
Package ‘gasfluxes’
August 16, 2024

Type Package

Title Greenhouse Gas Flux Calculation from Chamber Measurements

Version 0.7

Date 2024-08-16

Description Functions for greenhouse gas flux calculation from chamber
measurements.

URL https://git-dmz.thuenen.de/fuss/gasfluxes

License GPL (>= 2)

Depends R (>= 4.3.0)

Imports sfsmisc, data.table (>= 1.14.8), MASS, stats, graphics,
grDevices

Suggests testthat, knitr, rmarkdown

LazyData true

Encoding UTF-8

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.3.2

NeedsCompilation no

Author Roland Fuss [aut, cre] (<https://orcid.org/0000-0002-0274-0809>),
Roman Hueppi [ctb] (<https://orcid.org/0000-0001-8815-7835>)

Maintainer Roland Fuss <roland.fuss@thuenen.de>

Repository CRAN

Date/Publication 2024-08-16 08:50:02 UTC

Contents
agg.fluxes . 2
erfc . 3
fluxMeas . 3
gasfluxes . 4

1

https://git-dmz.thuenen.de/fuss/gasfluxes
https://orcid.org/0000-0002-0274-0809
https://orcid.org/0000-0001-8815-7835

2 agg.fluxes

HMR.fit . 6
lin.fit . 9
NDFE.fit . 10
rlin.fit . 12
selectfluxes . 13

Index 16

agg.fluxes Accumulation of fluxes

Description

Aggregate a time series of fluxes to a cummulative flux value.

Usage

agg.fluxes(fluxes, datetimes, timeunit = "hours")

Arguments

fluxes flux values

datetimes datetime values (POSIXct or POSIXlt)

timeunit the unit of time (denominator of the flux unit), supported are the explicit units
supported by difftime

Details

The function uses linear interpolation. The unit of the cumulative flux is [fluxes] * timeunit. NA
values are removed and values sorted according to time order. If less then two non-NA value pairs
are provided, NA is returned for the cumlative flux.

Value

A one-row data.frame with columns

flux the cumulative flux

from the start of the cumulation period

to the end of the cumulation period

The return value being a data.frame is useful, when the function is used for "split-apply-combine"
type operations to calculate groupwise cumulated values, e.g., using package data.table.

erfc 3

Examples

#Some random example data
datetimes <- Sys.time() + (1:20)/2*24*3600
set.seed(42)
fluxes <- rlnorm(20, 5)
agg.fluxes(fluxes, datetimes)

erfc erfc

Description

This is the complementary error function.

Usage

erfc(x)

Arguments

x a numeric vector

Value

A numeric vector, i.e., the erfc values.

fluxMeas Data from chamber N2O flux measurements.

Description

A dataset containing data from 1329 chamber N2O flux measurements.

Format

A data.table with 5300 rows and 5 variables:

• serie: ID of flux measurement
• V: Volume (normalized by area, i.e., the height in m)
• A: Area (always 1)
• time: closing time in h
• C: N2O concentration in mg N / m^3

Source

own data (anonymized by not including site and treatment information)

4 gasfluxes

gasfluxes Flux calculation

Description

A wrapper function for convenient flux calculation.

Usage

gasfluxes(
dat,
.id = "ID",
.V = "V",
.A = "A",
.times = "time",
.C = "C",
methods = c("linear", "robust linear", "HMR", "NDFE"),
k_HMR = log(1.5),
k_NDFE = log(0.01),
verbose = TRUE,
plot = TRUE,
select,
maxiter = 100,
...

)

Arguments

dat a data.frame or data.table with data from flux measurements.

.id character vector specifying the columns to be used as ID, multiple ID columns
are possible.

.V character specifying the column containing chamber volume values.

.A character specifying the column containing chamber area values.

.times character specifying the column containing chamber closing time values.

.C character specifying the column containing concentration values.

methods character; which methods to use for flux estimation. See details for available
methods.

k_HMR starting value for HMR.fit.

k_NDFE starting value for NDFE.fit.

verbose logical; print progress messages?

plot create a PDF with plots in the working directory if TRUE (the default). The IDs
are used as plot names. The plots are only intended to facilitate quick checking,
not for publication quality graphs.

select deprecated; please use function selectfluxes.

gasfluxes 5

maxiter see nls.control

... further parameters

Details

Available methods are

"linear": lin.fit
"robust linear": rlin.fit
"HMR": HMR.fit
"NDFE": NDFE.fit

Specifying other methods results in an error.

The default starting values for "HMR" and "NDFE", k = log(κ) and k = log(τ), resp., assume that
time is in hours. If you use a different time unit, you should adjust them accordingly. Note that nls
is used internally by these functions and thus they should not be used with artificial "zero-residual"
data.

The input data.frame or data.table should be in the following format:

serie V A time C
1: ID1 0.522625 1 0.0000000 0.3317823
2: ID1 0.522625 1 0.3333333 0.3304053
3: ID1 0.522625 1 0.6666667 0.3394311
4: ID1 0.522625 1 1.0000000 0.4469102
5: ID2 0.523625 1 0.0000000 0.4572708

However, more than one ID column are possible. E.g., the first ID column could be the plot and a
second ID column could be the date. Keep in mind that the combination of IDs must be a unique
identifier for each flux measurement.

Units of the output depend on input units. It’s recommended to use [V] = m^3, [A] = m^2, [time] =
h, [C] = [mass or mol]/m^3, which results in [f0] = [mass or mol]/m^2/h. Since all algorithms use
V/A, A can be input as 1 and V as the chamber height.

Value

A data.table with the results of the flux calculation. See the documentation of the fitting functions
for details. If a selection algorithm has been specified, the last columns are the selected flux es-
timate, the corresponding standard error and p-value and the method with which the selected flux
was estimated.

See Also

selectfluxes for flux selection

6 HMR.fit

Examples

Not run:
#compare result of original HMR with plinear HMR
data(fluxMeas)
res <- gasfluxes(fluxMeas[1:400,],

.id = "serie", .V = "V", .A = "A",

.times = "time", .C = "C",
methods = c("HMR"), verbose = TRUE)

#number of successful fits
res[, sum(!is.na(HMR.kappa))]

res <- gasfluxes(fluxMeas,
.id = "serie", .V = "V", .A = "A",
.times = "time", .C = "C",
methods = "HMR", verbose = TRUE)

Error: time not sorted in flux ID ID556.
Investigate the problem:
fluxMeas[serie %in% c("ID555", "ID556", "ID557")]
serie V A time C
1: ID555 0.551625 1 0.0000000 0.3884388
2: ID555 0.551625 1 0.3333333 0.4125270
3: ID555 0.551625 1 0.6666667 0.3714207
4: ID555 0.551625 1 1.0000000 0.3735092
5: ID556 0.524250 1 0.0000000 0.3638239
6: ID556 0.524250 1 0.3333333 0.3520481
7: ID556 0.524250 1 0.6666667 0.3551644
8: ID557 0.528375 1 0.0500000 0.3954601
9: ID556 0.524250 1 0.0000000 0.3839834
#10: ID557 0.528375 1 0.3333333 0.3967269
#11: ID557 0.528375 1 0.6666667 0.3764967
#12: ID557 0.528375 1 1.0000000 0.3973055

some mixup of IDs and times
usually an input or Excel error during data preparation
investigate and fix

End(Not run)

HMR.fit HMR fit

Description

Fit the HMR model using the Golub-Pereyra algorithm for partially linear least-squares models.

HMR.fit 7

Usage

HMR.fit(
t,
C,
A = 1,
V,
serie = "",
k = log(1.5),
verbose = TRUE,
plot = FALSE,
maxiter = 100,
...

)

Arguments

t time values (usually in hours)

C concentration values

A area covered by the chamber

V effective volume of the chamber

serie id of the flux measurement

k starting value for nls function

verbose logical, TRUE prints message after each flux calculation

plot logical, mainly intended for use in gasfluxes

maxiter see nls.control

... further parameters, currently none

Details

The HMR model (Pedersen et al., 2010) is C(t) = ϕ+ f0
e−κt

−κV
A

. To ensure the lower bound κ > 0,

the substitution κ = ek is used. The resulting reparameterized model is then fit using nls with
algorithm = "plinear". This is computationally more efficient than the manual implementation
in the HMR package and results in almost identical flux values. Flux standard errors and p-values
differ strongly from those reported by the HMR package <= version 0.3.1, but are equal to those
reported by later versions.

The default starting value k = log(κ) assumes that time is in hours. If you use a different time unit,
you should adjust it accordingly.

There have been demands to return the initial concentration as predicted by the model as this is
useful for checking plausibility. However, this can be easily calculated from the parameters and the
equation of the model by setting t = 0, i.e., C0 = ϕ− f0

κV
A

.

Note that nls is used internally and thus this function should not be used with artificial "zero-
residual" data.

8 HMR.fit

Value

A list of

f0 flux estimate

f0.se standard error of flux estimate

f0.p p-value of flux estimate

kappa, phi other parameters of the HMR model

AIC Akaike information criterion

AICc Akaike information criterion with small sample correction

RSE residual standard error (sigma from summary.nls)

diagnostics error or warning messages

References

Pedersen, A.R., Petersen, S.O., Schelde, K., 2010. A comprehensive approach to soil-atmosphere
trace-gas flux estimation with static chambers. European Journal of Soil Science 61(6), 888-902.

Examples

#a single fit
t <- c(0, 1/3, 2/3, 1)
C <- c(320, 341, 352, 359)
print(fit <- HMR.fit(t, C, 1, 0.3, "a"))
plot(C ~ t)
curve({fit$phi + fit$f0 * exp(-fit$kappa * x)/(-fit$kappa*0.3)},

from = 0, to = 1, add = TRUE)

Not run:
#a dataset of 1329 chamber N2O flux measurements
data(fluxMeas)
fluxMeas[, n := length(time), by=serie]
print(fluxMeas)
fluxes <- fluxMeas[n > 3, HMR.fit(time, C, A, V, serie), by=serie]
print(fluxes)
plot(f0.se ~ f0, data = fluxes)
#one very large f0.se value (and several infinite ones not shown in the plot)
fluxes[is.finite(f0.se),][which.max(f0.se),]
plot(C~time, data=fluxMeas[serie=="ID940",])
print(tmp <- fluxes[is.finite(f0.se),][which.max(f0.se),])
curve({tmp[, phi] + tmp[, f0] * exp(-tmp[, kappa] * x)/

(-tmp[, kappa]*fluxMeas[serie=="ID940", V[1]]/
fluxMeas[serie=="ID940",A[1]])},
from = 0, to = 1, add = TRUE)

plot(f0.se ~ f0, data = fluxes[f0.se < 1e4,], pch = 16)
boxplot(fluxes[f0.se < 1e4, sqrt(f0.se)])

End(Not run)

lin.fit 9

lin.fit Linear concentration - time model

Description

Fit a linear model to concentration - time data.

Usage

lin.fit(t, C, A = 1, V, serie = "", verbose = TRUE, plot = FALSE, ...)

Arguments

t time values (usually in hours)

C concentration values

A area covered by the chamber

V effective volume of the chamber

serie id of the flux measurement

verbose logical, TRUE prints message after each flux calculation

plot logical, mainly intended for use in gasfluxes

... further parameters, currently none

Details

This is basically a wrapper of R’s OLS fitting facilities. For now lm (and methods for objects of
class "lm") is used, but this may change to more efficient alternatives in later versions.

Value

A list of

f0 flux estimate

f0.se standard error of flux estimate

f0.p p-value of flux estimate

C0 estimated concentration at t = 0 (intercept)

AIC Akaike information criterion

AICc Akaike information criterion with small sample correction

RSE residual standard error (sigma from summary.nls)

r Pearson’s correlation coefficient

diagnostics error or warning messages

10 NDFE.fit

Examples

#a single fit
t <- c(0, 1/3, 2/3, 1)
C <- c(320, 341, 352, 359)
print(fit <- lin.fit(t, C, 1, 0.3, "a"))
plot(C ~ t)
curve({fit$f0/0.3 * x + fit$C0}, from = 0, to = 1, add = TRUE)

NDFE.fit NDFE fit

Description

Fit the the non-steady-state diffusive flux extimator model using the Golub-Pereyra algorithm for
partially linear least-squares models.

Usage

NDFE.fit(
t,
C,
A = 1,
V,
serie = "",
k = log(0.01),
verbose = TRUE,
plot = FALSE,
maxiter = 100,
...

)

Arguments

t time values (usually in hours)

C concentration values

A area covered by the chamber

V effective volume of the chamber

serie id of the flux measurement

k starting value for nls function

verbose logical, TRUE prints message after each flux calculation

plot logical, mainly intended for use in gasfluxes

maxiter see nls.control

... further parameters, currently none

NDFE.fit 11

Details

The NDFE model (Livingston et al., 2006) is C(t) = C0+f0τ
A
V

[
2√
pi

√
t/τ + et/τerfc(

√
t/τ)− 1

]
.

To ensure the lower bound τ > 0, the substituion τ = ek is used. The resulting reparameterized
model is then fit using nls with algorithm = "plinear".

Note that according to the reference the model is not valid for negative fluxes. Warning: This
function does not check if fluxes are positive. It’s left to the user to handle negative fluxes.

The default starting value k = log(τ) assumes that time is in hours. If you use a different time unit,
you should adjust it accordingly.

Note that nls is used internally and thus this function should not be used with artificial "zero-
residual" data.

Value

A list of

f0 flux estimate

f0.se standard error of flux estimate

f0.p p-value of flux estimate

C0, tau other parameters of the NDFE model

AIC Akaike information criterion

AICc Akaike information criterion with small sample correction

RSE residual standard error (sigma from summary.nls)

diagnostics error or warning messages

References

Livingston, G.P., Hutchinson, G.L., Spartalian, K., 2006. Trace gas emission in chambers: A non-
steady-state diffusion model. Soil Sci. Soc. Am. J. 70(5), 1459-1469.

Examples

#a single fit
t <- c(0, 1/3, 2/3, 1)
C <- c(320, 340, 355, 362)
print(fit <- NDFE.fit(t, C, 1, 0.3, "a"))
plot(C ~ t)
curve({fit$C0+fit$f0*fit$tau*1/0.3*(2/sqrt(pi)*sqrt(x/fit$tau)+

exp(x/fit$tau)*erfc(sqrt(x/fit$tau))-1)},
from = 0, to = 1, add = TRUE)

#note that the flux estimate is very uncertain because
#there are no data points in the region of high curvature

12 rlin.fit

rlin.fit Robust linear concentration - time model

Description

Fit a linear model to concentration - time data using robust methods.

Usage

rlin.fit(t, C, A = 1, V, serie = "", verbose = TRUE, plot = FALSE, ...)

Arguments

t time values (usually in hours)

C concentration values

A area covered by the chamber

V effective volume of the chamber

serie id of the flux measurement

verbose logical, TRUE prints message after each flux calculation

plot logical, mainly intended for use in gasfluxes

... further parameters, currently none

Details

This is basically a wrapper of rlm using the Huber M estimator. This function never weights the
first or last time point with zero with very few data points. However, there might exist "better"
robust regression methods for flux estimation.

Value

A list of

f0 flux estimate

f0.se standard error of flux estimate

f0.p p-value of flux estimate

C0 estimated concentration at t = 0 (intercept)

weights robustness weights

diagnostics error or warning messages

selectfluxes 13

Examples

#a single fit
t <- c(0, 1/3, 2/3, 1)
C <- c(320, 330, 315, 351)
print(fit <- rlin.fit(t, C, 1, 0.3, "a"))
plot(C ~ t)
curve({fit$f0/0.3 * x + fit$C0}, from = 0, to = 1, add = TRUE)

selectfluxes Select a flux estimate

Description

Selects the appropriate flux estimate from linear, robust linear and non-linear calculated fluxes.

Usage

selectfluxes(dat, select, f.detect = NULL, t.meas = NULL, tol = 5e-05, ...)

Arguments

dat a data.table as returned by gasfluxes. The function modifies it by reference.
select character; specify a ruleset for selection of the final flux value, see details.
f.detect detection limit for HMR method. This can be determined by a simple simulation

(see examples) or for four data points the approximation in Parkin et al. (2012)
can be used.

t.meas a vector or single value giving the measurement time factor that relates to kappa.max.
It is suggested to use the time difference between the first and last sample
taken from the closed chamber. The unit should be consistent with the units
of f.detect and kappa (e.g., h if kappa is in 1/h).

tol the relative tolerance abs((linear.f0 - HMR.f0)/HMR.f0) below which the
linear flux estimate and the HMR flux estimate are considered equal in the
"kappa.max" algorithm. This is to protect against HMR fits that equal the linear
fit and have extremely high standard errors. Defaults to tol = 5e-5.

... further parameters

Details

Available selection algorithms currently are

"kappa.max" The selection algorithm restricts the use of HMR by imposing a maximal value
for kappa "kappa.max", depending on the quotient of the linear flux estimate and the min-
imal detectable flux (f.detect), as well as the chamber closure time (t.meas). kappa.max =
f.lin/f.detect/t.meas. This is currently the recommended algorithm. Note that the algorithm
was developed for predominantly positive fluxes (such as N2O fluxes). If data with consid-
erable gas uptake is analyzed, the algorithm needs to be modified, which currently means the
user needs to implement it themselves.

14 selectfluxes

Other selection algorithms could be implemented, but selection can always be done as a postpro-
cessing step. E.g., if many data points are available for each flux measurement it is probably most
sensible to use AICc.

Value

A data.table with the with following columns added to the function input: selected flux estimate,
the corresponding standard error and p-value and the method with which the selected flux was
estimated. For the "kappa.max" method the "kappa.max" values are included. These columns are
also added to the input data.table by reference.

References

Parkin, T.B., Venterea, R.T., Hargreaves, S.K., 2012. Calculating the Detection Limits of Chamber-
based Soil Greenhouse Gas Flux Measurements. Journal of Environmental Quality 41, 705-715.

Hueppi, R., Felber, R., Krauss, M., Six, J., Leifeld, J., Fuss, R., 2018. Restricting the nonlinearity
parameter in soil greenhouse gas flux calculation for more reliable flux estimates. PLOS ONE
13(7): e0200876. https://doi.org/10.1371/journal.pone.0200876

Examples

Not run:
res <- gasfluxes(fluxMeas[1:499],

.id = "serie", .V = "V", .A = "A",

.times = "time", .C = "C",
methods = c("linear", "robust linear", "HMR"), verbose = FALSE, plot = FALSE)

estimate f.detect by simulation
#ambient concentration:
C0 <- 320/1000 * 28 * 273.15 / 22.4 / (273.15 + 15) #mg N / m^3
#uncertainty of GC measurement:
sdGC <- 5/1000 * 28 * 273.15 / 22.4 / (273.15 + 15) #mg N / m^3
#create simulated concentrations corresponding to 1 hour flux measurements with zero fluxes:
set.seed(42)
sim <- data.frame(t = seq(0, 1, length.out = 4), C = rnorm(4e3, mean = C0, sd = sdGC),

id = rep(1:1e3, each = 4), A = 1, V = 0.52)
#fit HMR model:
simflux <- gasfluxes(sim, .id = "id", .times = "t", methods = c("HMR", "linear"), plot = FALSE)
simflux[, f0 := HMR.f0]
simflux[is.na(f0), f0 := linear.f0]
#dection limit as 97.5 % quantile (95 % confidence):
f.detect <- simflux[, quantile(f0, 0.975)] #0.03 mg N / m^2 / h

example using the kappa.max (ref. Hueppi et al., 2018) with a single t.meas value
t.meas <- max(fluxMeas$time[1:499]) #1
selectfluxes(res, "kappa.max", f.detect = f.detect, t.meas = t.meas)
res[method == "HMR", .N] # 11

example using the kappa.max with a vector for t.meas
t.meas <- fluxMeas[1:499][, max(time), by = serie][["V1"]]
selectfluxes(res, "kappa.max", f.detect = f.detect, t.meas = t.meas)

selectfluxes 15

res[method == "HMR", .N] # 10

End(Not run)

Index

agg.fluxes, 2

erfc, 3

fluxMeas, 3

gasfluxes, 4, 7, 9, 10, 12, 13

HMR.fit, 4, 5, 6

lin.fit, 5, 9
lm, 9

NDFE.fit, 4, 5, 10
nls, 7, 11
nls.control, 5, 7, 10

rlin.fit, 5, 12
rlm, 12

selectfluxes, 4, 5, 13

16

	agg.fluxes
	erfc
	fluxMeas
	gasfluxes
	HMR.fit
	lin.fit
	NDFE.fit
	rlin.fit
	selectfluxes
	Index

