## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE------------------------------------------------------------- options(crayon.enabled = FALSE, cli.num_colors = 0) ## ----------------------------------------------------------------------------- library(metasnf) dl <- data_list( list(subc_v, "subcortical_volume", "neuroimaging", "continuous"), list(income, "household_income", "demographics", "continuous"), list(pubertal, "pubertal_status", "demographics", "continuous"), list(anxiety, "anxiety", "behaviour", "ordinal"), list(depress, "depressed", "behaviour", "ordinal"), uid = "unique_id" ) set.seed(42) sc <- snf_config( dl = dl, n_solutions = 20, min_k = 20, max_k = 50 ) # Generation of 20 cluster solutions sol_df <- batch_snf(dl, sc) # Let's just calculate NMIs of the anxiety and depression data types for the # first 5 cluster solutions to save time: feature_nmis <- calc_nmis(dl[4:5], sol_df[1:5, ]) print(feature_nmis)