
gggenomes - a multi-track ggplot2 extension for comparative
genomics

Thomas Hackl

2/23/2021

gggenomes is an extension to ggplot2 tailored to the visualization of genomics data. It provides the same
flexible approach for building up plots layer by layer, but supports the simultaneous use of multiple datasets
within one plot, thereby intuitively mirroring the relational nature of most ’omics data products.

A ggplot2 is build around a single, tidy dataset with arbitrary variables and observations. x/y-plot
coordinates for things to draw are computed on-the-fly using aesthetic mappings that link variables to
coordinates. This setup is highly flexible and makes ggplot extremely powerful.

A gggenomes plot is build around multiple data tracks that each contain a single dataset. These
datasets are linked via pre-computed global layout that determines x/y-plot coordinates prior to the actual
plot construction. The reason for this more rigid setup is that genomics data are relational and there is just
no good way to represent all the necessary information in a single tidy table.

gggenomes knows three types of tracks:

1. seqs: sequences such as contigs or chromosomes
2. feats: annotations of locations on sequences, such genes, SNPs, . . .
3. links: annotations that connect two locations between two different sequences

There are also genes tracks, those, however are just glorified feature tracks, that sometimes get special
treatment for easier usage. Internally, genes are features.
library(gggenomes)

a minimal seq track
s0 <- tibble::tibble(

seq_id = c("a", "b"),
length = c(600, 550)

)

a minimal gene track
g0 <- tibble::tibble(

seq_id = c("a", "a", "b"),
start = c(50, 350, 80),
end = c(250, 500, 450)

)

a simple link track
l0 <- tibble::tibble(

seq_id = c("a", "a"),
start = c(50, 400),
end = c(250, 480),
seq_id2 = c("b", "b"),

1

start2 = c(80, 350),
end2 = c(300, 430)

)

p <- gggenomes(genes=g0, seqs=s0, links=l0)
p +

geom_seq() + # draw contig/chromosome lines
geom_seq_label() + # label each sequence
geom_gene() + # draw genes as arrow
geom_link() # draw some connections between syntenic regions

a

b

0 200 400 600

Geoms and tracks
In a regular ggplot2, geoms read from one central dataframe. For gggenomes, there are several tracks to read
data from. To specify which tracks to use in which geoms, gggenomes provides accessory functions that work
inside geom calls when provided to the data argument (or outside if prefixed with pull_). The names of
these functions mirror the track types they work on and should be quite intuitive:

• geom_seq() : data=seqs() for the seq track
• geom_feat() : data=feats() for the first feat track not named “genes”
• geom_link() : data=links() for the first link track
• geom_gene() : data=genes() for the first feat track with some extras for geneish features (see Inside

gggenomes tracks for details)

gggenomes supports an arbitrary number of feature and link tracks within the same plot. Extra tracks
can be added by either providing a list of tracks to gggenomes(), or by using the dedicated add_feats() /
add_links() functions. The extra tracks can then be used via the aforementioned accessory function inside
geom calls using names or positional arguments. Like most gggenomes functions the track accessory functions
use tidyverse-style non-standard evaluation, which means you can refer to tracks either by unquoted names
or by numeric position.
Let's use some of the bundled example data here
data(package="gggenomes")

p <- gggenomes(
genes=emale_genes, # a gene track, added as first feat track
seqs=emale_seqs, # a seq track
feats=list(emale_tirs, emale_ngaros), # multiple feat tracks
links=emale_ava # a link track

)

inspect the tracks of the plot
p %>% track_info

A tibble: 5 x 4
Groups: type [3]
id type i n
<chr> <chr> <int> <int>

2

1 seqs seqs 1 6
2 genes feats 1 143
3 emale_tirs feats 2 12
4 emale_ngaros feats 3 3
5 links links 1 38
plot all tracks
p +
geom_link() + # the first link track

geom_gene() + # the first feat track filtered for geneish feats: CDS, mRNA, ..
geom_feat() + # the first feat track not named "genes", here emale_tirs
use an extra feat track by name
geom_feat(data=feats(emale_ngaros), color="plum3")

0 10k 20k

One layout to rule them all
gggenomes multi-track setup has both pros and cons. For example, communicating information between
tracks during plot construction is not supported by ggplot2, because - well - it’s been designed to work
with a single table. gggenomes works around that by pre-computing a layout, and adding coordinates
(y,x,xend) to each dataframe prior to the actual plot construction. This has some implications for the usage
of gggenomes:

1. Dataframes for tracks have required variables, e.g. seq_id,start,end for features. These
predefined variables are used during import to compute x/y coordinates (see Inside gggenomes tracks
for more details).

2. gggenomes geoms can often be used without explicit aes() mappings - a rather convenient
upside of the multi-track setup. This works because we always know the names of the plot variables
ahead of time: they originate from the pre-computed layout, and we can use that information to set
sensible default aesthetic mappings for most cases.

3

inspect seqs track with layout vars - note y,x,xend
p %>% pull_seqs

A tibble: 6 x 12
Groups: bin_id [6]
y x xend strand seq_id bin_id length bin_offset start end file_id
<int> <dbl> <dbl> <chr> <chr> <chr> <int> <dbl> <dbl> <int> <chr>
1 6 0 20152 + RCC970_~ RCC97~ 20152 0 1 20152 emales
2 5 0 20642 + E4-10_0~ E4-10~ 20642 0 1 20642 emales
3 4 0 21311 + Cflag_0~ Cflag~ 21311 0 1 21311 emales
4 3 0 26808 + BVI_069 BVI_0~ 26808 0 1 26808 emales
5 2 0 26820 + BVI_008A BVI_0~ 26820 0 1 26820 emales
6 1 0 26856 + E4-10_1~ E4-10~ 26856 0 1 26856 emales
i 1 more variable: seq_desc <chr>
inspect genes track with layout vars - note y,x,xend, but also other
columns such as strand, feat_id or type, that are added automatically
p %>% pull_genes

A tibble: 143 x 22
y x xend bin_id seq_id start end file_id strand type feat_id
<int> <dbl> <dbl> <chr> <chr> <int> <int> <chr> <chr> <chr> <chr>
1 2 567 822 BVI_008A BVI_008A 568 822 emales + CDS BVI_008~
2 2 2668 1039 BVI_008A BVI_008A 1040 2668 emales - CDS BVI_008~
3 2 3028 2767 BVI_008A BVI_008A 2768 3028 emales - CDS BVI_008~
4 2 4776 3138 BVI_008A BVI_008A 3139 4776 emales - CDS BVI_008~
5 2 5370 4809 BVI_008A BVI_008A 4810 5370 emales - CDS BVI_008~
6 2 6065 5396 BVI_008A BVI_008A 5397 6065 emales - CDS BVI_008~
7 2 6683 6074 BVI_008A BVI_008A 6075 6683 emales - CDS BVI_008~
8 2 6867 6540 BVI_008A BVI_008A 6541 6867 emales - CDS BVI_008~
9 2 6954 7788 BVI_008A BVI_008A 6955 7788 emales + CDS BVI_008~
10 2 7997 9026 BVI_008A BVI_008A 7998 9026 emales + CDS BVI_008~
i 133 more rows
i 11 more variables: introns <list>, parent_ids <list>, source <chr>,
score <chr>, phase <int>, width <chr>, gc_content <chr>, name <chr>,
Note <chr>, geom_id <chr>, .marginal <lgl>

Plotting from scratch
The minimum requirement to create a gggenomes plot is a single track. It can be of any of the three types:
seqs, feats or links.

If there is no a sequence track, a sequence track is inferred from the data simply by assuming that each
sequence that a feature or link maps onto must exist, and that it must be long enough to accommodate all
its associated features and links (note the corresponding log message below).

Note also, that unless sequence information is explicitly provided, gggenomes will zoom in on only the regions
that are covered with features. That may appear odd at first, but it is a) consistent in the sense that for
inferred sequence we only know the start (x=1) anyway, and have to guess the end from the last feature,
and b) it is very convenient if we deal with real data: It usually makes no sense to plot all 5000 genes of a
bacterial genome. In most cases we will want to focus on specific regions.
some genes
g0 <- tibble::tibble(

seq_id = c("a", "a", "b"),

4

start = c(50, 350, 80),
end = c(250, 500, 450)

)

p <- gggenomes(g0)

No seqs provided, inferring seqs from feats
p +

geom_seq() + # draw contig/chromosome lines
geom_seq_label() + # label each sequence
geom_gene() # draw genes as arrow

Only saw `type=NA` in genes and will treat everything as `type="CDS"`.

a

b

0 100 200 300 400

Plotting from files
Plotting from scratch is fun, but likely not the typical use-case. Usually you will have files with data that you
want to import. gggenomes provides a bunch of read_* functions that help you do that for several common
bioinformatics file formats. Moreover, gggenomes come with a set of higher-level convenience read functions
that perfectly integrate with its track system.

What I mean by that is that instead of reading a certain file format explicitly, such as read_gff3("foo.gff"),
you can invoke the generic read_feats("foo.gff") function to read features from various file formats. File
formats are automatically recognized, so this, for example, also works read_feats("foo.bed"). And you
can read different information from the same file: read_seqs("foo.gff") will retrieve sequence information
from the gff3 file instead of gene/feature coordinates.

That said, the only real requirement for any data you want to plot is that it is in a somewhat tidy table, and
that it has some of the required variables (see below). Even if you have data that is not directly supported by
gggenomes read functions, it should be very easy to convert your data into a table that works with gggenomes.
note: ex() is just a helper to get stable paths to gggenomes example data
s0 <- read_seqs(ex("emales/emales.fna"))
g0 <- read_feats(ex("emales/emales.gff"))

gggenomes(g0, s0) +
geom_seq() + geom_gene()

0 10k 20k

5

for lazy people
gggenomes(ex("emales/emales.gff")) + geom_gene()

0 10k 20k

and really fancy: multiple remote files, all at once
gbk_phages <- c(

PSSP7 = "ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/858/745/GCF_000858745.1_ViralProj15134/GCF_000858745.1_ViralProj15134_genomic.gff.gz",
PSSP3 = "ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/904/555/GCF_000904555.1_ViralProj195517/GCF_000904555.1_ViralProj195517_genomic.gff.gz")

try(# capture unavailable web resources gracefully for CRAN https://github.com/thackl/gggenomes/issues/197
gggenomes(gbk_phages) + geom_gene() +

geom_seq_label()
)

NC_006882.2

NC_020874.1

0 10k 20k 30k 40k

Inside gggenomes tracks
As mentioned before, tracks have required columns and optional columns, which can have additional meaning
in the context of the plot.

seqs: sequences such as contigs or chromosomes

• required: seq_id,length
• recognized: bin_id,start,end,strand

feats: such as genes, SNPs, repeats, . . .

• required: seq_id,start,end
• recognized: strand,bin_id,feat_id,introns

links: connections between two locations from different sequences

• required: seq_id,seq_id2
• recognized: start,end,bin_id,start2,end2,bin_id2,strand

Sequence track - there can be only one
seq_id,length are the required variables and should be quite self-explanatory. It’s highly recommended
(and might become compulsory in the future) for seq_ids to be unique within the entire data set.

The optional column for seqs are:

6

bin_id to denote bins representing genomes or assemblies with multiple chromosomes or contigs. Sequences
from the same bin are drawn next to each other in the default layout, as opposed to sequence from different
bins which will occupy different rows. If omitted, the default is to set bin_id=seq_id, which means, every
sequence gets its own row.
seq track: one entry per sequence
s0 <- tibble::tibble(

bin_id = c("A", "A", "B"),
seq_id = c("a1","a2","b1"),
length = c(2e5, 3e5, 5e5)

)

p <- gggenomes(seqs=s0)
p +

geom_seq() + # draw contig/chromosome lines
geom_seq_label() # label each sequence

a1 a2

b1

0 100k 200k 300k 400k 500k

#geom_bin_label() # label each bin

start,end,strand in the context of a sequence denote a region or locus on that sequence. If provided,
only the part of the sequence within the locus boundaries will be shown in the plot. This also will remove
any features from the plot that do not fall within the locus. It’s likely rare to one wants to specify these
information directly, but they are important as they power manipulation functions such as focus().
zoom in on a longer sequence - note the scale on the x-axis
s0 <- tibble::tibble(

seq_id = "a1",
length = 10000,
start = 1000,
end = 3000

)
gggenomes(seqs=s0) + geom_seq() + geom_seq_label()

a1

0 500 1k 2k 2k

Feature tracks - what maps onto sequences
Again, the required variables seq_id,start,end should be self-explainatory. Note though, that features with
seq_ids not present in the seq track will be silently ignored.

Also note that gggenomes uses 1-based, inclusive ranges to denote feature start/end coordinates. It’s the
same system as used by GFF, GenBank, BLAST or SAM, for example. In contrast, BED and BAM, for
example, use 0-based, exclusive ranges. Something to keep in mind when importing data from those formats.

The optional columns for features are:

7

strand to denote the orientation of a feature relative to the sequences it maps to. The default way of
specifying the strand is with a character vector with "+/-/." coding for forward, reverse and undetermined.
Logical (TRUE/FALSE/NA) or numeric vectors (1/-1/0) are supported as well.

bin_id works as for seqs. The assignment of bin_ids to features is usually only useful, if no sequences are
provided. Otherwise, bin information is inherited from the sequences.

feat_id is a unique ID for each feature. These IDs are useful if we want to add data to a plot that pertains
to features and not sequences. For example, we can add the results of a protein blast search to the genes
the proteins derived from if by matching blast results and feature annotations using the feat_id. If not
provided, they will be automatically generated.

Special variables for complex gene models:

introns is a special column that can contain a list of numeric vectors that denote intron start and end
coordinates within a given feature. The support of introns is something I just very recently added. It’s still
experimental and some of the handling might change in future versions.
some genes
g0 <- tibble::tibble(

seq_id = c("a"),
start = c(1, 800),
end = c(500, 1200),
NOTE: introns need to be a list-column!
introns = list(c(50,200), c(50,200,250,300))

)

gggenomes(g0) +
geom_seq() + # draw contig/chromosome lines
geom_seq_label() + # label each sequence
geom_gene() # draw genes as arrow

No seqs provided, inferring seqs from feats
Only saw `type=NA` in genes and will treat everything as `type="CDS"`.

a

0 250 500 750 1k 1k

Link tracks - show me the synteny
The link track connects loci/regions on two adjacent sequences/genomes with one another. seq_id, seq_id2
are the required variables for the link track. Once again, links with seq_ids not present in the sequence (seq)
track will be silently ignored.
To correctly link specific loci/regions between sequences with one another, it is also highly recommend to
use the following optional variables: (Without the variables, start, start2,endandend2‘, links will be made
between two entire sequences/contigs and not between two specific loci/regions.)

start, start2 indicates the starting position of the loci/region that will be linked between respectively the
first sequence (seq_id) and the second sequence (seq_id2). Note that links can and will only be created
between adjacent sequences.

end, end2 similar to start and start2, but now indicates the end of the loci/region that will be linked.
Once again respectively for seq_id and seq_id2.

8

bin_id, bin_id2 works as for seqs. The assignment of bin_ids to features is usually only useful, if no
sequences are provided. Otherwise, bin information is inherited from the sequences.

strand, works as for feats. strand denotes the orientation of the link relative to each of the two sequences.
If abscent, the orientation is derived from the start and end positions.
some links
l0 <- tibble::tibble(

seq_id = c("a", "a", "a"),
start = c(200, 801, 1600),
end = c(550, 1300, 1800),
seq_id2 = c("b", "b", "b"),
start2 = c(1100, 1, 1800),
end2 = c(1450, 500, 1600)

)

corresponding sequences
s1 <- tibble::tibble(

seq_id = c("a", "b"),
length = c(2000, 2000),
start = c(1, 1),
end = c(2000, 2000)

)

gggenomes(seqs=s1, links=l0) +
geom_seq() + # draws contigs/chromosome lines
geom_seq_label() # labels each sequence

a

b

0 500 1k 2k 2k

geom_link(offset = 0.05) # draws links between contigs

9

	Geoms and tracks
	One layout to rule them all
	Plotting from scratch
	Plotting from files
	Inside gggenomes tracks
	Sequence track - there can be only one
	Feature tracks - what maps onto sequences
	Link tracks - show me the synteny

