin
Split Numeric Features into Quantile Bins

Description

Splits numeric features into quantile bins.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpQuantileBin$new(id = "quantilebin”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "quantilebin”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



mlr_pipeops_quantilebin 123

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric features replaced by their binned versions.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

e bins:: list
List of intervals representing the bins for each numeric feature.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e numsplits :: numeric(1)
Number of bins to create. Default is 2.

Internals

Uses the stats: :quantile function.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_randomproje
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson



124 mlr_pipeops_randomprojection

Examples

library("mlr3")

task = tsk("iris")
pop = po(”quantilebin”)

task$data()
pop$train(list(task))[[1]11$data()

pop$state

mlr_pipeops_randomprojection
Project Numeric Features onto a Randomly Sampled Subspace

Description

Projects numeric features onto a randomly sampled subspace. All numeric features (or the ones
selected by affect_columns) are replaced by numeric features PR1, PR2, ... PRn

Samples with features that contain missing values result in all PR1..PRn being NA for that sample,
so it is advised to do imputation before random projections if missing values can be expected.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpRandomProjection$new(id = "randomprojection”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "randomprojection”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with affected numeric features projected onto a random subspace.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as an element $projection, amatrix.



mlr_pipeops_randomprojection 125

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

* rank :: integer(1)
The dimension of the subspace to project onto. Initialized to 1.

Internals

If there are n (affected) numeric features in the input Task, then $state$projectionis a rank x m
matrix. The output is calculated as input %*% state$projection.

The random projection matrix is obtained through Gram-Schmidt orthogonalization from a matrix
with values standard normally distributed, which gives a distribution that is rotation invariant, as
per Eaton: Multivariate Statistics, A Vector Space Approach, Pg. 234.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumn
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("iris")
pop = po("randomprojection”, rank = 2)

task$data()
pop$train(list(task))[[1]1$data()

pop$state



126 mlr_pipeops_randomresponse

mlr_pipeops_randomresponse
Generate a Randomized Response Prediction

Description
TakesinaPrediction of predict_type "prob” (for PredictionClassif)or "se” (for PredictionRegr)
and generates a randomized "response” prediction.

For "prob”, the responses are sampled according to the probabilities of the input PredictionClassif.
For "se", responses are randomly drawn according to the rdistfun parameter (default is rnorm)
by using the original responses of the input PredictionRegr as the mean and the original standard
errors of the input PredictionRegr as the standard deviation (sampling is done observation-wise).

Format

R6Class object inheriting from PipeOp.

Construction
PipeOpRandomResponse$new(id = "randomresponse”, param_vals = list(), packages = character(@))
e id:: character(1)
Identifier of the resulting object, default "randomresponse”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

* packages :: character
Set of all required packages for the private$.predict() methods related to the rdistfun
parameter. Default is character ().

Input and Output Channels
PipeOpRandomResponse has one input channel named "input”, taking NULL during training and a
Prediction during prediction.

PipeOpRandomResponse has one output channel named "output”, producing NULL during training
and a Prediction with random responses during prediction.

State
The $state is left empty (List()).

Parameters

e rdistfun:: function
A function for generating random responses when the predict type is "se"”. This function
must accept the arguments n (integerish number of responses), mean (numeric for the mean),
and sd (numeric for the standard deviation), and must vectorize over mean and sd. Default is
rnorm.



mlr_pipeops_randomresponse 127

Internals

If the predict_type of the input Prediction does not match "prob” or "se”, the input Prediction
will be returned unaltered.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolur
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library(mlr3)
library(mlr3learners)

taskl = tsk("iris")

gl = LearnerClassifRpart$new() %>>% PipeOpRandomResponse$new()
gl$train(taskl)

gl1$pipeops$classif.rpart$learner$predict_type = "prob”
set.seed(2409)

gl$predict(taskl)

task2 = tsk("mtcars")

g2 = LearnerRegrLM$new() %>>% PipeOpRandomResponse$new()
g2$train(task2)
g2$pipeops$regr.ilm$learner$predict_type =
set.seed(2906)

" "

se



128 mlr_pipeops_regravg

g2$predict(task2)

mlr_pipeops_regravg Weighted Prediction Averaging

Description

Perform (weighted) prediction averaging from regression Predictions by connecting PipeOpRegrAvg
to multiple PipeOpLearner outputs.

The resulting "response” prediction is a weighted average of the incoming "response” predic-
tions. "se" prediction is currently not aggregated but discarded if present.

Weights can be set as a parameter; if none are provided, defaults to equal weights for each predic-
tion. Defaults to equal weights for each model.

Format

R6Class inheriting from PipeOpEnsemble/PipeOp.

Construction
PipeOpRegrAvg$new(innum = @, collect_multiplicity = FALSE, id = "regravg"”, param_vals = list())

e innum:: numeric(1)
Determines the number of input channels. If innum is O (default), a vararg input channel is
created that can take an arbitrary number of inputs.

e collect_multiplicity:: logical(1)
If TRUE, the input is aMultiplicity collecting channel. This means, a Multiplicity input,
instead of multiple normal inputs, is accepted and the members are aggregated. This requires
innum to be 0. Default is FALSE.

e id:: character (1) Identifier of the resulting object, default "regravg".

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpEnsemble. Instead of aPrediction, aPredictionRegr
is used as input and output during prediction.

State
The $state is left empty (List()).

Parameters

The parameters are the parameters inherited from the PipeOpEnsemble.



mlr_pipeops_regravg 129

Internals

Inherits from PipeOpEnsemble by implementing the private$weighted_avg_predictions() method.

Fields

Only fields inherited from PipeOpEnsemble/PipeOp.

Methods
Only methods inherited from PipeOpEnsemble/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign,
mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscals
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_replicate

Other Ensembles: PipeOpEnsemble, mlr_learners_avg, mlr_pipeops_classifavg, mlr_pipeops_ovrunite

Examples

library("mlr3")

# Simple Bagging
gr = ppl("greplicate”,
po("subsample”) %>>%
po("learner”, 1lrn("classif.rpart”)),
n=>5
) %>>%
po("classifavg”)

resample(tsk("iris"), GraphLearner$new(gr), rsmp("holdout”))



130 mlr_pipeops_removeconstants

mlr_pipeops_removeconstants
Remove Constant Features

Description

Remove constant features from a mlr3::Task. For each feature, calculates the ratio of features which
differ from their mode value. All features with a ratio below a settable threshold are removed from
the task. Missing values can be ignored or treated as a regular value distinct from non-missing
values.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpRemoveConstants$new(id = "removeconstants")

e id:: character (1) Identifier of the resulting object, defaulting to "removeconstants”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

State
$state is a named 1ist with the $state elements inherited from PipeOpTaskPreproc, as well as:

e features :: character()
Names of features that are being kept. Features of types that the Filter can not operate on

are always being kept.

Parameters

The parameters are the parameters inherited from the PipeOpTaskPreproc, as well as:

* ratio:: numeric(1)
Ratio of values which must be different from the mode value in order to keep a feature in the
task. Initialized to 0, which means only constant features with exactly one observed level are
removed.

e rel_tol :: numeric(1)
Relative tolerance within which to consider a numeric feature constant. Set to O to disregard
relative tolerance. Initialized to 1e-8.

e abs_tol :: numeric(1)
Absolute tolerance within which to consider a numeric feature constant. Set to O to disregard
absolute tolerance. Initialized to 1e-8.



mlr_pipeops_removeconstants 131

* na_ignore :: logical(1)
If TRUE, the ratio is calculated after removing all missing values first, so a column can be
"constant" even if some but not all values are NA. Initialized to TRUE.

Fields

Fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_renamecolum
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")
data = data.table::data.table(y = runif(10), a=1:10, b = rep(1, 10), c = rep(1:2, each =5))

task = TaskRegr$new("example”, data, target = "y")
po = po("removeconstants”)
po$train(list(task = task))[[1]1]$data()

po$state



132 mlr_pipeops_renamecolumns

mlr_pipeops_renamecolumns
Rename Columns

Description

Renames the columns of a Task both during training and prediction. Uses the $rename () mutator
of the Task.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOp.

Construction
PipeOpRenameColumns$new(id = "renamecolumns”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "renamecolumns”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreprocSimple.

The output is the input Task with the old column names changed to the new ones.

State

The $state is anamed list with the $state elements inherited from PipeOpTaskPreprocSimple.

Parameters
The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as:
* renaming :: named character

Named character vector. The names of the vector specify the old column names that should
be changed to the new column names as given by the elements of the vector. Initialized to the

empty character vector.

e ignore_missing :: logical(1)
Ignore if columns named in renaming are not found in the input Task. If this is FALSE, then
names found in renaming not found in the Task cause an error. Initialized to FALSE.

Internals

Uses the $rename () mutator of the Task to set the new column names.



mlr_pipeops_replicate 133

Fields

Only fields inherited from PipeOpTaskPreprocSimple/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")
task = tsk("iris")

pop = po("renamecolumns”, param_vals = list(renaming = c("Petal.Length” = "PL")))
pop$train(list(task))

mlr_pipeops_replicate Replicate the Input as a Multiplicity

Description

Replicate the input as a Multiplicity, causing subsequent PipeOps to be executed multiple reps
times.

Note that Multiplicity is currently an experimental features and the implementation or Ul may
change.



134 mlr_pipeops_replicate

Format

R6Class object inheriting from PipeOp.

Construction

PipeOpReplicate$new(id = "replicate”, param_vals = list())

e id:: character (1) Identifier of the resulting object, default "replicate”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

PipeOpReplicate has one input channel named "input”, taking any input ("*") both during train-
ing and prediction.

PipeOpReplicate has one output channel named "output” returning the replicated input as a
Multiplicity of type any ("[*]") both during training and prediction.

State
The $state is left empty (1ist()).

Parameters

* reps :: numeric(1)
Integer indicating the number of times the input should be replicated.

Fields

Only fields inherited from PipeOp.

Methods

Only methods inherited from PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors,mlr_pipeops_histbin,mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,



mlr_pipeops_scale 135

mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Multiplicity PipeOps: Multiplicity(), PipeOpEnsemble, mlr_pipeops_classifavg, mlr_pipeops_featureunior
mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite, mlr_pipeops_regravg

Other Experimental Features: Multiplicity (), mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite

Examples

library("mlr3")

task = tsk("iris")

po = po("replicate”, param_vals = list(reps = 3))
po$train(list(task))

po$predict(list(task))

mlr_pipeops_scale Center and Scale Numeric Features

Description

Centers all numeric features to mean = 0 (if center parameter is TRUE) and scales them by dividing
them by their root-mean-square (if scale parameter is TRUE).

The root-mean-square here is defined as sqrt(sum(x*2)/(length(x)-1)). If the center param-
eter is TRUE, this corresponds to the sd().

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpScale$new(id = "scale”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "scale”.
e param_vals :: named list

List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().



136 mlr_pipeops_scale

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected numeric parameters centered and/or scaled.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

* center :: numeric
The mean / median (depending on robust) of each numeric feature during training, or O if
center is FALSE. Will be subtracted during the predict phase.

* scale:: numeric
The value by which features are divided. 1 if scale is FALSE
If robust is FALSE, this is the root mean square, defined as sqrt (sum(x*2)/(length(x)-1)),
of each feature, possibly after centering. If robust is TRUE, this is the mean absolute devia-
tion multiplied by 1.4826 (see stats::mad of each feature, possibly after centering. This is 1
for features that are constant during training if center is TRUE, to avoid division-by-zero.

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
e center :: logical(1)
Whether to center features, i.e. subtract their mean () from them. Default TRUE.

e scale:: logical(1)
Whether to scale features, i.e. divide them by sqrt(sum(x*2)/(length(x)-1)). Default
TRUE.

* robust :: logical(1)
Whether to use robust scaling; instead of scaling / centering with mean / standard deviation,
median and median absolute deviation mad are used. Initialized to FALSE.

Internals

Imitates the scale() function for robust = FALSE and alternatively subtracts the median and di-
vides by mad for robust = TRUE.

Methods
Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,



mlr_pipeops_scalemaxabs 137

mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange,
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples
library("mlr3")

task = tsk("iris")
pos = po("”scale")

pos$train(list(task))[[1]]$data()
one_line_of_iris = task$filter(13)
one_line_of_iris$data()

pos$predict(list(one_line_of_iris))[[1]]%$data()

mlr_pipeops_scalemaxabs

Scale Numeric Features with Respect to their Maximum Absolute
Value

Description
Scales the numeric data columns so their maximum absolute value is maxabs, if possible. NA, Inf
are ignored, and features that are constant 0 are not scaled.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpScaleMaxAbs$new(id = "scalemaxabs”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "scalemaxabs".



138 mlr_pipeops_scalemaxabs

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with scaled numeric features.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as the maximum absolute values of each numeric feature.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e maxabs :: numeric(1)
The maximum absolute value for each column after transformation. Default is 1.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalerange,
mlr_pipeops_select,mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson



mlr_pipeops_scalerange 139

Examples

library("mlr3")

task = tsk("iris"
pop = po("”scalemaxabs”)

task$data()
pop$train(list(task))[[1]11$data()

pop$state

mlr_pipeops_scalerange
Linearly Transform Numeric Features to Match Given Boundaries

Description

Linearly transforms numeric data columns so they are between lower and upper. The formula for
thisis #’ = of fset + x % scale, where scale is (upper — lower) /(max(x) —min(z)) and of fset
is —min(x) x scale 4+ lower. The same transformation is applied during training and prediction.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpScaleRange$new(id = "scalerange”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "scalerange”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with scaled numeric features.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as the two transformation parameters scale and of f set for each numeric feature.



140 mlr_pipeops_scalerange

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

e lower :: numeric(1)
Target value of smallest item of input data. Initialized to O.

e upper :: numeric(1)
Target value of greatest item of input data. Initialized to 1.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc,
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf,mlr_pipeops_nop,
mlr_pipeops_ovrsplit,mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pop = po("scalerange"”, param_vals = list(lower = -1, upper = 1))

task$data()
pop$train(list(task))[[1]]$data()

pop$state



mlr_pipeops_select 141

mlr_pipeops_select Remove Features Depending on a Selector

Description

Removes features from Task depending on a Selector function: The selector parameter gives the
features to keep. See Selector for selectors that are provided and how to write custom Selectors.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpSelect$new(id = "select”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "select”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with features removed that were not selected by the Selector/function
in selector.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc, as
well as:

* selection :: character
A vector of all feature names that are kept (i.e. not dropped) in the Task. Initialized to

selector_all()

Parameters

* selector :: function | Selector
Selector function, takes a Task as argument and returns a character of features to keep.
See Selector for example functions. Defaults to selector_all().

Internals

Uses task$select().



142 mlr_pipeops_select

Fields

Only fields inherited from PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Other Selectors: Selector

Examples

library("mlr3")

task = tsk("boston_housing")
pos = po("select")

pos$param_set$values$selector = selector_all()
pos$train(list(task))[[1]1]1$feature_names

pos$param_set$values$selector = selector_type("factor™)
pos$train(list(task))[[1]1]1$feature_names

pos$param_set$values$selector = selector_invert(selector_type("factor”))
pos$train(list(task))[[1]]$feature_names

pos$param_set$values$selector = selector_grep(”"*r")
pos$train(list(task))[[1]1]$feature_names



mlr_pipeops_smote 143

mlr_pipeops_smote SMOTE Balancing

Description

Generates a more balanced data set by creating synthetic instances of the minority class using the
SMOTE algorithm. The algorithm samples for each minority instance a new data point based on the
K nearest neighbors of that data point. It can only be applied to tasks with purely numeric features.
See smotefamily: : SMOTE for details.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction
PipeOpSmote$new(id = "smote”, param_vals = list())

e id:: character(1)
Identifier of resulting object, default "smote”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output during training is the input Task with added synthetic rows for the minority class. The
output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
e K::numeric(1)
The number of nearest neighbors used for sampling new values. See SMOTE().

e dup_size :: numeric
Desired times of synthetic minority instances over the original number of majority instances.
See SMOTE().

Fields
Only fields inherited from PipeOpTaskPreproc/PipeOp.



144 mlr_pipeops_smote

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

References

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002). “SMOTE: Synthetic Minority Over-
sampling Technique.” Journal of Artificial Intelligence Research, 16,321-357. doi:10.1613/jair.953.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_spatialsign, mlr_pipeops_subsample,
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

# Create example task

data = smotefamily::sample_generator (1000, ratio = 0.80)

data$result = factor(data$result)

task = TaskClassif$new(id = "example”, backend = data, target = "result”)
task$data()

table(task$data()$result)

# Generate synthetic data for minority class
pop = po("smote")

smotedata = pop$train(list(task))[[1]1]1$data()
table(smotedata$result)


https://doi.org/10.1613/jair.953

mlr_pipeops_spatialsign 145

mlr_pipeops_spatialsign
Normalize Data Row-wise

Description

Normalizes the data row-wise. This is a natural generalization of the "sign" function to higher
dimensions.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction
PipeOpSpatialSign$new(id = "spatialsign”, param_vals = list())
e id:: character(1)
Identifier of resulting object, default "spatialsign”.

e param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise

be set during construction. Default 1ist ().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.
The output is the input Task with all affected numeric features replaced by their normalized ver-
sions.

State

The $state is a named 1ist with the $state elements inherited from PipeOpTaskPreproc.

Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:
e length :: numeric(1)
Length to scale rows to. Default is 1.

* norm:: numeric(1)
Norm to use. Rows are scaled to sum(x*norm)*(1/norm) == length for finite norm, or to

max (abs(x)) == length if normis Inf. Default is 2.

Methods
Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.



146 mlr_pipeops_subsample

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc
PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk,
mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply,
mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures,
mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion,
mlr_pipeops_filter,mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputecon:
mlr_pipeops_imputehist, mlr_pipeops_imputelearner,mlr_pipeops_imputemean, mlr_pipeops_imputemedian,
mlr_pipeops_imputemode, mlr_pipeops_imputeoor,mlr_pipeops_imputesample, mlr_pipeops_kernelpca,
mlr_pipeops_learner,mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop,
mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy,mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconst:
mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs
mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_subsample
mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch,
mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
task$data()

pop = po("spati