## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE------------------------------------------------------------- options(crayon.enabled = FALSE, cli.num_colors = 0) ## ----------------------------------------------------------------------------- library(metasnf) # Make sure to throw in all the data you're interested in visualizing for this # data_list, including out-of-model measures and confounding features. dl <- data_list( list(income, "household_income", "demographics", "ordinal"), list(pubertal, "pubertal_status", "demographics", "continuous"), list(fav_colour, "favourite_colour", "demographics", "categorical"), list(anxiety, "anxiety", "behaviour", "ordinal"), list(depress, "depressed", "behaviour", "ordinal"), uid = "unique_id" ) summary(dl) set.seed(42) sc <- snf_config( dl, n_solutions = 20, min_k = 20, max_k = 50 ) sc$"weights_matrix" ## ----------------------------------------------------------------------------- # Random uniformly distributed values sc <- snf_config( dl, n_solutions = 20, min_k = 20, max_k = 50, weights_fill = "uniform" ) sc$"weights_matrix" # Random exponentially distributed values sc <- snf_config( dl, n_solutions = 20, min_k = 20, max_k = 50, weights_fill = "exponential" ) sc$"weights_matrix" ## ----eval = FALSE------------------------------------------------------------- # batch_snf(dl = dl, sc = sc)