## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE , comment = "#>" , warning = FALSE , message = FALSE ) ## ----------------------------------------------------------------------------- library(lightgbm) ## ----include=FALSE------------------------------------------------------------ # limit number of threads used, to be respectful of CRAN's resources when it checks this vignette data.table::setDTthreads(1L) setLGBMthreads(2L) ## ----------------------------------------------------------------------------- data(bank, package = "lightgbm") bank[1L:5L, c("y", "age", "balance")] # Distribution of the response table(bank$y) ## ----------------------------------------------------------------------------- # Numeric response and feature matrix y <- as.numeric(bank$y == "yes") X <- data.matrix(bank[, c("age", "balance")]) # Train fit <- lightgbm( data = X , label = y , params = list( num_leaves = 4L , learning_rate = 1.0 , objective = "binary" ) , nrounds = 10L , verbose = -1L ) # Result summary(predict(fit, X)) ## ----------------------------------------------------------------------------- # Data interface dtrain <- lgb.Dataset(X, label = y) # Parameters params <- list( objective = "binary" , num_leaves = 4L , learning_rate = 1.0 ) # Train fit <- lgb.train( params , data = dtrain , nrounds = 10L , verbose = -1L ) ## ----echo = FALSE, results = "hide"------------------------------------------- # Cleanup if (file.exists("lightgbm.model")) { file.remove("lightgbm.model") }