Package 'maicplus'

February 21, 2025

```
Version 0.1.2
Description Facilitates performing matching adjusted indirect comparison
     (MAIC) analysis where the endpoint of interest is either time-to-event
     (e.g. overall survival) or binary (e.g. objective tumor response). The method
     is described by Signorovitch et al (2012) <doi:10.1016/j.jval.2012.05.004>.
License Apache License 2.0
URL https://github.com/hta-pharma/maicplus/,
     https://hta-pharma.github.io/maicplus/
BugReports https://github.com/hta-pharma/maicplus/issues
Depends R (>= 4.1)
Imports graphics, grDevices, stats, survival, lubridate, matrixStats,
     MASS, boot, stringr, lmtest, sandwich
Suggests knitr, testthat (>= 2.0), ggplot2, rmarkdown, dplyr,
     survminer, flexsurv, tibble, vdiffr, checkmate
VignetteBuilder knitr
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.2
Config/testthat/edition 3
NeedsCompilation no
Author Gregory Chen [aut],
     Michael Seo [aut],
     Isaac Gravestock [aut, cre],
     Miranta Antoniou [ctb],
     Chrysostomos Kalyvas [ctb],
     MSD, Inc. [cph, fnd],
     F. Hoffmann-La Roche AG [cph, fnd]
```

Maintainer Isaac Gravestock <isaac.gravestock@roche.com>

Title Matching Adjusted Indirect Comparison

2 Contents

Repository CRAN

Date/Publication 2025-02-21 16:00:02 UTC

Contents

Index

adrs_sat
adrs_twt
adsl_sat
adsl_twt
adtte_sat
adtte_twt
agd
basic_kmplot
basic_kmplot2
bucher
centered_ipd_sat
centered_ipd_twt
center_ipd
check_weights
dummize_ipd
estimate_weights
find_SE_from_CI
get_pseudo_ipd_binary
get_time_as
glm_makeup
kmplot
kmplot2
maic_anchored
maic_unanchored
medSurv_makeup
ph_diagplot
ph_diagplot_lch
ph_diagplot_schoenfeld
plot_weights_base
plot_weights_ggplot
process_agd
pseudo_ipd_sat
pseudo_ipd_twt
set_time_conversion
survfit_makeup
weighted_sat
weighted_twt

48

adrs_sat 3

adrs_sat

Binary outcome data from single arm trial

Description

Binary outcome data from single arm trial

Usage

adrs_sat

Format

A data frame with 500 rows and 5 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm.

AVAL Analysis value, in this dataset an indicator of response.

PARAM Parameter type of AVAL.

RESPONSE Indicator of response.

See Also

Other unanchored datasets: adsl_sat, adtte_sat, agd, centered_ipd_sat, pseudo_ipd_sat, weighted_sat

adrs_twt

Binary outcome data from two arm trial

Description

Binary outcome data from two arm trial

Usage

adrs_twt

Format

A data frame with 1000 rows and 5 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm, "A", "C".

AVAL Analysis value, in this dataset an indicator of response.

PARAM Parameter type of AVAL.

RESPONSE Indicator of response.

4 adsl_sat

See Also

Other anchored datasets: adsl_twt, adtte_twt, agd, centered_ipd_twt, pseudo_ipd_twt, weighted_twt

adsl_sat

Patient data from single arm study

Description

Patient data from single arm study

Usage

adsl_sat

Format

a data frame with 500 rows and 8 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm.

AGE Age in years at baseline.

SEX Sex of patient recorded as character "Male"/"Female".

SMOKE Smoking status at baseline as integer 1/0.

ECOG0 Indicator of ECOG score = 0 at baseline as integer 1/0.

N_PR_THER Number of prior therapies received as integer 1, 2, 3, 4.

SEX_MALE Indicator of SEX == "Male" as numeric 1/0.

See Also

```
Other unanchored datasets: adrs_sat, adtte_sat, agd, centered_ipd_sat, pseudo_ipd_sat, weighted_sat
```

adsl_twt 5

adsl_twt

Patient data from two arm trial

Description

Patient data from two arm trial

Usage

adsl_twt

Format

A data frame with 1000 rows and 8 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm.

AGE Age in years at baseline.

SEX Sex of patient recorded as character "Male"/"Female"

SMOKE Smoking status at baseline as integer 1/0.

ECOG0 Indicator of ECOG score = 0 at baseline as integer 1/0.

N_PR_THER Number of prior therapies received as integer 1, 2, 3, 4.

SEX_MALE Indicator of SEX == "Male" as numeric 1/0

See Also

Other anchored datasets: adrs_twt, adtte_twt, agd, centered_ipd_twt, pseudo_ipd_twt, weighted_twt

adtte_sat

Survival data from single arm trial

Description

Survival data from single arm trial

Usage

adtte_sat

6 adtte_twt

Format

A data frame with 500 rows and 10 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm, "A".

AVAL Analysis value which in this dataset overall survival time in days.

AVALU Unit of AVAL.

PARAMCD Paramater code of AVAL, "OS".

PARAM Parameter name of AVAL, "Overall Survival.

CNSR Censoring indicator 0/1.

TIME Survival time in days.

EVENT Event indicator 0/1.

See Also

Other unanchored datasets: adrs_sat, adsl_sat, agd, centered_ipd_sat, pseudo_ipd_sat, weighted_sat

adtte_twt

Survival data from two arm trial

Description

Survival data from two arm trial

Usage

adtte_twt

Format

A data frame with 1000 rows and 10 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm, "A", "C".

AVAL Analysis value which in this dataset overall survival time in days.

AVALU Unit of AVAL.

PARAMCD Parameter code of AVAL, "OS".

PARAM Parameter name of AVAL, "Overall Survival.

CNSR Censoring indicator 0/1.

TIME Survival time in days.

EVENT Event indicator 0/1.

See Also

Other anchored datasets: adrs_twt, adsl_twt, agd, centered_ipd_twt, pseudo_ipd_twt, weighted_twt

agd 7

agd

Aggregate effect modifier data from published study

Description

This data is formatted to be used in center_ipd().

Usage

agd

Format

A data frame with 3 rows and 9 columns:

STUDY The study name, Study_XXXX

ARM Study arm name or total

N Number of observations in study arm

AGE_MEAN Mean age in study arm

AGE_MEDIAN Median age in study arm

AGE_SD Standard deviation of age in study arm

SEX_MALE_COUNT Number of male patients

ECOG0_COUNT Number of patients with ECOG score = 0

SMOKE_COUNT Number of smokers

N_PR_THER_MEDIAN Median number of prior therapies

See Also

 $Other \ unanchored \ datasets: \ adrs_sat, \ adsl_sat, \ adtte_sat, \ centered_ipd_sat, \ pseudo_ipd_sat, \ weighted_sat$

Other anchored datasets: adrs_twt, adsl_twt, adtte_twt, centered_ipd_twt, pseudo_ipd_twt, weighted_twt

8 basic_kmplot

basic_kmplot

Basic Kaplan Meier (KM) plot function

Description

This function can generate a basic KM plot with or without risk set table appended at the bottom. In a single plot, it can include up to 4 KM curves. This depends on number of levels in 'treatment' column in the input data.frame kmdat

Usage

```
basic_kmplot(
  kmdat,
  endpoint_name = "Time to Event Endpoint",
  time_scale = NULL,
  time_grid = NULL,
  show_risk_set = TRUE,
  main_title = "Kaplan-Meier Curves",
  subplot_heights = NULL,
  suppress_plot_layout = FALSE,
  use_colors = NULL,
  use_line_types = NULL,
  use_pch_cex = 0.65,
  use_pch_alpha = 100
)
```

Arguments

kmdat	a data.frame, must consist treatment, time (unit in days), n.risk, censor, surv, similar to an output from maicplus:::survfit_makeup	
endpoint_name	a string, name of time to event endpoint, to be show in the last line of title	
time_scale	a string, time unit of median survival time, taking a value of 'years', 'months', 'weeks' or 'days'	
time_grid	a numeric vector in the unit of time_scale, risk set table and x axis of the km plot will be defined based on this time grid	
show_risk_set	logical, show risk set table or not, TRUE by default	
main_title	a string, main title of the KM plot	
subplot_heights		
	a numeric vector, heights argument to graphic::layout(),NULL by default which means user will use the default setting	
suppress_plot_layout		
	logical, suppress the layout setting in this function so that user can specify layout outside of the function, FALSE by default	
use_colors	a character vector of length up to 4, colors to the KM curves, it will be passed to col of lines()	

basic_kmplot 9

use_line_types	a numeric vector of length up to 4, line type to the KM curves, it will be passed to 1ty of lines() $$
use_pch_cex	a scalar between 0 and 1, point size to indicate censored individuals on the KM curves, it will be passed to cex of $points()$
use_pch_alpha	a scalar between 0 and 255, degree of color transparency of points to indicate censored individuals on the KM curves, it will be passed to cex of points()

Value

a KM plot with or without risk set table appended at the bottom, with up to 4 KM curves

Examples

```
library(survival)
data(adtte_sat)
data(pseudo_ipd_sat)
combined_data <- rbind(adtte_sat[, c("TIME", "EVENT", "ARM")], pseudo_ipd_sat)</pre>
kmobj <- survfit(Surv(TIME, EVENT) ~ ARM, combined_data, conf.type = "log-log")</pre>
kmdat <- do.call(rbind, survfit_makeup(kmobj))</pre>
kmdat$treatment <- factor(kmdat$treatment)</pre>
# without risk set table
basic_kmplot(kmdat,
  time_scale = "month",
  time\_grid = seq(0, 20, by = 2),
  show_risk_set = FALSE,
  main_title = "Kaplan-Meier Curves",
  subplot_heights = NULL,
  suppress_plot_layout = FALSE,
  use_colors = NULL,
  use\_line\_types = NULL
)
# with risk set table
basic_kmplot(kmdat,
  time_scale = "month",
  time\_grid = seq(0, 20, by = 2),
  show_risk_set = TRUE,
  main_title = "Kaplan-Meier Curves",
  subplot_heights = NULL,
  suppress_plot_layout = FALSE,
  use_colors = NULL,
  use\_line\_types = NULL
)
```

10 basic_kmplot2

basic_kmplot2

Basic Kaplan Meier (KM) plot function using ggplot

Description

This function generates a basic KM plot using ggplot.

Usage

```
basic_kmplot2(
   kmlist,
   kmlist_name,
   endpoint_name = "Time to Event Endpoint",
   show_risk_set = TRUE,
   main_title = "Kaplan-Meier Curves",
   break_x_by = NULL,
   censor = TRUE,
   xlab = "Time",
   xlim = NULL,
   use_colors = NULL,
   use_line_types = NULL
)
```

Arguments

kmlist a list of survfit object

kmlist_name a vector indicating the treatment names of each survfit object

endpoint_name a string, name of time to event endpoint, to be show in the last line of title

show_risk_set logical, show risk set table or not, TRUE by default

main_title a string, main title of the KM plot break_x_by bin parameter for survminer

censor indicator to include censor information

xlab label name for x-axis of the plot xlim x limit for the x-axis of the plot

use_colors a character vector of length up to 4, colors to the KM curves, it will be passed

to 'col' of lines()

use_line_types a numeric vector of length up to 4, line type to the KM curves, it will be passed

to lty of lines()

Value

A Kaplan-Meier plot object created with survminer::ggsurvplot().

bucher 11

Examples

```
library(survival)
data(adtte_sat)
data(pseudo_ipd_sat)

kmobj_A <- survfit(Surv(TIME, EVENT) ~ ARM,
    data = adtte_sat,
    conf.type = "log-log"
)

kmobj_B <- survfit(Surv(TIME, EVENT) ~ ARM,
    data = pseudo_ipd_sat,
    conf.type = "log-log"
)

kmlist <- list(kmobj_A = kmobj_A, kmobj_B = kmobj_B)
kmlist_name <- c("A", "B")

basic_kmplot2(kmlist, kmlist_name)</pre>
```

bucher

Bucher method for combining treatment effects

Description

Given two treatment effects of A vs. C and B vs. C derive the treatment effects of A vs. B using the Bucher method. Two-sided confidence interval and Z-test p-value are also calculated. Treatment effects and standard errors should be in log scale for hazard ratio, odds ratio, and risk ratio. Treatment effects and standard errors should be in natural scale for risk difference and mean difference.

Usage

```
bucher(trt, com, conf_lv = 0.95)
## S3 method for class 'maicplus_bucher'
print(x, ci_digits = 2, pval_digits = 3, exponentiate = FALSE, ...)
```

Arguments

trt

a list of two scalars for the study with the experimental arm. 'est' is the point estimate and 'se' is the standard error of the treatment effect. For time-to-event data, 'est' and 'se' should be point estimate and standard error of the log hazard ratio. For binary data, 'est' and 'se' should be point estimate and standard error of the log odds ratio, log risk ratio, or risk difference. For continuous data, 'est' and 'se' should be point estimate and standard error of the mean difference.

com

same as trt, but for the study with the control arm

12 centered_ipd_sat

conf_lv	a numerical scalar, prescribe confidence level to derive two-sided confidence interval for the treatment effect
x	maicplus_bucher object
ci_digits	an integer, number of decimal places for point estimate and derived confidence limits
<pre>pval_digits</pre>	an integer, number of decimal places to display Z-test p-value
exponentiate	whether the treatment effect and confidence interval should be exponentiated. This applies to relative treatment effects. Default is set to false.
	not used

Value

a list with 5 elements,

est a scalar, point estimate of the treatment effect

se a scalar, standard error of the treatment effect

 $\pmb{ci_l} \ \ a \ scalar, lower \ confidence \ limit \ of \ a \ two-sided \ CI \ with \ prescribed \ nominal \ level \ by \ conf_lv$

 $\textbf{ci_u} \ \ \text{a scalar, upper confidence limit of a two-sided CI with prescribed nominal level by } \textbf{conf_lv}$

pval p-value of Z-test, with null hypothesis that est is zero

Methods (by generic)

• print(maicplus_bucher): Print method for maicplus_bucher objects

Examples

```
trt <- list(est = log(1.1), se = 0.2)
com <- list(est = log(1.3), se = 0.18)
result <- bucher(trt, com, conf_lv = 0.9)
print(result, ci_digits = 3, pval_digits = 3)</pre>
```

centered_ipd_sat

Centered patient data from single arm trial

Description

Centered patient data from single arm trial

Usage

```
centered_ipd_sat
```

centered_ipd_twt

Format

A data frame with 500 rows and 14 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm.

AGE Age in years at baseline.

SEX Sex of patient recorded as character "Male"/"Female".

SMOKE Smoking status at baseline as integer 1/0.

ECOG0 Indicator of ECOG score = 0 at baseline as integer 1/0.

N_PR_THER Number of prior therapies received as integer 1, 2, 3, 4.

SEX_MALE Indicator of SEX == "Male" as numeric 1/0.

AGE_CENTERED Age in years at baseline relative to average in aggregate data agd.

AGE_MEDIAN_CENTERED AGE greater/less than MEDIAN_AGE in agd coded as 1/0 and then centered at 0.5.

AGE_SQUARED_CENTERED AGE squared and centered with respect to the AGE in agd. The squared age in the aggregate data is derived from the $E(X^2)$ term in the variance formula.

SEX_MALE_CENTERED SEX_MALE centered by the proportion of male patients in agd

ECOGO_CENTERED ECOGO centered by the proportion of ECOGO in agd

SMOKE_CENTERED SMOKE centered by the proportion of SMOKE in agd

N_PR_THER_MEDIAN_CENTERED N_PR_THER centered by the median in agd.

See Also

Other unanchored datasets: adrs_sat, adsl_sat, adtte_sat, agd, pseudo_ipd_sat, weighted_sat

centered_ipd_twt

Centered patient data from two arm trial

Description

Centered patient data from two arm trial

Usage

centered_ipd_twt

14 center_ipd

Format

A data frame with 1000 rows and 14 columns:

USUBJID Unique subject identifiers for patients.

ARM Assigned treatment arm.

AGE Age in years at baseline.

SEX Sex of patient recorded as character "Male"/"Female".

SMOKE Smoking status at baseline as integer 1/0.

ECOG0 Indicator of ECOG score = 0 at baseline as integer 1/0.

N_PR_THER Number of prior therapies received as integer 1, 2, 3, 4.

SEX_MALE Indicator of SEX == "Male" as numeric 1/0.

AGE_CENTERED Age in years at baseline relative to average in aggregate data agd.

AGE_MEDIAN_CENTERED AGE greater/less than MEDIAN_AGE in agd coded as 1/0 and then centered at 0.5.

AGE_SQUARED_CENTERED AGE squared and centered with respect to the AGE in agd. The squared age in the aggregate data is derived from the $E(X^2)$ term in the variance formula.

SEX_MALE_CENTERED SEX_MALE centered by the proportion of male patients in agd

ECOG0_CENTERED ECOG0 centered by the proportion of ECOG0 in agd

SMOKE_CENTERED SMOKE centered by the proportion of SMOKE in agd

N_PR_THER_MEDIAN_CENTERED N_PR_THER centered by the median in agd.

See Also

Other anchored datasets: adrs_twt, adsl_twt, adtte_twt, agd, pseudo_ipd_twt, weighted_twt

center_ipd	Center individual patient data (IPD) variables using aggregate data
	averages

Description

This function subtracts IPD variables (prognostic variables and/or effect modifiers) by the aggregate data averages. This centering is needed in order to calculate weights. IPD and aggregate data variable names should match.

Usage

```
center_ipd(ipd, agd)
```

check_weights 15

Arguments

ipd

IPD variable names should match the aggregate data names without the suffix. This would involve either changing the aggregate data name or the ipd name. For instance, if we binarize SEX variable with MALE as a reference using dummize_ipd, function names the new variable as SEX_MALE. In this case, SEX_MALE should also be available in the aggregate data.

agd

pre-processed aggregate data which contain STUDY, ARM, and N. Variable names should be followed by legal suffixes (i.e. MEAN, MEDIAN, SD, or PROP). Note that COUNT suffix is no longer accepted.

Value

centered ipd using aggregate level data averages

Examples

```
data(adsl_sat)
data(agd)
agd <- process_agd(agd)
ipd_centered <- center_ipd(ipd = adsl_sat, agd = agd)</pre>
```

check_weights

Check to see if weights are optimized correctly

Description

This function checks to see if the optimization is done properly by checking the covariate averages before and after adjustment. In case of ties when calculating median, we return the mean of the two numbers. For more details, see ties parameter in matrixStats::weightedMedian.

Usage

```
check_weights(weighted_data, processed_agd)
## S3 method for class 'maicplus_check_weights'
print(
    x,
    mean_digits = 2,
    prop_digits = 2,
    sd_digits = 3,
    digits = getOption("digits"),
    ...
)
```

16 dummize_ipd

Arguments

weighted_data	object returned after calculating weights using estimate_weights
processed_agd	a data frame, object returned after using process_agd or aggregated data following the same naming convention
X	object from check_weights
mean_digits	number of digits for rounding mean columns in the output
prop_digits	number of digits for rounding proportion columns in the output
sd_digits	number of digits for rounding mean columns in the output
digits	minimal number of significant digits, see print.default.
	further arguments to print.data.frame

Value

data.frame of weighted and unweighted covariate averages of the IPD, average of aggregate data, and sum of inner products of covariate x_i and the weights $(exp(x_i\beta))$

Methods (by generic)

• print(maicplus_check_weights): Print method for check_weights objects

Examples

```
data(weighted_sat)
data(agd)
check_weights(weighted_sat, process_agd(agd))
```

Description

This is a convenient function to convert categorical variables into dummy binary variables. This would be especially useful if the variable has more than two factors. Note that the original variable is kept after a variable is dummized.

Usage

```
dummize_ipd(raw_ipd, dummize_cols, dummize_ref_level)
```

Arguments

```
raw_ipd ipd data that contains variable to dummize

dummize_cols vector of column names to binarize

dummize_ref_level vector of reference level of the variables to binarize
```

estimate_weights 17

Value

ipd with dummized columns

Examples

```
data(adsl_twt)
dummize_ipd(adsl_twt, dummize_cols = c("SEX"), dummize_ref_level = c("Male"))
```

estimate_weights

Derive individual weights in the matching step of MAIC

Description

Assuming data is properly processed, this function takes individual patient data (IPD) with centered covariates (effect modifiers and/or prognostic variables) as input, and generates weights for each individual in IPD trial to match the covariates in aggregate data.

The plot function displays individuals weights with key summary in top right legend that includes median weight, effective sample size (ESS), and reduction percentage (what percent ESS is reduced from the original sample size). There are two options of plotting: base R plot and ggplot. The default for base R plot is to plot unscaled and scaled separately. The default for ggplot is to plot unscaled and scaled weights on a same plot.

Usage

```
estimate_weights(
  data,
  centered_colnames = NULL,
  start_val = 0,
 method = "BFGS",
  n_boot_iteration = NULL,
  set_seed_boot = 1234,
  boot_strata = "ARM",
)
## S3 method for class 'maicplus_estimate_weights'
plot(
  х,
  ggplot = FALSE,
  bin_col = "#6ECEB2",
  vline_col = "#688CE8",
  main_title = NULL,
  scaled_weights = TRUE,
  bins = 50,
)
```

18 estimate_weights

Arguments

data a numeric matrix, centered covariates of IPD, no missing value in any cell is

allowed

centered_colnames

a character or numeric vector (column indicators) of centered covariates

start_val a scalar, the starting value for all coefficients of the propensity score regression

method a string, name of the optimization algorithm (see 'method' argument of base::optim())

The default is "BFGS", other options are "Nelder-Mead", "CG", "L-BFGS-B",

"SANN", and "Brent"

n_boot_iteration

an integer, number of bootstrap iterations. By default is NULL which means

bootstrapping procedure will not be triggered, and hence the element "boot" of

output list object will be NULL.

set_seed_boot a scalar, the random seed for conducting the bootstrapping, only relevant if

n_boot_iteration is not NULL. By default, use seed 1234

boot_strata a character vector of column names in data that defines the strata for bootstrap-

ping. This ensures that samples are drawn proportionally from each defined stratum. If NULL, no stratification during bootstrapping process. By default, it is

"ARM"

... Additional control parameters passed to stats::optim.

x object from estimate_weights

ggplot indicator to print base weights plot or ggplot weights plot

bin_col a string, color for the bins of histogram

vline_col a string, color for the vertical line in the histogram

main_title title of the plot. For ggplot, name of scaled weights plot and unscaled weights

plot, respectively.

scaled_weights (base plot only) an indicator for using scaled weights instead of regular weights

bins (ggplot only) number of bin parameter to use

Value

a list with the following 4 elements,

data a data.frame, includes the input data with appended column 'weights' and 'scaled_weights'. Scaled weights has a summation to be the number of rows in data that has no missing value in any of the effect modifiers

centered_colnames column names of centered effect modifiers in data

nr_missing number of rows in data that has at least 1 missing value in specified centered effect modifiers

ess effective sample size, square of sum divided by sum of squares

opt R object returned by base::optim(), for assess convergence and other details

boot_strata 'strata' from a boot::boot object

boot_seed column names in data of the stratification factors

find_SE_from_CI

boot a n by 2 by k array or NA, where n equals to number of rows in data, and k equals n_boot_iteration. The 2 columns in the second dimension include a column of numeric indexes of the rows in data that are selected at a bootstrapping iteration and a column of weights. boot is NA when argument n_boot_iteration is set as NULL

Methods (by generic)

• plot(maicplus_estimate_weights): Plot method for estimate_weights objects

Examples

```
data(centered_ipd_sat)
centered_colnames <- grep("_CENTERED", colnames(centered_ipd_sat), value = TRUE)
weighted_data <- estimate_weights(data = centered_ipd_sat, centered_colnames = centered_colnames)

# To later estimate bootstrap confidence intervals, we calculate the weights
# for the bootstrap samples:
weighted_data_boot <- estimate_weights(
    data = centered_ipd_sat, centered_colnames = centered_colnames, n_boot_iteration = 100
)

plot(weighted_sat)

if (requireNamespace("ggplot2")) {
    plot(weighted_sat, ggplot = TRUE)
}</pre>
```

find_SE_from_CI

Calculate standard error from the reported confidence interval.

Description

Comparator studies often only report confidence interval of the treatment effects. This function calculates standard error of the treatment effect given the reported confidence interval. For relative treatment effect (i.e. hazard ratio, odds ratio, and risk ratio), the function would log the confidence interval. For risk difference and mean difference, we do not log the confidence interval. The option to log the confidence interval is controlled by 'log' parameter.

Usage

```
find_SE_from_CI(CI_lower = NULL, CI_upper = NULL, CI_perc = 0.95, log = TRUE)
```

Paparted lawer paraentile value of the treatment effect

Arguments

CT lawar

CI_Iower	Reported lower percentile value of the treatment effect
CI_upper	Reported upper percentile value of the treatment effect
CI_perc	Percentage of confidence interval reported
log	Whether the confidence interval should be logged. For relative treatment effect,
	log should be applied because estimated log treatment effect is approximately
	normally distributed.

Value

Standard error of log relative treatment effect if 'log' is true and standard error of the treatment effect if 'log' is false

Examples

```
find_SE_from_CI(CI_lower = 0.55, CI_upper = 0.90, CI_perc = 0.95)
```

get_pseudo_ipd_binary Create pseudo IPD given aggregated binary data

Description

Create pseudo IPD given aggregated binary data

Usage

```
get_pseudo_ipd_binary(binary_agd, format = c("stacked", "unstacked"))
```

Arguments

binary_agd a data.frame that take different formats depending on format format a string, "stacked" or "unstacked"

Value

a data.frame of pseudo binary IPD, with columns USUBJID, ARM, RESPONSE

Examples

```
# example of unstacked
testdat <- data.frame(Yes = 280, No = 120)
rownames(testdat) <- "B"</pre>
get_pseudo_ipd_binary(
 binary_agd = testdat,
  format = "unstacked"
)
# example of stacked
get_pseudo_ipd_binary(
  binary_agd = data.frame(
    ARM = rep("B", 2),
    RESPONSE = c("YES", "NO"),
    COUNT = c(280, 120)
  ),
  format = "stacked"
)
```

get_time_as 21

get	time	20

Convert Time Values Using Scaling Factors

Description

Convert Time Values Using Scaling Factors

Usage

```
get_time_as(times, as = NULL)
```

Arguments

times Numeric time values

as A time scale to convert to. One of "days", "weeks", "months", "years"

Value

Returns a numeric vector calculated from times / get_time_conversion(factor = as)

Examples

```
get_time_as(50, as = "months")
```

glm_makeup

Helper function to summarize outputs from glm fit

Description

Helper function to summarize outputs from glm fit

Usage

```
glm_makeup(binobj, legend = "before matching", weighted = FALSE)
```

Arguments

binobj returned object from stats::glm legend label to indicate the binary fit

weighted logical flag indicating whether weights have been applied in the glm fit

Value

A data. frame containing a summary of the number of events and subjects in a logistic regression model.

Examples

```
data(adrs_sat)
pseudo_adrs <- get_pseudo_ipd_binary(
   binary_agd = data.frame(
        ARM = rep("B", 2),
        RESPONSE = c("YES", "NO"),
        COUNT = c(280, 120)
      ),
      format = "stacked"
)
pseudo_adrs$RESPONSE <- as.numeric(pseudo_adrs$RESPONSE)
combined_data <- rbind(adrs_sat[, c("USUBJID", "ARM", "RESPONSE")], pseudo_adrs)
combined_data$ARM <- as.factor(combined_data$ARM)
binobj_dat <- stats::glm(RESPONSE ~ ARM, combined_data, family = binomial("logit"))
glm_makeup(binobj_dat)</pre>
```

kmplot

Kaplan Meier (KM) plot function for anchored and unanchored cases

Description

It is wrapper function of basic_kmplot. The argument setting is similar to maic_anchored and maic_unanchored, and it is used in those two functions.

Usage

```
kmplot(
  weights_object,
  tte_ipd,
  tte_pseudo_ipd,
  trt_ipd,
  trt_agd,
  trt_common = NULL,
  normalize_weights = FALSE,
  trt_var_ipd = "ARM",
  trt_var_agd = "ARM",
  km_conf_type = "log-log",
  km_layout = c("all", "by_trial", "by_arm"),
  ...
)
```

Arguments

tte_pseudo_ipd	a data frame of pseudo IPD by digitized KM curves of external trial (for time-to-event endpoint), contain at least "EVENT", "TIME"	
trt_ipd	a string, name of the interested investigation arm in internal trial dat_igd (real IPD)	
trt_agd	a string, name of the interested investigation arm in external trial dat_pseudo (pseudo IPD)	
trt_common	a string, name of the common comparator in internal and external trial, by default is NULL, indicating unanchored case	
normalize_weights		
	logical, default is FALSE. If TRUE, scaled_weights (normalized weights) in weights_object\$data will be used.	
trt_var_ipd	a string, column name in tte_ipd that contains the treatment assignment	
trt_var_agd	a string, column name in tte_pseudo_ipd that contains the treatment assignment	
km_conf_type	a string, pass to conf. type of survfit	
km_layout	a string, only applicable for unanchored case (trt_common = NULL), indicated the desired layout of output KM curve.	
	other arguments in basic_kmplot	

Value

In unanchored case, a KM plot with risk set table. In anchored case, depending on km_layout,

- if "by_trial", 2 by 1 plot, first all KM curves (incl. weighted) in IPD trial, and then KM curves in AgD trial, with risk set table.
- if "by_arm", 2 by 1 plot, first KM curves of trt_agd and trt_ipd (with and without weights), and then KM curves of trt_common in AgD trial and IPD trial (with and without weights). Risk set table is appended.
- if "all", 2 by 2 plot, all plots in "by_trial" and "by_arm" without risk set table appended.

Examples

```
# unanchored example using kmplot
data(weighted_sat)
data(adtte_sat)
data(pseudo_ipd_sat)

kmplot(
    weights_object = weighted_sat,
    tte_ipd = adtte_sat,
    tte_pseudo_ipd = pseudo_ipd_sat,
    trt_var_ipd = "ARM",
    trt_var_agd = "ARM",
    endpoint_name = "Overall Survival",
    trt_ipd = "A",
    trt_agd = "B",
    trt_common = NULL,
```

```
km_conf_type = "log-log",
 time_scale = "month",
 time\_grid = seq(0, 20, by = 2),
 use_colors = NULL,
 use_line_types = NULL,
 use\_pch\_cex = 0.65,
 use\_pch\_alpha = 100
# anchored example using kmplot
data(weighted_twt)
data(adtte_twt)
data(pseudo_ipd_twt)
# plot by trial
kmplot(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "by_trial",
 time_scale = "month",
 time_grid = seq(0, 20, by = 2),
 use_colors = NULL,
 use_line_types = NULL,
 use\_pch\_cex = 0.65,
 use\_pch\_alpha = 100
# plot by arm
kmplot(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B"
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "by_arm",
 time_scale = "month",
 time\_grid = seq(0, 20, by = 2),
 use_colors = NULL,
 use_line_types = NULL,
 use_pch_cex = 0.65,
 use_pch_alpha = 100
```

```
)
# plot all
kmplot(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "all",
 time_scale = "month"
 time\_grid = seq(0, 20, by = 2),
 use_colors = NULL,
 use_line_types = NULL,
 use_pch_cex = 0.65,
 use_pch_alpha = 100
)
```

kmplot2

Kaplan-Meier (KM) plot function for anchored and unanchored cases using ggplot

Description

This is wrapper function of basic_kmplot2. The argument setting is similar to maic_anchored and maic_unanchored, and it is used in those two functions.

Usage

```
kmplot2(
  weights_object,
  tte_ipd,
  tte_pseudo_ipd,
  trt_ipd,
  trt_agd,
  trt_common = NULL,
  normalize_weights = FALSE,
  trt_var_ipd = "ARM",
  trt_var_agd = "ARM",
  km_conf_type = "log-log",
  km_layout = c("all", "by_trial", "by_arm"),
  time_scale,
  ...
)
```

Arguments

weights_object	an object returned by estimate_weight
tte_ipd	a data frame of individual patient data (IPD) of internal trial, contain at least "USUBJID", "EVENT", "TIME" columns and a column indicating treatment assignment
tte_pseudo_ipd	a data frame of pseudo IPD by digitized KM curves of external trial (for time-to-event endpoint), contain at least "EVENT", "TIME"
trt_ipd	a string, name of the interested investigation arm in internal trial dat_igd (real IPD)
trt_agd	a string, name of the interested investigation arm in external trial dat_pseudo (pseudo IPD)
trt_common	a string, name of the common comparator in internal and external trial, by default is NULL, indicating unanchored case
normalize_weigh	nts
	logical, default is FALSE. If TRUE, scaled_weights (normalized weights) in weights_object\$data will be used.
trt_var_ipd	a string, column name in tte_ipd that contains the treatment assignment
trt_var_agd	a string, column name in tte_pseudo_ipd that contains the treatment assignment
km_conf_type	a string, pass to conf. type of survfit
km_layout	a string, only applicable for unanchored case (trt_common = NULL), indicated the desired layout of output KM curve.
time_scale	a string, time unit of median survival time, taking a value of 'years', 'months', weeks' or 'days'
	other arguments in basic_kmplot2

Value

In unanchored case, a KM plot with risk set table. In anchored case, depending on km_layout,

- if "by_trial", 2 by 1 plot, first all KM curves (incl. weighted) in IPD trial, and then KM curves in AgD trial, with risk set table.
- if "by_arm", 2 by 1 plot, first KM curves of trt_agd and trt_ipd (with and without weights), and then KM curves of trt_common in AgD trial and IPD trial (with and without weights). Risk set table is appended.
- if "all", 2 by 2 plot, all plots in "by_trial" and "by_arm" without risk set table appended.

Examples

```
# unanchored example using kmplot2
data(weighted_sat)
data(adtte_sat)
data(pseudo_ipd_sat)
kmplot2(
```

```
weights_object = weighted_sat,
 tte_ipd = adtte_sat,
 tte_pseudo_ipd = pseudo_ipd_sat,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = NULL,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 time_scale = "month",
 break_x_by = 2,
 xlim = c(0, 20)
# anchored example using kmplot2
data(weighted_twt)
data(adtte_twt)
data(pseudo_ipd_twt)
# plot by trial
kmplot2(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "by_trial",
 time_scale = "month",
 break_x_by = 2
# plot by arm
kmplot2(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "by_arm",
 time_scale = "month",
 break_x_by = 2
)
```

```
# plot all
kmplot2(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_name = "Overall Survival",
 km_conf_type = "log-log",
 km_layout = "all",
 time_scale = "month",
 break_x_by = 2,
 xlim = c(0, 20),
 show\_risk\_set = FALSE
)
```

maic_anchored

Anchored MAIC for binary and time-to-event endpoint

Description

This is a wrapper function to provide adjusted effect estimates and relevant statistics in anchored case (i.e. there is a common comparator arm in the internal and external trial).

Usage

```
maic_anchored(
 weights_object,
  ipd,
  pseudo_ipd,
  trt_ipd,
  trt_agd,
  trt_common,
  trt_var_ipd = "ARM",
  trt_var_agd = "ARM",
  normalize_weights = FALSE,
  endpoint_type = "tte",
  endpoint_name = "Time to Event Endpoint",
  eff_measure = c("HR", "OR", "RR", "RD"),
  boot_ci_type = c("norm", "basic", "stud", "perc", "bca"),
  time_scale = "months",
  km_conf_type = "log-log",
  binary_robust_cov_type = "HC3"
)
```

Arguments

weights_object	an object returned by estimate_weight
ipd	a data frame that meet format requirements in 'Details', individual patient data (IPD) of internal trial
pseudo_ipd	a data frame, pseudo IPD from digitized KM curve of external trial (for time-to-event endpoint) or from contingency table (for binary endpoint)
trt_ipd	a string, name of the interested investigation arm in internal trial ipd (internal IPD)
trt_agd	a string, name of the interested investigation arm in external trial pseudo_ipd (pseudo IPD)
trt_common	a string, name of the common comparator in internal and external trial
trt_var_ipd	a string, column name in ipd that contains the treatment assignment
trt_var_agd	a string, column name in ipd that contains the treatment assignment
normalize_weigh	
	logical, default is FALSE. If TRUE, scaled_weights (normalized weights) in weights_object\$data will be used.
<pre>endpoint_type</pre>	a string, one out of the following "binary", "tte" (time to event)
endpoint_name	a string, name of time to event endpoint, to be show in the last line of title
eff_measure	a string, "RD" (risk difference), "OR" (odds ratio), "RR" (relative risk) for a binary endpoint; "HR" for a time-to-event endpoint. By default is NULL, "OR" is used for binary case, otherwise "HR" is used.
boot_ci_type	a string, one of c("norm", "basic", "stud", "perc", "bca") to select the type of bootstrap confidence interval. See boot::boot.ci for more details.
time_scale	a string, time unit of median survival time, taking a value of 'years', 'months', 'weeks' or 'days'. NOTE: it is assumed that values in TIME column of ipd and pseudo_ipd is in the unit of days
<pre>km_conf_type binary_robust_c</pre>	a string, pass to conf.type of survfit cov_type
	a string to pass to argument type of sandwich::vcovHC, see possible options in the documentation of that function. Default is "HC3"

Details

It is required that input ipd and pseudo_ipd to have the following columns. This function is not sensitive to upper or lower case of letters in column names.

- USUBJID character, unique subject ID
- ARM character or factor, treatment indicator, column name does not have to be 'ARM'. User specify in trt_var_ipd and trt_var_agd

For time-to-event analysis, the follow columns are required:

- EVENT numeric, 1 for censored/death, 0 otherwise
- TIME numeric column, observation time of the EVENT; unit in days

For binary outcomes:

• RESPONSE - numeric, 1 for event occurred, 0 otherwise

Value

A list, contains 'descriptive' and 'inferential'

Examples

```
# Anchored example using maic_anchored for time-to-event data
data(weighted_twt)
data(adtte_twt)
data(pseudo_ipd_twt)
result_tte <- maic_anchored(</pre>
 weights_object = weighted_twt,
 ipd = adtte_twt,
 pseudo_ipd = pseudo_ipd_twt,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 endpoint_name = "Overall Survival",
 endpoint_type = "tte",
 eff_measure = "HR",
 time_scale = "month",
 km_conf_type = "log-log",
)
result_tte$descriptive$summary
result_tte$inferential$summary
# Anchored example using maic_anchored for binary outcome
data(weighted_twt)
data(adrs_twt)
# Reported summary data
pseudo_adrs <- get_pseudo_ipd_binary(</pre>
 binary_agd = data.frame(
   ARM = c("B", "C", "B", "C"),
   RESPONSE = c("YES", "YES", "NO", "NO"),
   COUNT = c(280, 120, 200, 200)
 ),
 format = "stacked"
)
# inferential result
result_binary <- maic_anchored(</pre>
 weights_object = weighted_twt,
 ipd = adrs_twt,
 pseudo_ipd = pseudo_adrs,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 endpoint_name = "Binary Event",
```

```
endpoint_type = "binary",
  eff_measure = "OR"
)

result_binary$descriptive$summary
result_binary$inferential$summary
```

maic_unanchored

Unanchored MAIC for binary and time-to-event endpoint

Description

This is a wrapper function to provide adjusted effect estimates and relevant statistics in unanchored case (i.e. there is no common comparator arm in the internal and external trial).

Usage

```
maic_unanchored(
  weights_object,
  ipd,
  pseudo_ipd,
  trt_ipd,
  trt_agd,
  trt_var_ipd = "ARM",
  trt_var_agd = "ARM",
  normalize_weights = FALSE,
  endpoint_type = "tte",
  endpoint_name = "Time to Event Endpoint",
  eff_measure = c("HR", "OR", "RR", "RD"),
  boot_ci_type = c("norm", "basic", "stud", "perc", "bca"),
  time_scale = "months",
  km_conf_type = "log-log",
  binary_robust_cov_type = "HC3"
)
```

Arguments

weights_object	an object returned by estimate_weight
ipd	a data frame that meet format requirements in 'Details', individual patient data (IPD) of internal trial
pseudo_ipd	a data frame, pseudo IPD from digitized KM curve of external trial (for time-to-event endpoint) or from contingency table (for binary endpoint)
trt_ipd	a string, name of the interested investigation arm in internal trial dat_igd (real IPD)
trt_agd	a string, name of the interested investigation arm in external trial pseudo_ipd (pseudo IPD)

a string, column name in ipd that contains the treatment assignment trt_var_ipd trt_var_agd a string, column name in ipd that contains the treatment assignment normalize_weights logical, default is FALSE. If TRUE, scaled_weights (normalized weights) in weights_object\$data will be used. a string, one out of the following "binary", "tte" (time to event) endpoint_type endpoint_name a string, name of time to event endpoint, to be show in the last line of title a string, "RD" (risk difference), "OR" (odds ratio), "RR" (relative risk) for a eff_measure binary endpoint; "HR" for a time-to-event endpoint. By default is NULL, "OR" is used for binary case, otherwise "HR" is used. a string, one of c("norm", "basic", "stud", "perc", "bca") to select the boot_ci_type type of bootstrap confidence interval. See boot::boot.ci for more details. time_scale a string, time unit of median survival time, taking a value of 'years', 'months', 'weeks' or 'days'. NOTE: it is assumed that values in TIME column of ipd and pseudo_ipd is in the unit of days km_conf_type a string, pass to conf. type of survfit binary_robust_cov_type a string to pass to argument type of sandwich::vcovHC, see possible options in the documentation of that function. Default is "HC3"

Details

For time-to-event analysis, it is required that input ipd and pseudo_ipd to have the following columns. This function is not sensitive to upper or lower case of letters in column names.

- USUBJID character, unique subject ID
- ARM character or factor, treatment indicator, column name does not have to be 'ARM'. User specify in trt_var_ipd and trt_var_agd
- EVENT numeric, 1 for censored/death, 0 for otherwise
- TIME numeric column, observation time of the EVENT; unit in days

Value

A list, contains 'descriptive' and 'inferential'

Examples

```
#
# unanchored example using maic_unanchored for time-to-event data
#
data(centered_ipd_sat)
data(adtte_sat)
data(pseudo_ipd_sat)
#### derive weights
weighted_data <- estimate_weights(
   data = centered_ipd_sat,</pre>
```

```
centered_colnames = grep("_CENTERED$", names(centered_ipd_sat)),
 start_val = 0,
 method = "BFGS"
)
weighted_data2 <- estimate_weights(</pre>
 data = centered_ipd_sat,
 centered_colnames = grep("_CENTERED$", names(centered_ipd_sat)),
 start_val = 0,
 method = "BFGS",
 n_boot_iteration = 100,
 set\_seed\_boot = 1234
)
# inferential result
result <- maic_unanchored(</pre>
 weights_object = weighted_data,
 ipd = adtte_sat,
 pseudo_ipd = pseudo_ipd_sat,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B",
 endpoint_name = "Overall Survival",
 endpoint_type = "tte",
 eff_measure = "HR",
 time_scale = "month";
 km_conf_type = "log-log"
)
result$descriptive$summary
result \$ inferential \$ summary
result_boot <- maic_unanchored(</pre>
 weights_object = weighted_data2,
 ipd = adtte_sat,
 pseudo_ipd = pseudo_ipd_sat,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B"
 endpoint_name = "Overall Survival",
 endpoint_type = "tte",
 eff_measure = "HR",
 time_scale = "month"
 km_conf_type = "log-log"
)
result$descriptive$summary
result$inferential$summary
# unanchored example using maic_unanchored for binary outcome
#
data(centered_ipd_sat)
```

```
data(adrs_sat)
centered_ipd_sat
centered_colnames <- grep("_CENTERED$", colnames(centered_ipd_sat), value = TRUE)</pre>
weighted_data <- estimate_weights(data = centered_ipd_sat, centered_colnames = centered_colnames)</pre>
weighted_data2 <- estimate_weights(</pre>
 data = centered_ipd_sat, centered_colnames = centered_colnames,
 n_boot_iteration = 100
)
# get dummy binary IPD
pseudo_adrs <- get_pseudo_ipd_binary(</pre>
 binary_agd = data.frame(
   ARM = rep("B", 2),
   RESPONSE = c("YES", "NO"),
   COUNT = c(280, 120)
 ),
 format = "stacked"
)
# unanchored binary MAIC, with CI based on sandwich estimator
maic_unanchored(
 weights_object = weighted_data,
 ipd = adrs_sat,
 pseudo_ipd = pseudo_adrs,
 trt_ipd = "A",
 trt_agd = "B",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_type = "binary",
 endpoint_name = "Binary Endpoint",
 eff_measure = "RR",
 # binary specific args
 binary_robust_cov_type = "HC3"
)
# unanchored binary MAIC, with bootstrapped CI
maic_unanchored(
 weights_object = weighted_data2,
 ipd = adrs_sat,
 pseudo_ipd = pseudo_adrs,
 trt_ipd = "A",
 trt_agd = "B",
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 endpoint_type = "binary",
 endpoint_name = "Binary Endpoint",
 eff_measure = "RR",
 # binary specific args
 binary_robust_cov_type = "HC3"
)
#-----
```

medSurv_makeup 35

medSurv_makeup	Helper	function	to	retrieve	median	survival	time	from	a
	survival::survfit object								

Description

Extract and display median survival time with confidence interval

Usage

```
medSurv_makeup(km_fit, legend = "before matching", time_scale)
```

Arguments

km_fit returned object from survival::survfit

legend a character string, name used in 'type' column in returned data frame

time_scale a character string, 'years', 'months', 'weeks' or 'days', time unit of median

survival time

Value

a data frame with a index column 'type', median survival time and confidence interval

Examples

```
data(adtte_sat)
data(pseudo_ipd_sat)
library(survival)
combined_data <- rbind(adtte_sat[, c("TIME", "EVENT", "ARM")], pseudo_ipd_sat)
kmobj <- survfit(Surv(TIME, EVENT) ~ ARM, combined_data, conf.type = "log-log")

# Derive median survival time
medSurv <- medSurv_makeup(kmobj, legend = "before matching", time_scale = "day")
medSurv</pre>
```

ph_diagplot Diagnosis plot of proportional hazard assumption for anchored and unanchored

Description

Diagnosis plot of proportional hazard assumption for anchored and unanchored

ph_diagplot

Usage

```
ph_diagplot(
   weights_object,
   tte_ipd,
   tte_pseudo_ipd,
   trt_ipd,
   trt_agd,
   trt_common = NULL,
   trt_var_ipd = "ARM",
   trt_var_agd = "ARM",
   endpoint_name = "Time to Event Endpoint",
   time_scale,
   zph_transform = "log",
   zph_log_hazard = TRUE
)
```

Arguments

weights_object	an object returned by estimate_weight
tte_ipd	a data frame of individual patient data (IPD) of internal trial, contain at least "USUBJID", "EVENT", "TIME" columns and a column indicating treatment assignment
tte_pseudo_ipd	a data frame of pseudo IPD by digitized KM curves of external trial (for time-to-event endpoint), contain at least "EVENT", "TIME"
trt_ipd	a string, name of the interested investigation arm in internal trial tte_ipd (real IPD)
trt_agd	a string, name of the interested investigation arm in external trial tte_pseudo_ipd (pseudo IPD)
trt_common	a string, name of the common comparator in internal and external trial, by default is NULL, indicating unanchored case
trt_var_ipd	a string, column name in tte_ipd that contains the treatment assignment
trt_var_agd	a string, column name in tte_pseudo_ipd that contains the treatment assignment
endpoint_name	a string, name of time to event endpoint, to be show in the last line of title
time_scale	a string, time unit of median survival time, taking a value of 'years', 'months', 'weeks' or 'days'
zph_transform	a string, pass to survival::cox.zph, default is "log"
zph_log_hazard	a logical, if TRUE (default), y axis of the time dependent hazard function is log-hazard, otherwise, hazard.

Value

a 3 by 2 plot, include log-cumulative hazard plot, time dependent hazard function and unscaled Schoenfeld residual plot, before and after matching

ph_diagplot_lch 37

Examples

```
# unanchored example using ph_diagplot
data(weighted_sat)
data(adtte_sat)
data(pseudo_ipd_sat)
ph_diagplot(
 weights_object = weighted_sat,
 tte_ipd = adtte_sat,
 tte_pseudo_ipd = pseudo_ipd_sat,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = NULL,
 endpoint_name = "Overall Survival",
 time_scale = "week",
 zph_transform = "log"
 zph_log_hazard = TRUE
)
# anchored example using ph_diagplot
data(weighted_twt)
data(adtte_twt)
data(pseudo_ipd_twt)
ph_diagplot(
 weights_object = weighted_twt,
 tte_ipd = adtte_twt,
 tte_pseudo_ipd = pseudo_ipd_twt,
 trt_var_ipd = "ARM",
 trt_var_agd = "ARM",
 trt_ipd = "A",
 trt_agd = "B",
 trt_common = "C",
 endpoint_name = "Overall Survival",
 time_scale = "week",
 zph_transform = "log",
 zph_log_hazard = TRUE
)
```

ph_diagplot_lch

PH Diagnosis Plot of Log Cumulative Hazard Rate versus time or logtime

Description

This plot is also known as log negative log survival rate.

38 ph_diagplot_lch

Usage

```
ph_diagplot_lch(
   km_fit,
   time_scale,
   log_time = TRUE,
   endpoint_name = "",
   subtitle = "",
   exclude_censor = TRUE)
```

Arguments

Details

a diagnosis plot for proportional hazard assumption, versus log-time (default) or time

Value

a plot of log cumulative hazard rate

```
library(survival)
data(adtte_sat)
data(pseudo_ipd_sat)
combined_data <- rbind(adtte_sat[, c("TIME", "EVENT", "ARM")], pseudo_ipd_sat)
kmobj <- survfit(Surv(TIME, EVENT) ~ ARM, combined_data, conf.type = "log-log")
ph_diagplot_lch(kmobj,
    time_scale = "month", log_time = TRUE,
    endpoint_name = "OS", subtitle = "(Before Matching)"
)</pre>
```

```
ph_diagplot_schoenfeld
```

PH Diagnosis Plot of Schoenfeld residuals for a Cox model fit

Description

PH Diagnosis Plot of Schoenfeld residuals for a Cox model fit

Usage

```
ph_diagplot_schoenfeld(
  coxobj,
  time_scale = "months",
  log_time = TRUE,
  endpoint_name = "",
  subtitle = ""
)
```

Arguments

```
coxobj object returned from coxph

time_scale a character string, 'years', 'months', 'weeks' or 'days', time unit of median survival time

log_time logical, TRUE (default) or FALSE

endpoint_name a character string, name of the endpoint

subtitle a character string, subtitle of the plot
```

Value

a plot of Schoenfeld residuals

```
library(survival)
data(adtte_sat)
data(pseudo_ipd_sat)
combined_data <- rbind(adtte_sat[, c("TIME", "EVENT", "ARM")], pseudo_ipd_sat)
unweighted_cox <- coxph(Surv(TIME, EVENT == 1) ~ ARM, data = combined_data)
ph_diagplot_schoenfeld(unweighted_cox,
   time_scale = "month", log_time = TRUE,
   endpoint_name = "OS", subtitle = "(Before Matching)"
)</pre>
```

40 plot_weights_base

plot_weights_base

Plot MAIC weights in a histogram with key statistics in legend

Description

Generates a base R histogram of weights. Default is to plot either unscaled or scaled weights and not both.

Usage

```
plot_weights_base(
  weighted_data,
  bin_col,
  vline_col,
  main_title,
  scaled_weights
)
```

Arguments

```
weighted_data object returned after calculating weights using estimate_weights
bin_col a string, color for the bins of histogram

vline_col a string, color for the vertical line in the histogram

main_title title of the plot

scaled_weights an indicator for using scaled weights instead of regular weights
```

Value

a plot of unscaled or scaled weights

```
plot_weights_base(weighted_sat,
  bin_col = "#6ECEB2",
  vline_col = "#688CE8",
  main_title = c("Scaled Individual Weights", "Unscaled Individual Weights"),
  scaled_weights = TRUE
)
```

plot_weights_ggplot 41

 ${\tt plot_weights_ggplot} \qquad {\tt Plot\;MAIC\;weights\;in\;a\;histogram\;with\;key\;statistics\;in\;legend\;using} \\ {\tt ggplot2}$

Description

Generates a ggplot histogram of weights. Default is to plot both unscaled and scaled weights on a same graph.

Usage

```
plot_weights_ggplot(weighted_data, bin_col, vline_col, main_title, bins)
```

Arguments

```
weighted_data object returned after calculating weights using estimate_weights
bin_col a string, color for the bins of histogram

vline_col a string, color for the vertical line in the histogram

main_title Name of scaled weights plot and unscaled weights plot, respectively.
bins number of bin parameter to use
```

Value

a plot of unscaled and scaled weights

```
if (requireNamespace("ggplot2")) {
  plot_weights_ggplot(weighted_sat,
    bin_col = "#6ECEB2",
    vline_col = "#688CE8",
    main_title = c("Scaled Individual Weights", "Unscaled Individual Weights"),
    bins = 50
  )
}
```

42 pseudo_ipd_sat

process_agd

Pre-process aggregate data

Description

This function checks the format of the aggregate data. Data is required to have three columns: STUDY, ARM, and N. Column names that do not have legal suffixes (MEAN, MEDIAN, SD, COUNT, or PROP) are dropped. If a variable is a count variable, it is converted to proportions by dividing the sample size (N). Note, when the count is specified, proportion is always calculated based on the count, that is, specified proportion will be ignored if applicable. If the aggregated data comes from multiple sources (i.e. different analysis population) and sample size differs for each variable, one option is to specify proportion directly instead of count by using suffix _PROP.

Usage

```
process_agd(raw_agd)
```

Arguments

raw_agd

raw aggregate data should contain STUDY, ARM, and N. Variable names should be followed by legal suffixes (i.e. MEAN, MEDIAN, SD, COUNT, or PROP).

Value

pre-processed aggregate level data

Examples

```
data(agd)
agd <- process_agd(agd)</pre>
```

pseudo_ipd_sat

Pseudo individual patient survival data from published study

Description

Pseudo individual patient survival data from published study

Usage

```
pseudo_ipd_sat
```

pseudo_ipd_twt 43

Format

A data frame with 300 rows and 3 columns:

TIME Survival time in days.

EVENT Event indicator 0/1.

ARM Assigned treatment arm, "B".

See Also

Other unanchored datasets: adrs_sat, adsl_sat, adtte_sat, agd, centered_ipd_sat, weighted_sat

pseudo_ipd_twt

Pseudo individual patient survival data from published two arm study

Description

Pseudo individual patient survival data from published two arm study

Usage

```
pseudo_ipd_twt
```

Format

A data frame with 800 rows and 3 columns:

TIME Survival time in days.

EVENT Event indicator 0/1.

ARM Assigned treatment arm, "B", "C".

See Also

Other anchored datasets: adrs_twt, adsl_twt, adtte_twt, agd, centered_ipd_twt, weighted_twt

set_time_conversion

set_time_conversion Get and Set Time Conversion Factors

Description

Get and Set Time Conversion Factors

Usage

```
set_time_conversion(
  default = "days",
  days = 1,
  weeks = 7,
  months = 365.25/12,
  years = 365.25
)

get_time_conversion(factor = c("days", "weeks", "months", "years"))
```

Arguments

default	The default time scale, commonly whichever has factor = 1
days	Factor to divide data time units to get time in days
weeks	Factor to divide data time units to get time in weeks
months	Factor to divide data time units to get time in months
years	Factor to divide data time units to get time in years
factor	Time factor to get.

Value

No value returned. Conversion factors are stored internally and used within functions.

```
# The default time scale is days:
set_time_conversion(default = "days", days = 1, weeks = 7, months = 365.25 / 12, years = 365.25)

# Set the default time scale to years
set_time_conversion(
  default = "years",
  days = 1 / 365.25,
  weeks = 1 / 52.17857,
  months = 1 / 12,
  years = 1
)

# Get time scale factors:
```

survfit_makeup 45

```
get_time_conversion("years")
get_time_conversion("weeks")
```

survfit_makeup

Helper function to select set of variables used for Kaplan-Meier plot

Description

Helper function to select set of variables used for Kaplan-Meier plot

Usage

```
survfit_makeup(km_fit, single_trt_name = "treatment")
```

Arguments

```
km_fit returned object from survival::survfit
single_trt_name
name of treatment if no strata are specified in km_fit
```

Value

a list of data frames of variables from survival::survfit(). Data frame is divided by treatment.

Examples

```
library(survival)
data(adtte_sat)
data(pseudo_ipd_sat)
combined_data <- rbind(adtte_sat[, c("TIME", "EVENT", "ARM")], pseudo_ipd_sat)
kmobj <- survfit(Surv(TIME, EVENT) ~ ARM, combined_data, conf.type = "log-log")
survfit_makeup(kmobj)</pre>
```

weighted_sat

Weighted object for single arm trial data

Description

Weighted object for single arm trial data

Usage

```
weighted_sat
```

46 weighted_twt

Format

```
A maicplus_estimate_weights object created by estimate_weights() containing

data patient level data with weights

centered_colnames Columns used in MAIC

nr_missing Number of observations with missing data

ess Expected sample size

opt Information from optim from weight calculation

boot Parameters and bootstrap sample weights, NULL in this object
```

See Also

Other unanchored datasets: adrs_sat, adsl_sat, adtte_sat, agd, centered_ipd_sat, pseudo_ipd_sat

 $weighted_twt$

Weighted object for two arm trial data

Description

The weighted patient data for a two arm trial generated from the centered patient data (centered_ipd_twt). It has weights calculated for 100 bootstrap samples.

The object is generated using the following code:

```
estimate_weights(
  data = centered_ipd_twt,
  centered_colnames = c(
    "AGE_CENTERED",
    "AGE_MEDIAN_CENTERED",
    "SEX_MALE_CENTERED",
    "ECOG0_CENTERED",
    "SMOKE_CENTERED"
    ),
    n_boot_iteration = 100
)
```

Usage

```
weighted_twt
```

weighted_twt 47

Format

A maicplus_estimate_weights object created by estimate_weights() containing
data patient level data with weights
centered_colnames Columns used in MAIC
nr_missing Number of observations with missing data
ess Expected sample size
opt Information from optim from weight calculation
boot Parameters and bootstrap sample weights for the 100 samples

See Also

 $Other \ anchored \ datasets: \ adrs_twt, \ adsl_twt, \ adtte_twt, \ agd, \ centered_ipd_twt, \ pseudo_ipd_twt$

Index

* anchored datasets	basic_kmplot2, 10
adrs_twt, 3	boot::boot.ci, 29, 32
adsl_twt, 5	bucher, 11
adtte_twt, 6	
agd, 7	center_ipd, 14
centered_ipd_twt, 13	<pre>center_ipd(), 7</pre>
pseudo_ipd_twt, 43	centered_ipd_sat, 3, 4, 6, 7, 12, 43, 46
weighted_twt, 46	centered_ipd_twt, 4-7, 13, 43, 46, 47
* dataset	check_weights, 15, 16
adrs_sat, 3	coxph, <i>39</i>
adrs_twt, 3	1 15 16
adsl_sat,4	dummize_ipd, <i>15</i> , 16
adsl_twt, 5	
adtte_sat, 5	estimate_weights, 16, 17, 18, 40, 41
adtte_twt, 6	estimate_weights(), 46, 47
agd, 7	find_SE_from_CI, 19
centered_ipd_sat, 12	1111d_SE_110111_C1, 19
centered_ipd_twt, 13	<pre>get_pseudo_ipd_binary, 20</pre>
pseudo_ipd_sat, 42	get_time_as, 21
pseudo_ipd_twt, 43	get_time_conversion
weighted_sat, 45	(set_time_conversion), 44
weighted_twt, 46	glm_makeup, 21
* unanchored datasets	gim_makeup, 21
adrs_sat, 3	kmplot, 22
adsl_sat, 4	kmplot2, 25
adtte_sat, 5	Kiip1002, 25
agd, 7	maic_anchored, 28
centered_ipd_sat, 12	maic_unanchored, 31
pseudo_ipd_sat, 42	matrixStats::weightedMedian, 15
weighted_sat, 45	medSurv_makeup, 35
weighted_sat, 45	meddar v_marcap, 33
adrs_sat, 3, 4, 6, 7, 13, 43, 46	ph_diagplot, 35
adrs_twt, 3, 5–7, 14, 43, 47	ph_diagplot_lch, 37
adsl_sat, 3, 4, 6, 7, 13, 43, 46	ph_diagplot_schoenfeld, 39
adsl_twt, 4, 5, 6, 7, 14, 43, 47	plot.maicplus_estimate_weights
adtte_sat, 3, 4, 5, 7, 13, 43, 46	(estimate_weights), 17
adtte_twt, 4, 5, 6, 7, 14, 43, 47	plot_weights_base, 40
agd, 3–6, 7, 13, 14, 43, 46, 47	plot_weights_ggplot, 41
ugu, 5 0, 1, 15, 17, 75, 70, 71	print.data.frame, 16
basic_kmplot, 8	print.default, <i>16</i>
	p

INDEX 49