
Package ‘collapse’
August 21, 2024

Title Advanced and Fast Data Transformation

Version 2.0.16

Date 2024-08-20

Description A C/C++ based package for advanced data transformation and
statistical computing in R that is extremely fast, class-agnostic, robust and
programmer friendly. Core functionality includes a rich set of S3 generic grouped
and weighted statistical functions for vectors, matrices and data frames, which
provide efficient low-level vectorizations, OpenMP multithreading, and skip missing
values by default. These are integrated with fast grouping and ordering algorithms
(also callable from C), and efficient data manipulation functions. The package also
provides a flexible and rigorous approach to time series and panel data in R.
It further includes fast functions for common statistical procedures, detailed
(grouped, weighted) summary statistics, powerful tools to work with nested data,
fast data object conversions, functions for memory efficient R programming, and
helpers to effectively deal with variable labels, attributes, and missing data.
It is well integrated with base R classes, 'dplyr'/'tibble', 'data.table', 'sf', 'units',
'plm' (panel-series and data frames), and 'xts'/'zoo'.

URL https://sebkrantz.github.io/collapse/,

https://github.com/SebKrantz/collapse,

https://twitter.com/collapse_R

BugReports https://github.com/SebKrantz/collapse/issues

License GPL (>= 2) | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.4.0)

Imports Rcpp (>= 1.0.1)

LinkingTo Rcpp

Suggests fastverse, data.table, magrittr, kit, xts, zoo, plm, fixest,
vars, RcppArmadillo, RcppEigen, tibble, dplyr, ggplot2, scales,
microbenchmark, testthat, covr, knitr, rmarkdown, withr

VignetteBuilder knitr

1

https://sebkrantz.github.io/collapse/
https://github.com/SebKrantz/collapse
https://twitter.com/collapse_R
https://github.com/SebKrantz/collapse/issues

2 Contents

NeedsCompilation yes

Author Sebastian Krantz [aut, cre] (<https://orcid.org/0000-0001-6212-5229>),
Matt Dowle [ctb],
Arun Srinivasan [ctb],
Morgan Jacob [ctb],
Dirk Eddelbuettel [ctb],
Laurent Berge [ctb],
Kevin Tappe [ctb],
R Core Team and contributors worldwide [ctb],
Martyn Plummer [cph],
1999-2016 The R Core Team [cph]

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Repository CRAN

Date/Publication 2024-08-21 10:40:02 UTC

Contents
collapse-package . 4
across . 11
arithmetic . 14
BY . 16
collap . 18
collapse-documentation . 23
collapse-options . 25
collapse-renamed . 29
colorder . 30
dapply . 31
data-transformations . 33
descr . 35
efficient-programming . 38
fast-data-manipulation . 43
fast-grouping-ordering . 45
fast-statistical-functions . 46
fbetween-fwithin . 50
fcount . 54
fcumsum . 56
fdiff . 58
fdist . 62
fdroplevels . 64
ffirst-flast . 65
fFtest . 67
fgrowth . 70
fhdbetween-fhdwithin . 73
flag . 77
flm . 81
fmatch . 83

https://orcid.org/0000-0001-6212-5229

Contents 3

fmean . 85
fmin-fmax . 88
fmode . 90
fndistinct . 93
fnobs . 95
fnth-fmedian . 97
fprod . 101
fquantile . 104
frename . 106
fscale . 108
fselect-get_vars-add_vars . 112
fsubset . 116
fsum . 118
fsummarise . 121
ftransform . 124
funique . 130
fvar-fsd . 132
get_elem . 135
GGDC10S . 137
group . 139
groupid . 140
GRP . 141
indexing . 148
is_unlistable . 155
join . 156
ldepth . 159
list-processing . 160
pad . 161
pivot . 163
psacf . 169
psmat . 171
pwcor-pwcov-pwnobs . 173
qF-qG-finteraction . 175
qsu . 178
qtab . 184
quick-conversion . 186
radixorder . 189
rapply2d . 191
recode-replace . 192
rowbind . 195
roworder . 196
rsplit . 198
seqid . 200
small-helpers . 202
summary-statistics . 205
time-series-panel-series . 206
timeid . 207
TRA . 208

4 collapse-package

t_list . 211
unlist2d . 212
varying . 215
wlddev . 217

Index 220

collapse-package Advanced and Fast Data Transformation

Description

collapse is a C/C++ based package for data transformation and statistical computing in R. Its aims
are:

• To facilitate complex data transformation, exploration and computing tasks in R.

• To help make R code fast, flexible, parsimonious and programmer friendly.

It is made compatible with the tidyverse, data.table, sf, units, xts/zoo, and the plm approach to panel
data.

Getting Started

Read the short vignette on documentation resources, and check out the built in documentation.

Details

collapse provides an integrated suite of statistical and data manipulation functions that greatly ex-
tend and enhance the capabilities of base R. In a nutshell, collapse provides:

• Fast C/C++ based (grouped, weighted) computations embedded in highly optimized R code.

• More complex statistical, time series / panel data and recursive (list-processing) operations.

• A flexible and generic approach supporting and preserving many R objects.

• Optimized programming in standard and non-standard evaluation.

The statistical functions in collapse are S3 generic with core methods for vectors, matrices and data
frames, and internally support grouped and weighted computations carried out in C/C++.

Additional methods and C-level features enable broad based compatibility with dplyr (grouped tib-
ble), data.table, sf and plm panel data classes. Functions and core methods seek to preserve object
attributes (including column attributes such as variable labels), ensuring flexibility and effective
workflows with a very broad range of R objects (including most time-series classes). See also the
vignette on collapse’s handling of R objects.

Missing values are efficiently skipped at C/C++ level. The package default is na.rm = TRUE. This
can be changed using set_collapse(na.rm = FALSE). Missing weights are generally supported.

collapse installs with a built-in hierarchical documentation facilitating the use of the package.

The package is coded both in C and C++ and built with Rcpp, but also uses C/C++ functions from
data.table, kit, fixest, weights, stats and RcppArmadillo / RcppEigen.

https://sebkrantz.github.io/collapse/articles/collapse_documentation.html
https://sebkrantz.github.io/collapse/articles/collapse_object_handling.html

collapse-package 5

Author(s)

Maintainer: Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

Other contributors from packages collapse utilizes:

• Matt Dowle, Arun Srinivasan and contributors worldwide (data.table)

• Dirk Eddelbuettel and contributors worldwide (Rcpp, RcppArmadillo, RcppEigen)

• Morgan Jacob (kit)

• Laurent Berge (fixest)

• Josh Pasek (weights)

• R Core Team and contributors worldwide (stats)

I thank many people from diverse fields for helpful answers on Stackoverflow, Joris Meys for en-
couraging me and helping to set up the GitHub repository for collapse, and many other people for
feature requests and helpful suggestions.

Developing / Bug Reporting

• Please report issues at https://github.com/SebKrantz/collapse/issues.

• Please send pull-requests to the ’development’ branch of the repository.

Examples

Note: this set of examples is is certainly non-exhaustive and does not
showcase many recent features, but remains a very good starting point

Let's start with some statistical programming
v <- iris$Sepal.Length
d <- num_vars(iris) # Saving numeric variables
f <- iris$Species # Factor

Simple statistics
fmean(v) # vector
fmean(qM(d)) # matrix (qM is a faster as.matrix)
fmean(d) # data.frame

Preserving data structure
fmean(qM(d), drop = FALSE) # Still a matrix
fmean(d, drop = FALSE) # Still a data.frame

Weighted statistics, supported by most functions...
w <- abs(rnorm(fnrow(iris)))
fmean(d, w = w)

Grouped statistics...
fmean(d, f)

Groupwise-weighted statistics...
fmean(d, f, w)

https://github.com/SebKrantz/collapse
https://github.com/SebKrantz/collapse/issues

6 collapse-package

Simple Transformations...
head(fmode(d, TRA = "replace")) # Replacing values with the mode
head(fmedian(d, TRA = "-")) # Subtracting the median
head(fsum(d, TRA = "%")) # Computing percentages
head(fsd(d, TRA = "/")) # Dividing by the standard-deviation (scaling), etc...

Weighted Transformations...
head(fnth(d, 0.75, w = w, TRA = "replace")) # Replacing by the weighted 3rd quartile

Grouped Transformations...
head(fvar(d, f, TRA = "replace")) # Replacing values with the group variance
head(fsd(d, f, TRA = "/")) # Grouped scaling
head(fmin(d, f, TRA = "-")) # Setting the minimum value in each species to 0
head(fsum(d, f, TRA = "/")) # Dividing by the sum (proportions)
head(fmedian(d, f, TRA = "-")) # Groupwise de-median
head(ffirst(d, f, TRA = "%%")) # Taking modulus of first group-value, etc. ...

Grouped and weighted transformations...
head(fsd(d, f, w, "/"), 3) # weighted scaling
head(fmedian(d, f, w, "-"), 3) # subtracting the weighted group-median
head(fmode(d, f, w, "replace"), 3) # replace with weighted statistical mode

Some more advanced transformations...
head(fbetween(d)) # Averaging (faster t.: fmean(d, TRA = "replace"))
head(fwithin(d)) # Centering (faster than: fmean(d, TRA = "-"))
head(fwithin(d, f, w)) # Grouped and weighted (same as fmean(d, f, w, "-"))
head(fwithin(d, f, w, mean = 5)) # Setting a custom mean
head(fwithin(d, f, w, theta = 0.76)) # Quasi-centering i.e. d - theta*fbetween(d, f, w)
head(fwithin(d, f, w, mean = "overall.mean")) # Preserving the overall mean of the data
head(fscale(d)) # Scaling and centering
head(fscale(d, mean = 5, sd = 3)) # Custom scaling and centering
head(fscale(d, mean = FALSE, sd = 3)) # Mean preserving scaling
head(fscale(d, f, w)) # Grouped and weighted scaling and centering
head(fscale(d, f, w, mean = 5, sd = 3)) # Custom grouped and weighted scaling and centering
head(fscale(d, f, w, mean = FALSE, # Preserving group means

sd = "within.sd")) # and setting group-sd to fsd(fwithin(d, f, w), w = w)
head(fscale(d, f, w, mean = "overall.mean", # Full harmonization of group means and variances,

sd = "within.sd")) # while preserving the level and scale of the data.

head(get_vars(iris, 1:2)) # Use get_vars for fast selecting, gv is shortcut
head(fhdbetween(gv(iris, 1:2), gv(iris, 3:5))) # Linear prediction with factors and covariates
head(fhdwithin(gv(iris, 1:2), gv(iris, 3:5))) # Linear partialling out factors and covariates
ss(iris, 1:10, 1:2) # Similarly fsubset/ss for fast subsetting rows

Simple Time-Computations..
head(flag(AirPassengers, -1:3)) # One lead and three lags
head(fdiff(EuStockMarkets, # Suitably lagged first and second differences

c(1, frequency(EuStockMarkets)), diff = 1:2))
head(fdiff(EuStockMarkets, rho = 0.87)) # Quasi-differences (x_t - rho*x_t-1)
head(fdiff(EuStockMarkets, log = TRUE)) # Log-differences
head(fgrowth(EuStockMarkets)) # Exact growth rates (percentage change)
head(fgrowth(EuStockMarkets, logdiff = TRUE)) # Log-difference growth rates (percentage change)
Note that it is not necessary to use factors for grouping.

collapse-package 7

fmean(gv(mtcars, -c(2,8:9)), mtcars$cyl) # Can also use vector (internally converted using qF())
fmean(gv(mtcars, -c(2,8:9)),

gv(mtcars, c(2,8:9))) # or a list of vector (internally grouped using GRP())
g <- GRP(mtcars, ~ cyl + vs + am) # It is also possible to create grouping objects
print(g) # These are instructive to learn about the grouping,
plot(g) # and are directly handed down to C++ code
fmean(gv(mtcars, -c(2,8:9)), g) # This can speed up multiple computations over same groups
fsd(gv(mtcars, -c(2,8:9)), g)

Factors can efficiently be created using qF()
f1 <- qF(mtcars$cyl) # Unlike GRP objects, factors are checked for NA's
f2 <- qF(mtcars$cyl, na.exclude = FALSE) # This can however be avoided through this option
class(f2) # Note the added class

library(microbenchmark)
microbenchmark(fmean(mtcars, f1), fmean(mtcars, f2)) # A minor difference, larger on larger data

with(mtcars, finteraction(cyl, vs, am)) # Efficient interactions of vectors and/or factors
finteraction(gv(mtcars, c(2,8:9))) # .. or lists of vectors/factors

Simple row- or column-wise computations on matrices or data frames with dapply()
dapply(mtcars, quantile) # column quantiles
dapply(mtcars, quantile, MARGIN = 1) # Row-quantiles

dapply preserves the data structure of any matrices / data frames passed
Some fast matrix row/column functions are also provided by the matrixStats package

Similarly, BY performs grouped comptations
BY(mtcars, f2, quantile)
BY(mtcars, f2, quantile, expand.wide = TRUE)
For efficient (grouped) replacing and sweeping out computed statistics, use TRA()
sds <- fsd(mtcars)
head(TRA(mtcars, sds, "/")) # Simple scaling (if sd's not needed, use fsd(mtcars, TRA = "/"))

microbenchmark(TRA(mtcars, sds, "/"), sweep(mtcars, 2, sds, "/")) # A remarkable performance gain..

sds <- fsd(mtcars, f2)
head(TRA(mtcars, sds, "/", f2)) # Groupd scaling (if sd's not needed: fsd(mtcars, f2, TRA = "/"))

All functions above perserve the structure of matrices / data frames
If conversions are required, use these efficient functions:
mtcarsM <- qM(mtcars) # Matrix from data.frame
head(qDF(mtcarsM)) # data.frame from matrix columns
head(mrtl(mtcarsM, TRUE, "data.frame")) # data.frame from matrix rows, etc..
head(qDT(mtcarsM, "cars")) # Saving row.names when converting matrix to data.table
head(qDT(mtcars, "cars")) # Same use a data.frame

Now let's get some real data and see how we can use this power for data manipulation
head(wlddev) # World Bank World Development Data: 216 countries, 61 years, 5 series (columns 9-13)

Starting with some discriptive tools...
namlab(wlddev, class = TRUE) # Show variable names, labels and classes
fnobs(wlddev) # Observation count
pwnobs(wlddev) # Pairwise observation count
head(fnobs(wlddev, wlddev$country)) # Grouped observation count

8 collapse-package

fndistinct(wlddev) # Distinct values
descr(wlddev) # Describe data
varying(wlddev, ~ country) # Show which variables vary within countries
qsu(wlddev, pid = ~ country, # Panel-summarize columns 9 though 12 of this data

cols = 9:12, vlabels = TRUE) # (between and within countries)
qsu(wlddev, ~ region, ~ country, # Do all of that by region and also compute higher moments

cols = 9:12, higher = TRUE) # -> returns a 4D array
qsu(wlddev, ~ region, ~ country, cols = 9:12,

higher = TRUE, array = FALSE) |> # Return as a list of matrices..
unlist2d(c("Variable","Trans"), row.names = "Region") |> head()# and turn into a tidy data.frame
pwcor(num_vars(wlddev), P = TRUE) # Pairwise correlations with p-value
pwcor(fmean(num_vars(wlddev), wlddev$country), P = TRUE) # Correlating country means
pwcor(fwithin(num_vars(wlddev), wlddev$country), P = TRUE) # Within-country correlations
psacf(wlddev, ~country, ~year, cols = 9:12) # Panel-data Autocorrelation function
pspacf(wlddev, ~country, ~year, cols = 9:12) # Partial panel-autocorrelations
psmat(wlddev, ~iso3c, ~year, cols = 9:12) |> plot() # Convert panel to 3D array and plot

collapse offers a few very efficent functions for data manipulation:
Fast selecting and replacing columns
series <- get_vars(wlddev, 9:12) # Same as wlddev[9:12] but 2x faster
series <- fselect(wlddev, PCGDP:ODA) # Same thing: > 100x faster than dplyr::select
get_vars(wlddev, 9:12) <- series # Replace, 8x faster wlddev[9:12] <- series + replaces names
fselect(wlddev, PCGDP:ODA) <- series # Same thing

Fast subsetting
head(fsubset(wlddev, country == "Ireland", -country, -iso3c))
head(fsubset(wlddev, country == "Ireland" & year > 1990, year, PCGDP:ODA))
ss(wlddev, 1:10, 1:10) # This is an order of magnitude faster than wlddev[1:10, 1:10]

Fast transforming
head(ftransform(wlddev, ODA_GDP = ODA / PCGDP, ODA_LIFEEX = sqrt(ODA) / LIFEEX))
settransform(wlddev, ODA_GDP = ODA / PCGDP, ODA_LIFEEX = sqrt(ODA) / LIFEEX) # by reference
head(ftransform(wlddev, PCGDP = NULL, ODA = NULL, GINI_sum = fsum(GINI)))
head(ftransformv(wlddev, 9:12, log)) # Can also transform with lists of columns
head(ftransformv(wlddev, 9:12, fscale, apply = FALSE)) # apply = FALSE invokes fscale.data.frame
settransformv(wlddev, 9:12, fscale, apply = FALSE) # Changing the data by reference
ftransform(wlddev) <- fscale(gv(wlddev, 9:12)) # Same thing (using replacement method)

library(magrittr) # Same thing, using magrittr
wlddev %<>% ftransformv(9:12, fscale, apply = FALSE)
wlddev %>% ftransform(gv(., 9:12) |> # With compound pipes: Scaling and lagging

fscale() |> flag(0:2, iso3c, year)) |> head()

Fast reordering
head(roworder(wlddev, -country, year))
head(colorder(wlddev, country, year))

Fast renaming
head(frename(wlddev, country = Ctry, year = Yr))
setrename(wlddev, country = Ctry, year = Yr) # By reference
head(frename(wlddev, tolower, cols = 9:12))

Fast grouping

collapse-package 9

fgroup_by(wlddev, Ctry, decade) |> fgroup_vars() |> head()
rm(wlddev) # .. but only works with collapse functions

Now lets start putting things together
wlddev |> fsubset(year > 1990, region, income, PCGDP:ODA) |>

fgroup_by(region, income) |> fmean() # Fast aggregation using the mean

Same thing using dplyr manipulation verbs
library(dplyr)
wlddev |> filter(year > 1990) |> select(region, income, PCGDP:ODA) |>
group_by(region,income) |> fmean() # This is already a lot faster than summarize_all(mean)

wlddev |> fsubset(year > 1990, region, income, PCGDP:POP) |>
fgroup_by(region, income) |> fmean(POP) # Weighted group means

wlddev |> fsubset(year > 1990, region, income, PCGDP:POP) |>
fgroup_by(region, income) |> fsd(POP) # Weighted group standard deviations

wlddev |> na_omit(cols = "POP") |> fgroup_by(region, income) |>
fselect(PCGDP:POP) |> fnth(0.75, POP) # Weighted group third quartile

wlddev |> fgroup_by(country) |> fselect(PCGDP:ODA) |>
fwithin() |> head() # Within transformation

wlddev |> fgroup_by(country) |> fselect(PCGDP:ODA) |>
fmedian(TRA = "-") |> head() # Grouped centering using the median

Replacing data points by the weighted first quartile:
wlddev |> na_omit(cols = "POP") |> fgroup_by(country) |>

fselect(country, year, PCGDP:POP) %>%
ftransform(fselect(., -country, -year) |>

fnth(0.25, POP, "fill")) |> head()

wlddev |> fgroup_by(country) |> fselect(PCGDP:ODA) |> fscale() |> head() # Standardizing
wlddev |> fgroup_by(country) |> fselect(PCGDP:POP) |>

fscale(POP) |> head() # Weighted..

wlddev |> fselect(country, year, PCGDP:ODA) |> # Adding 1 lead and 2 lags of each variable
fgroup_by(country) |> flag(-1:2, year) |> head()

wlddev |> fselect(country, year, PCGDP:ODA) |> # Adding 1 lead and 10-year growth rates
fgroup_by(country) |> fgrowth(c(0:1,10), 1, year) |> head()

etc...

Aggregation with multiple functions
wlddev |> fsubset(year > 1990, region, income, PCGDP:ODA) |>

fgroup_by(region, income) %>% {
add_vars(fgroup_vars(., "unique"),

fmedian(., keep.group_vars = FALSE) |> add_stub("median_"),
fmean(., keep.group_vars = FALSE) |> add_stub("mean_"),
fsd(., keep.group_vars = FALSE) |> add_stub("sd_"))

} |> head()

Transformation with multiple functions
wlddev |> fselect(country, year, PCGDP:ODA) |>

10 collapse-package

fgroup_by(country) %>% {
add_vars(fdiff(., c(1,10), 1, year) |> flag(0:2, year), # Sequence of lagged differences

ftransform(., fselect(., PCGDP:ODA) |> fwithin() |> add_stub("W.")) |>
flag(0:2, year, keep.ids = FALSE)) # Sequence of lagged demeaned vars

} |> head()

With ftransform, can also easily do one or more grouped mutations on the fly..
settransform(wlddev, median_ODA = fmedian(ODA, list(region, income), TRA = "fill"))

settransform(wlddev, sd_ODA = fsd(ODA, list(region, income), TRA = "fill"),
mean_GDP = fmean(PCGDP, country, TRA = "fill"))

wlddev %<>% ftransform(fmedian(list(median_ODA = ODA, median_GDP = PCGDP),
list(region, income), TRA = "fill"))

On a groped data frame it is also possible to grouped transform certain columns
but perform aggregate operatins on others:
wlddev |> fgroup_by(region, income) %>%

ftransform(gmedian_GDP = fmedian(PCGDP, GRP(.), TRA = "replace"),
omedian_GDP = fmedian(PCGDP, TRA = "replace"), # "replace" preserves NA's
omedian_GDP_fill = fmedian(PCGDP)) |> tail()

rm(wlddev)

For multi-type data aggregation, the function collap() offers ease and flexibility
Aggregate this data by country and decade: Numeric columns with mean, categorical with mode
head(collap(wlddev, ~ country + decade, fmean, fmode))

taking weighted mean and weighted mode:
head(collap(wlddev, ~ country + decade, fmean, fmode, w = ~ POP, wFUN = fsum))

Multi-function aggregation of certain columns
head(collap(wlddev, ~ country + decade,

list(fmean, fmedian, fsd),
list(ffirst, flast), cols = c(3,9:12)))

Customized Aggregation: Assign columns to functions
head(collap(wlddev, ~ country + decade,

custom = list(fmean = 9:10, fsd = 9:12, flast = 3, ffirst = 6:8)))

For grouped data frames use collapg
wlddev |> fsubset(year > 1990, country, region, income, PCGDP:ODA) |>

fgroup_by(country) |> collapg(fmean, ffirst) |>
ftransform(AMGDP = PCGDP > fmedian(PCGDP, list(region, income), TRA = "fill"),

AMODA = ODA > fmedian(ODA, income, TRA = "replace_fill")) |> head()

Additional flexibility for data transformation tasks is offerend by tidy transformation operators
Within-transformation (centering on overall mean)
head(W(wlddev, ~ country, cols = 9:12, mean = "overall.mean"))
Partialling out country and year fixed effects
head(HDW(wlddev, PCGDP + LIFEEX ~ qF(country) + qF(year)))
Same, adding ODA as continuous regressor
head(HDW(wlddev, PCGDP + LIFEEX ~ qF(country) + qF(year) + ODA))

across 11

Standardizing (scaling and centering) by country
head(STD(wlddev, ~ country, cols = 9:12))
Computing 1 lead and 3 lags of the 4 series
head(L(wlddev, -1:3, ~ country, ~year, cols = 9:12))
Computing the 1- and 10-year first differences
head(D(wlddev, c(1,10), 1, ~ country, ~year, cols = 9:12))
head(D(wlddev, c(1,10), 1:2, ~ country, ~year, cols = 9:12)) # ..first and second differences
Computing the 1- and 10-year growth rates
head(G(wlddev, c(1,10), 1, ~ country, ~year, cols = 9:12))
Adding growth rate variables to dataset
add_vars(wlddev) <- G(wlddev, c(1, 10), 1, ~ country, ~year, cols = 9:12, keep.ids = FALSE)
get_vars(wlddev, "G1.", regex = TRUE) <- NULL # Deleting again

These operators can conveniently be used in regression formulas:
Using a Mundlak (1978) procedure to estimate the effect of OECD on LIFEEX, controlling for PCGDP
lm(LIFEEX ~ log(PCGDP) + OECD + B(log(PCGDP), country),

wlddev |> fselect(country, OECD, PCGDP, LIFEEX) |> na_omit())

Adding 10-year lagged life-expectancy to allow for some convergence effects (dynamic panel model)
lm(LIFEEX ~ L(LIFEEX, 10, country) + log(PCGDP) + OECD + B(log(PCGDP), country),

wlddev |> fselect(country, OECD, PCGDP, LIFEEX) |> na_omit())

Tranformation functions and operators also support indexed data classes:
wldi <- findex_by(wlddev, country, year)
head(W(wldi$PCGDP)) # Country-demeaning
head(W(wldi, cols = 9:12))
head(W(wldi$PCGDP, effect = 2)) # Time-demeaning
head(W(wldi, effect = 2, cols = 9:12))
head(HDW(wldi$PCGDP)) # Country- and time-demeaning
head(HDW(wldi, cols = 9:12))
head(STD(wldi$PCGDP)) # Standardizing by country
head(STD(wldi, cols = 9:12))
head(L(wldi$PCGDP, -1:3)) # Panel-lags
head(L(wldi, -1:3, 9:12))
head(G(wldi$PCGDP)) # Panel-Growth rates
head(G(wldi, 1, 1, 9:12))

lm(Dlog(PCGDP) ~ L(Dlog(LIFEEX), 0:3), wldi) # Panel data regression
rm(wldi)

Remove all objects used in this example section
rm(v, d, w, f, f1, f2, g, mtcarsM, sds, series, wlddev)

across Apply Functions Across Multiple Columns

Description

across() can be used inside fmutate and fsummarise to apply one or more functions to a selection
of columns. It is overall very similar to dplyr::across, but does not support some rlang features,

12 across

has some additional features (arguments), and is optimized to work with collapse’s, .FAST_FUN,
yielding much faster computations.

Usage

across(.cols = NULL, .fns, ..., .names = NULL,
.apply = "auto", .transpose = "auto")

acr(...) can be used to abbreviate across(...)

Arguments

.cols select columns using column names and expressions (e.g. a:b or c(a, b, c:f)),
column indices, logical vectors, or functions yielding a logical value e.g. is.numeric.
NULL applies functions to all columns except for grouping columns.

.fns A function, character vector of functions or list of functions. Vectors / lists can
be named to yield alternative names in the result (see .names). This argument is
evaluated inside substitute(), and the content (not the names of vectors/lists)
is checked against .FAST_FUN and .OPERATOR_FUN. Matching functions receive
vectorized execution, other functions are applied to the data in a standard way.

... further arguments to .fns. Arguments are evaluated in the data environment
and split by groups as well (for non-vectorized functions, if of the same length
as the data).

.names controls the naming of computed columns. NULL generates names of the form
coli_funj if multiple functions are used. .names = TRUE enables this for a
single function, .names = FALSE disables it for multiple functions (sensible for
functions such as .OPERATOR_FUN that rename columns (if .apply = FALSE)).
Setting .names = "flip" generates names of the form funj_coli. It is also
possible to supply a function with two arguments for column and function names
e.g. function(c, f) paste0(f, "_", c). Finally, you can supply a custom
vector of names which must match length(.cols) * length(.fns).

.apply controls whether functions are applied column-by-column (TRUE) or to multi-
ple columns at once (FALSE). The default, "auto", does the latter for vectorized
functions, which have an efficient data frame method. It can also be sensible to
use .apply = FALSE for non-vectorized functions, especially multivariate func-
tions like lm or pwcor, or functions renaming the data. See Examples.

.transpose with multiple .fns, .transpose controls whether the result is ordered first by
column, then by function (TRUE), or vice-versa (FALSE). "auto" does the former
if all functions yield results of the same dimensions (dimensions may differ if
.apply = FALSE). See Examples.

Note

across does not support purr-style lambdas, and does not support dplyr-style predicate functions
e.g. across(where(is.numeric), sum), simply use across(is.numeric, sum). In contrast to
dplyr, you can also compute on grouping columns.

across 13

See Also

fsummarise, fmutate, Fast Data Manipulation, Collapse Overview

Examples

Basic (Weighted) Summaries
fsummarise(wlddev, across(PCGDP:GINI, fmean, w = POP))

wlddev |> fgroup_by(region, income) |>
fsummarise(across(PCGDP:GINI, fmean, w = POP))

Note that for these we don't actually need across...
fselect(wlddev, PCGDP:GINI) |> fmean(w = wlddev$POP, drop = FALSE)
wlddev |> fgroup_by(region, income) |>

fselect(PCGDP:GINI, POP) |> fmean(POP, keep.w = FALSE)
collap(wlddev, PCGDP + LIFEEX + GINI ~ region + income, w = ~ POP, keep.w = FALSE)

But if we want to use some base R function that reguires argument splitting...
wlddev |> na_omit(cols = "POP") |> fgroup_by(region, income) |>

fsummarise(across(PCGDP:GINI, weighted.mean, w = POP, na.rm = TRUE))

Or if we want to apply different functions...
wlddev |> fgroup_by(region, income) |>

fsummarise(across(PCGDP:GINI, list(mu = fmean, sd = fsd), w = POP),
POP_sum = fsum(POP), OECD = fmean(OECD))

Note that the above still detects fmean as a fast function, the names of the list
are irrelevant, but the function name must be typed or passed as a character vector,
Otherwise functions will be executed by groups e.g. function(x) fmean(x) won't vectorize

Same, naming in a different way
wlddev |> fgroup_by(region, income) |>

fsummarise(across(PCGDP:GINI, list(mu = fmean, sd = fsd), w = POP, .names = "flip"),
sum_POP = fsum(POP), OECD = fmean(OECD))

Or we want to do more advanced things..
Such as nesting data frames..
qTBL(wlddev) |> fgroup_by(region, income) |>

fsummarise(across(c(PCGDP, LIFEEX, ODA),
function(x) list(Nest = list(x)),
.apply = FALSE))

Or linear models..
qTBL(wlddev) |> fgroup_by(region, income) |>

fsummarise(across(c(PCGDP, LIFEEX, ODA),
function(x) list(Mods = list(lm(PCGDP ~., x))),
.apply = FALSE))

Or cumputing grouped correlation matrices
qTBL(wlddev) |> fgroup_by(region, income) |>

fsummarise(across(c(PCGDP, LIFEEX, ODA),
function(x) qDF(pwcor(x), "Variable"), .apply = FALSE))

Here calculating 1- and 10-year lags and growth rates of these variables
qTBL(wlddev) |> fgroup_by(country) |>

14 arithmetic

fmutate(across(c(PCGDP, LIFEEX, ODA), list(L, G),
n = c(1, 10), t = year, .names = FALSE))

Same but variables in different order
qTBL(wlddev) |> fgroup_by(country) |>

fmutate(across(c(PCGDP, LIFEEX, ODA), list(L, G), n = c(1, 10),
t = year, .names = FALSE, .transpose = FALSE))

arithmetic Fast Row/Column Arithmetic for Matrix-Like Objects

Description

Fast operators to perform row- or column-wise replacing and sweeping operations of vectors on
matrices, data frames, lists. See also setop for math by reference and setTRA for sweeping by
reference.

Usage

Perform the operation with v and each row of X

X %rr% v # Replace rows of X with v
X %r+% v # Add v to each row of X
X %r-% v # Subtract v from each row of X
X %r*% v # Multiply each row of X with v
X %r/% v # Divide each row of X by v

Perform a column-wise operation between V and X

X %cr% V # Replace columns of X with V
X %c+% V # Add V to columns of X
X %c-% V # Subtract V from columns of X
X %c*% V # Multiply columns of X with V
X %c/% V # Divide columns of X by V

Arguments

X a vector, matrix, data frame or list like object (with rows (r) columns (c) match-
ing v / V).

v for row operations: an atomic vector of matching NCOL(X). If X is a data frame,
v can also be a list of scalar atomic elements. It is also possible to sweep lists of
vectors v out of lists of matrices or data frames X.

V for column operations: a suitable scalar, vector, or matrix / data frame matching
NROW(X). X can also be a list of vectors / matrices in which case V can be a scalar
/ vector / matrix or matching list of scalars / vectors / matrices.

arithmetic 15

Details

With a matrix or data frame X, the default behavior of R when calling X op v (such as multiplication
X * v) is to perform the operation of v with each column of X. The equivalent operation is performed
by X %cop% V, with the difference that it computes significantly faster if X/V is a data frame / list.
A more complex but frequently required task is to perform an operation with v on each row of X.
This is provided based on efficient C++ code by the %rop% set of functions, e.g. X %r*% v efficiently
multiplies v to each row of X.

Value

X where the operation with v / V was performed on each row or column. All attributes of X are
preserved.

Note

Computations and Output: These functions are all quite simple, they only work with X on the LHS
i.e. v %op% X will likely fail. The row operations are simple wrappers around TRA which provides
more operations including grouped replacing and sweeping (where v would be a matrix or data
frame with less rows than X being mapped to the rows of X by grouping vectors). One consequence
is that just like TRA, row-wise mathematical operations (+, -, *, /) always yield numeric output, even
if both X and v may be integer. This is different for column- operations which depend on base R
and may also preserve integer data.

Rules of Arithmetic: Since these operators are defined as simple infix functions, the normal rules
of arithmetic are not respected. So a %c+% b %c*% c evaluates as (a %c+% b) %c*% c. As with all
chained infix operations, they are just evaluated sequentially from left to right.

Performance Notes: The function setop and a related set of %op=% operators as well as the setTRA
function can be used to perform these operations by reference, and are faster if copies of the output
are not required!! Furthermore, for Fast Statistical Functions, using fmedian(X, TRA = "-") will be
a tiny bit faster than X %r-% fmedian(X). Also use fwithin(X) for fast centering using the mean,
and fscale(X) for fast scaling and centering or mean-preserving scaling.

See Also

setop, TRA, dapply, Efficient Programming, Data Transformations, Collapse Overview

Examples

Using data frame's / lists
v <- mtcars$cyl
mtcars %cr% v
mtcars %c-% v
mtcars %r-% seq_col(mtcars)
mtcars %r-% lapply(mtcars, quantile, 0.28)

mtcars %c*% 5 # Significantly faster than mtcars * 5
mtcars %c*% mtcars # Significantly faster than mtcars * mtcars

Using matrices
X <- qM(mtcars)

16 BY

X %cr% v
X %c-% v
X %r-% dapply(X, quantile, 0.28)

Chained Operations
library(magrittr) # Needed here to evaluate infix operators in sequence
mtcars %>% fwithin() %r-% rnorm(11) %c*% 5 %>%

tfm(mpg = fsum(mpg)) %>% qsu()

BY Split-Apply-Combine Computing

Description

BY is an S3 generic that efficiently applies functions over vectors or matrix- and data frame columns
by groups. Similar to dapply it seeks to retain the structure and attributes of the data, but can also
output to various standard formats. A simple parallelism is also available.

Usage

BY(x, ...)

Default S3 method:
BY(x, g, FUN, ..., use.g.names = TRUE, sort = .op[["sort"]], reorder = TRUE,

expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,
return = c("same", "vector", "list"))

S3 method for class 'matrix'
BY(x, g, FUN, ..., use.g.names = TRUE, sort = .op[["sort"]], reorder = TRUE,

expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,
return = c("same", "matrix", "data.frame", "list"))

S3 method for class 'data.frame'
BY(x, g, FUN, ..., use.g.names = TRUE, sort = .op[["sort"]], reorder = TRUE,

expand.wide = FALSE, parallel = FALSE, mc.cores = 1L,
return = c("same", "matrix", "data.frame", "list"))

S3 method for class 'grouped_df'
BY(x, FUN, ..., reorder = TRUE, keep.group_vars = TRUE, use.g.names = FALSE)

Arguments

x a vector, matrix, data frame or alike object.

g a GRP object, or a factor / atomic vector / list of atomic vectors (internally con-
verted to a GRP object) used to group x.

FUN a function, can be scalar- or vector-valued. For vector valued functions see also
reorder and expand.wide.

BY 17

... further arguments to FUN, or to BY.data.frame for the ’grouped_df’ method.
Since v1.9.0 data length arguments are also split by groups.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). For vector-valued functions (row-
)names are only generated if the function itself creates names for the statistics
e.g. quantile() adds names, range() or log() don’t. No row-names are
generated on data.table’s.

sort logical. Sort the groups? Internally passed to GRP, and only effective if g is not
already a factor or GRP object.

reorder logical. If a vector-valued function is passed that preserves the data length, TRUE
will reorder the result such that the elements/rows match the original data. FALSE
just combines the data in order of the groups (i.e. all elements of the first group
in first-appearance order followed by all elements in the second group etc..).
Note that if reorder = FALSE, grouping variables, names or rownames are only
retained if the grouping is on sorted data, see GRP.

expand.wide logical. If FUN is a vector-valued function returning a vector of fixed length > 1
(such as the quantile function), expand.wide can be used to return the result
in a wider format (instead of stacking the resulting vectors of fixed length above
each other in each output column).

parallel logical. TRUE implements simple parallel execution by internally calling mclapply
instead of lapply. Parallelism is across columns, except for the default method.

mc.cores integer. Argument to mclapply indicating the number of cores to use for parallel
execution. Can use detectCores() to select all available cores.

return an integer or string indicating the type of object to return. The default 1 -
"same" returns the same object type (i.e. class and other attributes are retained
if the underlying data type is the same, just the names for the dimensions are
adjusted). 2 - "matrix" always returns the output as matrix, 3 - "data.frame"
always returns a data frame and 4 - "list" returns the raw (uncombined) out-
put. Note: 4 - "list" works together with expand.wide to return a list of
matrices.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion. See also the Note.

Details

BY is a re-implementation of the Split-Apply-Combine computing paradigm. It is faster than tapply,
by, aggregate and (d)plyr, and preserves data attributes just like dapply.

It is principally a wrapper around lapply(gsplit(x, g), FUN, ...), that uses gsplit for opti-
mized splitting and also strongly optimizes on the internal code compared to base R functions. For
more details look at the documentation for dapply which works very similar (apart from the split-
ting performed in BY). The function is intended for simple cases involving flexible computation of
statistics across groups using a single function e.g. iris |> gby(Species) |> BY(IQR) is simpler
than iris |> gby(Species) |> smr(acr(.fns = IQR)) etc..

Value

X where FUN was applied to every column split by g.

18 collap

See Also

dapply, collap, Fast Statistical Functions, Data Transformations, Collapse Overview

Examples

v <- iris$Sepal.Length # A numeric vector
g <- GRP(iris$Species) # A grouping

default vector method
BY(v, g, sum) # Sum by species
head(BY(v, g, scale)) # Scale by species (please use fscale instead)
BY(v, g, fquantile) # Species quantiles: by default stacked
BY(v, g, fquantile, expand.wide = TRUE) # Wide format

matrix method
m <- qM(num_vars(iris))
BY(m, g, sum) # Also return as matrix
BY(m, g, sum, return = "data.frame") # Return as data.frame.. also works for computations below
head(BY(m, g, scale))
BY(m, g, fquantile)
BY(m, g, fquantile, expand.wide = TRUE)
ml <- BY(m, g, fquantile, expand.wide = TRUE, # Return as list of matrices

return = "list")
ml
Unlisting to Data Frame
unlist2d(ml, idcols = "Variable", row.names = "Species")

data.frame method
BY(num_vars(iris), g, sum) # Also returns a data.fram
BY(num_vars(iris), g, sum, return = 2) # Return as matrix.. also works for computations below
head(BY(num_vars(iris), g, scale))
BY(num_vars(iris), g, fquantile)
BY(num_vars(iris), g, fquantile, expand.wide = TRUE)
BY(num_vars(iris), g, fquantile, # Return as list of matrices

expand.wide = TRUE, return = "list")

grouped data frame method
giris <- fgroup_by(iris, Species)
giris |> BY(sum) # Compute sum
giris |> BY(sum, use.g.names = TRUE, # Use row.names and

keep.group_vars = FALSE) # remove 'Species' and groups attribute
giris |> BY(sum, return = "matrix") # Return matrix
giris |> BY(sum, return = "matrix", # Matrix with row.names

use.g.names = TRUE)
giris |> BY(.quantile) # Compute quantiles (output is stacked)
giris |> BY(.quantile, names = TRUE, # Wide output

expand.wide = TRUE)

collap Advanced Data Aggregation

collap 19

Description

collap is a fast and versatile multi-purpose data aggregation command.

It performs simple and weighted aggregations, multi-type aggregations automatically applying dif-
ferent functions to numeric and categorical columns, multi-function aggregations applying multiple
functions to each column, and fully custom aggregations where the user passes a list mapping func-
tions to columns.

Usage

Main function: allows formula and data input to `by` and `w` arguments
collap(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum,

custom = NULL, ..., keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE,
sort = .op[["sort"]], decreasing = FALSE, na.last = TRUE, return.order = sort,

method = "auto", parallel = FALSE, mc.cores = 2L,
return = c("wide","list","long","long_dupl"), give.names = "auto")

Programmer function: allows column names and indices input to `by` and `w` arguments
collapv(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum,

custom = NULL, ..., keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE,
sort = .op[["sort"]], decreasing = FALSE, na.last = TRUE, return.order = sort,

method = "auto", parallel = FALSE, mc.cores = 2L,
return = c("wide","list","long","long_dupl"), give.names = "auto")

Auxiliary function: for grouped data ('grouped_df') input + non-standard evaluation
collapg(X, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum,

custom = NULL, keep.group_vars = TRUE, ...)

Arguments

X a data frame, or an object coercible to data frame using qDF.

by for collap: a one-or two sided formula, i.e. ~ group1 or var1 + var2 ~ group1
+ group2, or a atomic vector, list of vectors or GRP object used to group X. For
collapv: names or indices of grouping columns, or a logical vector or selector
function such as is_categorical selecting grouping columns.

FUN a function, list of functions (i.e. list(fsum, fmean, fsd) or list(sd = fsd,
myfun1 = function(x)..)), or a character vector of function names, which are
automatically applied only to numeric variables.

catFUN same as FUN, but applied only to categorical (non-numeric) typed columns (is_categorical).

cols select columns to aggregate using a function, column names, indices or logical
vector. Note: cols is ignored if a two-sided formula is passed to by.

w weights. Can be passed as numeric vector or alternatively as formula i.e. ~
weightvar in collap or column name / index etc. i.e. "weightvar" in collapv.
collapg supports non-standard evaluations so weightvar can be indicated with-
out quotes.

wFUN same as FUN: Function(s) to aggregate weight variable if keep.w = TRUE. By
default the sum of the weights is computed in each group.

20 collap

custom a named list specifying a fully customized aggregation task. The names of the
list are function names and the content columns to aggregate using this function
(same input as cols). For example custom = list(fmean = 1:6, fsd = 7:9,
fmode = 10:11) tells collap to aggregate columns 1-6 of X using the mean,
columns 7-9 using the standard deviation etc. Notes: custom lets collap ignore
any inputs passed to FUN, catFUN or cols. Since v1.6.0 you can also rename
columns e.g. custom = list(fmean = c(newname = "col1", "col2"), fmode
= c(newname = 3)).

keep.by, keep.group_vars
logical. FALSE will omit grouping variables from the output. TRUE keeps the
variables, even if passed externally in a list or vector (unlike other collapse func-
tions).

keep.w logical. FALSE will omit weight variable from the output i.e. no aggregation of
the weights. TRUE aggregates and adds weights, even if passed externally as a
vector (unlike other collapse functions).

keep.col.order logical. Retain original column order post-aggregation.
sort, decreasing, na.last, return.order, method

logical / character. Arguments passed to GRP.default and affecting the row-
order in the aggregated data frame and the grouping algorithm.

parallel logical. Use mclapply instead of lapply to parallelize the computation at the
column level. Not available for Windows.

mc.cores integer. Argument to mclapply setting the number of cores to use, default is 2.

return character. Control the output format when aggregating with multiple func-
tions or performing custom aggregation. "wide" (default) returns a wider data
frame with added columns for each additional function. "list" returns a list
of data frames - one for each function. "long" adds a column "Function" and
row-binds the results from different functions using data.table::rbindlist.
"long.dupl" is a special option for aggregating multi-type data using multiple
FUN but only one catFUN or vice-versa. In that case the format is long and data
aggregated using only one function is duplicated. See Examples.

give.names logical. Create unique names of aggregated columns by adding a prefix ’FUN.var’.
'auto' will automatically create such prefixes whenever multiple functions are
applied to a column.

... additional arguments passed to all functions supplied to FUN, catFUN, wFUN
or custom. Since v1.9.0 these are also split by groups for non-Fast Statisti-
cal Functions. The behavior of Fast Statistical Functions with unused argu-
ments is regulated by option("collapse_unused_arg_action") and defaults
to "warning". collapg also allows other arguments to collap except for sort,
decreasing, na.last, return.order, method and keep.by.

Details

collap automatically checks each function passed to it whether it is a Fast Statistical Function
(i.e. whether the function name is contained in .FAST_STAT_FUN). If the function is a fast statis-
tical function, collap only does the grouping and then calls the function to carry out the grouped
computations (vectorized in C/C++), resulting in high aggregation speeds, even with weights. If

collap 21

the function is not one of .FAST_STAT_FUN, BY is called internally to perform the computation. The
resulting computations from each function are put into a list and recombined to produce the desired
output format as controlled by the return argument. This is substantially slower, particularly with
many groups.

When setting parallel = TRUE on a non-windows computer, aggregations will efficiently be paral-
lelized at the column level using mclapply utilizing mc.cores cores. Some Fast Statistical Function
support multithreading i.e. have an nthreads argument that can be passed to collap. Using C-
level multithreading is much more effective than R-level parallelism, and also works on Windows,
but the two should never be combined.

When the w argument is used, the weights are passed to all functions except for wFUN. This may
be undesirable in settings like collap(data, ~ id, custom = list(fsum = ..., fmean = ...), w
= ~ weights) where we wish to aggregate some columns using the weighted mean, and others
using a simple sum or another unweighted statistic. Therefore it is possible to append Fast Statis-
tical Functions by _uw to yield an unweighted computation. So for the above example one can
specify: collap(data, ~ id, custom = list(fsum_uw = ..., fmean = ...), w = ~ weights) to
get the weighted mean and the simple sum. Note that the _uw functions are not available for use
outside collap. Thus one also needs to quote them when passing to the FUN or catFUN arguments,
e.g. use collap(data, ~ id, fmean, "fmode_uw", w = ~ weights).

Value

X aggregated. If X is not a data frame it is coerced to one using qDF and then aggregated.

See Also

fsummarise, BY, Fast Statistical Functions, Collapse Overview

Examples

A Simple Introduction --------------------------------------
head(iris)
collap(iris, ~ Species) # Default: FUN = fmean for numeric
collapv(iris, 5) # Same using collapv
collap(iris, ~ Species, fmedian) # Using the median
collap(iris, ~ Species, fmedian, keep.col.order = FALSE) # Groups in-front
collap(iris, Sepal.Width + Petal.Width ~ Species, fmedian) # Only '.Width' columns
collapv(iris, 5, cols = c(2, 4)) # Same using collapv
collap(iris, ~ Species, list(fmean, fmedian)) # Two functions
collap(iris, ~ Species, list(fmean, fmedian), return = "long") # Long format
collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4)) # Custom aggregation
collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4), # Raw output, no column reordering

return = "list")
collapv(iris, 5, custom = list(fmean = 1:2, fmedian = 3:4), # A strange choice..

return = "long")
collap(iris, ~ Species, w = ~ Sepal.Length) # Using Sepal.Length as weights, ..
weights <- abs(rnorm(fnrow(iris)))
collap(iris, ~ Species, w = weights) # Some random weights..
collap(iris, iris$Species, w = weights) # Note this behavior..
collap(iris, iris$Species, w = weights,

keep.by = FALSE, keep.w = FALSE)

22 collap

Multi-Type Aggregation --------------------------------------
head(wlddev) # World Development Panel Data
head(collap(wlddev, ~ country + decade)) # Aggregate by country and decade
head(collap(wlddev, ~ country + decade, fmedian, ffirst)) # Different functions
head(collap(wlddev, ~ country + decade, cols = is.numeric)) # Aggregate only numeric columns
head(collap(wlddev, ~ country + decade, cols = 9:13)) # Only the 5 series
head(collap(wlddev, PCGDP + LIFEEX ~ country + decade)) # Only GDP and life-expactancy
head(collap(wlddev, PCGDP + LIFEEX ~ country + decade, fsum)) # Using the sum instead
head(collap(wlddev, PCGDP + LIFEEX ~ country + decade, sum, # Same using base::sum -> slower!

na.rm = TRUE))
head(collap(wlddev, wlddev[c("country","decade")], fsum, # Same, exploring different inputs

cols = 9:10))
head(collap(wlddev[9:10], wlddev[c("country","decade")], fsum))
head(collapv(wlddev, c("country","decade"), fsum)) # ..names/indices with collapv
head(collapv(wlddev, c(1,5), fsum))

g <- GRP(wlddev, ~ country + decade) # Precomputing the grouping
head(collap(wlddev, g, keep.by = FALSE)) # This is slightly faster now
Aggregate categorical data using not the mode but the last element
head(collap(wlddev, ~ country + decade, fmean, flast))
head(collap(wlddev, ~ country + decade, catFUN = flast, # Aggregate only categorical data

cols = is_categorical))

Weighted Aggregation --
We aggregate to region level using population weights
head(collap(wlddev, ~ region + year, w = ~ POP)) # Takes weighted mean for numeric..
..and weighted mode for categorical data. The weight vector is aggregated using fsum

head(collap(wlddev, ~ region + year, w = ~ POP, # Aggregating weights using sum
wFUN = list(sum = fsum, max = fmax))) # and max (corresponding to mode)

Multi-Function Aggregation ----------------------------------
head(collap(wlddev, ~ country + decade, list(mean = fmean, N = fnobs), # Saving mean and Nobs

cols = 9:13))

head(collap(wlddev, ~ country + decade, # Same using base R -> slower
list(mean = mean,

N = function(x, ...) sum(!is.na(x))),
cols = 9:13, na.rm = TRUE))

lapply(collap(wlddev, ~ country + decade, # List output format
list(mean = fmean, N = fnobs), cols = 9:13, return = "list"), head)

head(collap(wlddev, ~ country + decade, # Long output format
list(mean = fmean, N = fnobs), cols = 9:13, return = "long"))

head(collap(wlddev, ~ country + decade, # Also aggregating categorical data,
list(mean = fmean, N = fnobs), return = "long_dupl")) # and duplicating it 2 times

collapse-documentation 23

head(collap(wlddev, ~ country + decade, # Now also using 2 functions on
list(mean = fmean, N = fnobs), list(mode = fmode, last = flast), # categorical data

keep.col.order = FALSE))

head(collap(wlddev, ~ country + decade, # More functions, string input,
c("fmean","fsum","fnobs","fsd","fvar"), # parallelized execution

c("fmode","ffirst","flast","fndistinct"), # (choose more than 1 cores,
parallel = TRUE, mc.cores = 1L, # depending on your machine)
keep.col.order = FALSE))

Custom Aggregation --
head(collap(wlddev, ~ country + decade, # Custom aggregation

custom = list(fmean = 11:13, fsd = 9:10, fmode = 7:8)))

head(collap(wlddev, ~ country + decade, # Using column names
custom = list(fmean = "PCGDP", fsd = c("LIFEEX","GINI"),

flast = "date")))

head(collap(wlddev, ~ country + decade, # Weighted parallelized custom
custom = list(fmean = 9:12, fsd = 9:10, # aggregation

fmode = 7:8), w = ~ POP,
wFUN = list(fsum, fmax),
parallel = TRUE, mc.cores = 1L))

head(collap(wlddev, ~ country + decade, # No column reordering
custom = list(fmean = 9:12, fsd = 9:10,

fmode = 7:8), w = ~ POP,
wFUN = list(fsum, fmax),
parallel = TRUE, mc.cores = 1L, keep.col.order = FALSE))

Piped Use --
iris |> fgroup_by(Species) |> collapg()
wlddev |> fgroup_by(country, decade) |> collapg() |> head()
wlddev |> fgroup_by(region, year) |> collapg(w = POP) |> head()
wlddev |> fgroup_by(country, decade) |> collapg(fmedian, flast) |> head()
wlddev |> fgroup_by(country, decade) |>

collapg(custom = list(fmean = 9:12, fmode = 5:7, flast = 3)) |> head()

collapse-documentation

Collapse Documentation & Overview

Description

The following table fully summarizes the contents of collapse. The documentation is structured
hierarchically: This is the main overview page, linking to topical overview pages and associated
function pages (unless functions are documented on the topic page).

24 collapse-documentation

Topics and Functions

Topic Main Features / Keywords Functions
Fast Statistical Functions Fast (grouped and weighted) statistical functions for vector, matrix, data frame and grouped data frames (class ’grouped_df’, dplyr compatible). fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fnobs, fndistinct

Fast Grouping and Ordering Fast (ordered) groupings from vectors, data frames, lists. ’GRP’ objects are efficient inputs for programming with collapse’s fast functions. fgroup_by can attach them to a data frame, for fast dplyr-style grouped computations. Fast splitting of vectors based on ’GRP’ objects. Fast radix-based ordering and hash-based grouping (the workhorses behind GRP). Fast matching (rows) and unique values/rows, group counts, factor generation, vector grouping, interactions, dropping unused factor levels, generalized run-length type grouping and grouping of integer sequences and time vectors. GRP, as_factor_GRP, GRPN, GRPid, GRPnames, is_GRP, fgroup_by, group_by_vars, fgroup_vars, fungroup, gsplit, greorder, radixorder(v), group, fmatch, ckmatch, %!in%, %[!]iin%, funique, fnunique, fduplicated, any_duplicated, fcount(v), qF, qG, is_qG, finteraction, fdroplevels, groupid, seqid, timeid

Fast Data Manipulation Fast and flexible select, subset, summarise, mutate/transform, sort/reorder, combine, join, reshape, rename and relabel data. Some functions modify by reference and/or allow assignment. In addition a set of (standard evaluation) functions for fast selecting, replacing or adding data frame columns, including shortcuts to select and replace variables by data type. fselect(<-), fsubset/ss, fsummarise, fmutate, across, (f/set)transform(v)(<-), fcompute(v), roworder(v), colorder(v), rowbind, join, pivot, (f/set)rename, (set)relabel, get_vars(<-), add_vars(<-), num_vars(<-), cat_vars(<-), char_vars(<-), fact_vars(<-), logi_vars(<-), date_vars(<-)

Quick Data Conversion Quick conversions: data.frame <> data.table <> tibble <> matrix (row- or column-wise) <> list | array > matrix, data.frame, data.table, tibble | vector > factor, matrix, data.frame, data.table, tibble; and converting factors / all factor columns. qDF, qDT, qTBL, qM, qF, mrtl, mctl, as_numeric_factor, as_integer_factor, as_character_factor

Advanced Data Aggregation Fast and easy (weighted and parallelized) aggregation of multi-type data, with different functions applied to numeric and categorical variables. Custom specifications allow mappings of functions to variables + renaming. collap(v/g)

Data Transformations Fast row- and column- arithmetic and (object preserving) apply functionality for vectors, matrices and data frames. Fast (grouped) replacing and sweeping of statistics (by reference) and (grouped and weighted) scaling / standardizing, (higher-dimensional) between- and within-transformations (i.e. averaging and centering), linear prediction and partialling out. %(r/c)r%, %(r/c)(+/-/*//)%, dapply, BY, (set)TRA, fscale/STD, fbetween/B, fwithin/W, fhdbetween/HDB, fhdwithin/HDW

Linear Models Fast (weighted) linear model fitting with 6 different solvers and a fast F-test to test exclusion restrictions on linear models with (large) factors. flm, fFtest

Time Series and Panel Series Fast and class-agnostic indexed time series and panel data objects, check for irregularity in time series and panels, and efficient time-sequence to integer/factor conversion. Fast (sequences of) lags / leads and (lagged / leaded and iterated, quasi-, log-) differences, and (compounded) growth rates on (irregular) time series and panel data. Flexible cumulative sums. Panel data to array conversions. Multivariate panel- auto-, partial- and cross-correlation functions. findex_by, findex, unindex, reindex, is_irregular, to_plm, timeid, flag/L/F, fdiff/D/Dlog, fgrowth/G, fcumsum, psmat, psacf, pspacf, psccf

Summary Statistics Fast (grouped and weighted) summary statistics for cross-sectional and panel data. Fast (weighted) cross tabulation. Efficient detailed description of data frame. Fast check of variation in data (within groups / dimensions). (Weighted) pairwise correlations and covariances (with obs. and p-value), pairwise observation count. qsu, qtab, descr, varying, pwcor, pwcov, pwnobs

Other Statistical Fast euclidean distance computations, (weighted) sample quantiles, and range of vector. fdist, fquantile, frange

List Processing (Recursive) list search and checks, extraction of list-elements / list-subsetting, fast (recursive) splitting, list-transpose, apply functions to lists of data frames / data objects, and generalized recursive row-binding / unlisting in 2-dimensions / to data frame. is_unlistable, ldepth, has_elem, get_elem, atomic_elem(<-), list_elem(<-), reg_elem, irreg_elem, rsplit, t_list, rapply2d, unlist2d, rowbind
Recode and Replace Values Recode multiple values (exact or regex matching) and replace NaN/Inf/-Inf and outliers (according to 1- or 2-sided threshold or standard-deviations) in vectors, matrices or data frames. Insert a value at arbitrary positions into vectors, matrices or data frames. recode_num, recode_char, replace_na, replace_inf, replace_outliers, pad

(Memory) Efficient Programming Efficient comparisons of a vector/matrix with a value, and replacing values/rows in vector/matrix/DF (avoiding logical vectors or subsets), faster generation of initialized vectors, and fast mathematical operations on vectors/matrices/DF’s with no copies at all. Fast missing value detection, (random) insertion and removal/replacement, lengths and C storage types, greatest common divisor of vector, nlevels for factors, nrow, ncol, dim (for data frames) and seq_along rows or columns. Fast vectorization of matrices and lists, and choleski inverse of symmetric PD matrix. anyv, allv, allNA, whichv, whichNA, %==%, %!=%, copyv, setv, alloc, setop, %+=%, %-=%, %*=%, %/=%, missing_cases, na_insert, na_rm, na_locf, na_focb, na_omit, vlengths, vtypes, vgcd, fnlevels, fnrow, fncol, fdim, seq_row, seq_col, vec, cinv

Small (Helper) Functions Multiple-assignment, non-standard concatenation, set and extract variable labels and classes, display variable names and labels together, add / remove prefix or postfix to / from column names, check exact or near / numeric equality of multiple objects or of all elements in a list, get names of functions called in an expression, return object with dimnames, row- or colnames efficiently set, or with all attributes removed, C-level functions to set and shallow-copy attributes, identify categorical (non-numeric) and date(-time) objects. massign, %=%, .c, vlabels(<-), setLabels, vclasses, namlab, add_stub, rm_stub, all_identical, all_obj_equal, all_funs, setDimnames, setRownames, setColnames, unattrib, setAttrib, setattrib, copyAttrib, copyMostAttrib, is_categorical, is_date

Data and Global Macros Groningen Growth and Development Centre 10-Sector Database, World Bank World Development dataset, and some global macros containing links to the topical documentation pages (including this page), all exported objects (excluding exported S3 methods and depreciated functions), all generic functions (excluding depreciated), the 2 datasets, depreciated functions, all fast functions, all fast statistical (scalar-valued) functions, and all transformation operators (these are not infix functions but function shortcuts resembling operators in a statistical sense, such as the lag/lead operators L/F, both wrapping flag, see .OPERATOR_FUN). GGDC10S, wlddev, .COLLAPSE_TOPICS, .COLLAPSE_ALL, .COLLAPSE_GENERIC, .COLLAPSE_DATA, .COLLAPSE_OLD, .FAST_FUN, .FAST_STAT_FUN, .OPERATOR_FUN

Package Options set_collapse/get_collapse can be used to globally set/get the defaults for na.rm, nthreads and sort, etc., arguments found in many functions, and to globally control the namespace with options ’mask’ and ’remove’: ’mask’ can be used to mask base R/dplyr functions by export copies of equivalent collapse functions starting with "f", removing the leading "f" (e.g. exporting subset <- fsubset). ’remove’ allows removing arbitrary functions from the exported namespace. options("collapse_unused_arg_action") sets the action taken by generic statistical functions when unknown arguments are passed to a method. The default is "warning". set_collapse, get_collapse

collapse-options 25

Details

The added top-level documentation infrastructure in collapse allows you to effectively navigate
the package. Calling ?FUN brings up the documentation page documenting the function, which
contains links to associated topic pages and closely related functions. You can also call topical
documentation pages directly from the console. The links to these pages are contained in the global
macro .COLLAPSE_TOPICS (e.g. calling help(.COLLAPSE_TOPICS[1]) brings up this page).

Author(s)

Maintainer: Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>

See Also

collapse-package

collapse-options collapse Package Options

Description

collapse is globally configurable to an extent few packages are: the default value of key function
arguments governing the behavior of its algorithms, and the exported namespace, can be adjusted
interactively through the set_collapse() function.

These options are saved in an internal environment called .op (for safety and performance reasons)
visible in the documentation of some functions such as fmean. The contents of this environment
can be accessed using get_collapse().

There are also a few options that can be set using options (retrievable using getOption). These
options mainly affect package startup behavior.

Usage

set_collapse(...)
get_collapse(opts = NULL)

Arguments

... either comma separated options, or a single list of options. The available options
are:

26 collapse-options

na.rm logical, default TRUE. Sets the default for statistical algorithms such as the Fast Statistical Functions to skip missing values. If your data does not have missing values, or only in rare cases, it is recommended to change this to FALSE for performance gains. Note that this does not affect other (non-statistical) uses of na.rm arguments, such as in pivot.

sort logical, default TRUE. Sets the default for grouping operations to be sorted. This also applies to factor generation using qF and tabulation with qtab, but excludes other uses of sort arguments where grouping is not the objective (such as in funique or pivot). In general, sorted grouping (internally using radixorder) is slower than hash-based direct grouping (internally using group). However, if data is pre-sorted, sorted grouping is slightly faster. In general, if records don’t need to be sorted or you want to maintain their first-appearance order, changing this to FALSE is recommended and often brings substantial performance gains. Note that this also affects internal grouping applied when atomic vectors (except for factors) or lists are passed to g arguments in Fast Statistical Functions.

nthreads integer, default 1. Sets the default for OpenMP multithreading, available in certain statistical and data manipulation functions. Setting values greater than 1 is strongly recommended with larger datasets.

stable.algo logical, default TRUE. Option passed to fvar()/fsd() and qsu(). FALSE enables one-pass standard deviation calculation, which is very fast, but might incur catastrophic cancellation if numbers are large and the variance is small. see fvar for details.

stub logical, default TRUE. Controls whether transformation operators (.OPERATOR_FUN) such as W, L, STD etc. add prefixes to transformed columns of matrix and data.frame-like objects.

verbose integer, default 1. Print additional (diagnostic) information or messages when executing code. Currently only used in join and roworder.

digits integer, default 2. Number of digits to print, e.g. in descr or pwcor.

mask character, default NULL. Allows masking existing base R/dplyr functions with faster collapse versions, by creating additional functions in the namespace and instantly exporting them:

For example set_collapse(mask = "unique") (or, equivalently, set_collapse(mask = "funique")) will create unique <- funique in the collapse namespace, export unique(), and silently detach and attach the namespace again so R can find it - all in millisecond. Thus calling unique() afterwards uses the collapse version - which is many times faster. funique remains available and you can still call base::unique explicitly.

All collapse functions starting with ’f’ can be passed to the option (with or without the ’f’) e.g. set_collapse(mask = c("subset", "transform", "droplevels")) creates subset <- fsubset, transform <- ftransform etc. Special functions are "n" and "table"/"qtab", and "%in%", which create n <- GRPN (for use in (f)summarise/(f)mutate), table <- qtab, and replace %in% with a fast version using fmatch, respectively.

There are also a couple of convenience keywords that you can use to mask groups of functions:

- "manip" adds data manipulation functions: fsubset, ftransform, ftransform<-, ftransformv, fcompute, fcomputev, fselect, fselect<-, fgroup_by, fgroup_vars, fungroup, fsummarise, fsummarize, fmutate, frename, findex_by, findex.

- "helper" adds the functions: fdroplevels, finteraction, fmatch, funique, fnunique, fduplicated, fcount, fcountv, fquantile, frange, fdist, fnlevels, fnrow and fncol.

- "special" exports n(), table() and %in%. See above.

- "fast-fun" adds the functions contained in the macro: .FAST_FUN. See also Note.

- "fast-stat-fun" adds the functions contained in the macro: .FAST_STAT_FUN. See also Note.

- "fast-trfm-fun" adds the functions contained in: setdiff(.FAST_FUN, .FAST_STAT_FUN). See also Note.

collapse-options 27

- "all" turns on all of the above.

The re-attaching of the namespace places collapse at the top of the search path (after the global environment), implying that all its exported functions will take priority over other libraries. Users can use fastverse::fastverse_conflicts() to check which functions are masked following set_collapse(mask = ...). The option can be changed at any time with immediate effect. Using set_collapse(mask = NULL) removes all masked functions from the namespace, and can also be called simply to place collapse at the top of the search path.

remove character, default NULL. Similar to ’mask’: allows removing functions from the exported namespace (they are still in the namespace, just no longer exported). All collapse functions can be passed here. This argument is always evaluated after ’mask’, thus you can also remove masked functions again i.e. after setting a keyword which masks a bunch of functions. There are also a couple of convenience keywords you can specify to bulk-remove certain functions:

- "shorthand" removes function shorthands: gv, gv<-, av, av<-, nv, nv<-, gvr, gvr<-, itn, ix, slt, slt<-, sbt, gby, iby, mtt, smr, tfm, tfmv, tfm<-, settfm, settfmv, rnm.

- "infix" removes infix functions: %!=%, %[!]in%, %[!]iin%, %*=%, %+=%, %-=%, %/=%, %=%, %==%, %c*%, %c+%, %c-%, %c/%, %cr%, %r*%, %r+%, %r-%, %r/%, %rr%.

- "operator" removes functions contained in the macro: .OPERATOR_FUN.

- "old" removes depreciated functions contained in the macro: .COLLAPSE_OLD.

Like ’mask’, the option is alterable and reversible. Specifying set_collapse(remove = NULL) restores the exported namespace. Also like ’mask’, this option silently detaches and attaches collapse again, ensuring that it is at the top of the search path.

opts character. A vector of options to receive from .op, or NULL for a list of all
options.

Value

set_collapse() returns the old content of .op invisibly as a list. get_collapse(), if called with
only one option, returns the value of the option, and otherwise a list.

Options Set Using options()

• "collapse_unused_arg_action" regulates how generic functions (such as the Fast Statisti-
cal Functions) in the package react when an unknown argument is passed to a method. The
default action is "warning" which issues a warning. Other options are "error", "message"
or "none", whereby the latter enables silent swallowing of such arguments.

• "collapse_export_F", if set to TRUE, exports the lead operator F in the package namespace
when loading the package. The operator was exported by default until v1.9.0, but is now
hidden inside the package due to too many problems with base::F. Alternatively, the operator
can be accessed using collapse:::F.

• "collapse_nthreads", "collapse_na_rm", "collapse_sort", "collapse_stable_algo",
"collapse_verbose", "collapse_digits", "collapse_mask" and "collapse_remove" can
be set before loading the package to initialize .op with different defaults (e.g. using an
.Rprofile file). Once loaded, these options have no effect, and users need to use set_collapse()
to change them. See also the Note.

28 collapse-options

Note

Setting keywords "fast-fun", "fast-stat-fun", "fast-trfm-fun" or "all" with set_collapse(mask =
...) will also adjust internal optimization flags, e.g. in (f)summarise and (f)mutate, so that
these functions - and all expressions containing them - receive vectorized execution (see exam-
ples of (f)summarise and (f)mutate). Users should be aware of expressions like fmutate(mu =
sum(var) / lenth(var)): this usually gets executed by groups, but with these keywords set,this
will be vectorized (like fmutate(mu = fsum(var) / lenth(var))) implying grouped sum divided
by overall length. In this case fmutate(mu = base::sum(var) / lenth(var)) needs to be speci-
fied to retain the original result.

Note that passing individual functions like set_collapse(mask = "(f)sum") will not change in-
ternal optimization flags for these functions. This is to ensure consistency i.e. you can be either
all in (by setting appropriate keywords) or all out when it comes to vectorized stats with basic R
names.

Note also that masking does not change documentation links, so you need to look up the f- version
of a function to get the right documentation.

A safe way to set options affecting startup behavior is by using a .Rprofile file in your user or
project directory (see also here, the user-level file is located at file.path(Sys.getenv("HOME"),
".Rprofile") and can be edited using file.edit(Sys.getenv("HOME"), ".Rprofile")), or by
using a .fastverse configuration file in the project directory.

options("collapse_remove") does in fact remove functions from the namespace and cannot be
reversed by set_collapse(remove = NULL) once the package is loaded. It is only reversed by
re-loading collapse.

See Also

Collapse Overview, collapse-package

Examples

Setting new values
oldopts <- set_collapse(nthreads = 2, na.rm = FALSE)

Getting the values
get_collapse()
get_collapse("nthreads")

Resetting
set_collapse(oldopts)
rm(oldopts)

Not run:
This is a typical working setup I use:
library(fastverse)
Loading other stats packages with fastverse_extend():
displays versions, checks conflicts, and installs if unavailable
fastverse_extend(qs, fixest, grf, glmnet, install = TRUE)
Now setting collapse options with some namespace modification
set_collapse(

nthreads = 4,

https://www.statmethods.net/interface/customizing.html
https://fastverse.github.io/fastverse/articles/fastverse_intro.html#custom-fastverse-configurations-for-projects

collapse-renamed 29

sort = FALSE,
mask = c("manip", "helper", "special", "mean", "scale"),
remove = "old"

)
Final conflicts check (optional)
fastverse_conflicts()

For some simpler scripts I also use
set_collapse(

nthreads = 4,
sort = FALSE,
mask = "all",
remove = c("old", "between") # I use data.table::between > fbetween

)

This is now collapse code
mtcars |>

subset(mpg > 12) |>
group_by(cyl) |>
sum()

End(Not run)

Changing what happens with unused arguments
oldopts <- options(collapse_unused_arg_action = "message") # default: "warning"
fmean(mtcars$mpg, bla = 1)

Now nothing happens, same as base R
options(collapse_unused_arg_action = "none")
fmean(mtcars$mpg, bla = 1)
mean(mtcars$mpg, bla = 1)

options(oldopts)
rm(oldopts)

collapse-renamed Renamed Functions

Description

These functions were renamed (mostly during v1.6.0 update) to make the namespace more consis-
tent. Except for the S3 generics of fNobs, fNdistinct, fHDbetween and fHDwithin, and functions
replace_NA and replace_Inf, I intend to remove all of these functions by end of 2023.

Renaming

fNobs -> fnobs
fNdistinct -> fndistinct
pwNobs -> pwnobs
fHDwithin -> fhdwithin

30 colorder

fHDbetween -> fhdbetween
as.factor_GRP -> as_factor_GRP
as.factor_qG -> as_factor_qG
is.GRP -> is_GRP
is.qG -> is_qG
is.unlistable -> is_unlistable
is.categorical -> is_categorical
is.Date -> is_date
as.numeric_factor -> as_numeric_factor
as.character_factor -> as_character_factor
Date_vars -> date_vars
`Date_vars<-` -> `date_vars<-`
replace_NA -> replace_na
replace_Inf -> replace_inf

colorder Fast Reordering of Data Frame Columns

Description

Efficiently reorder columns in a data frame. To do this fully by reference see also data.table::setcolorder.

Usage

colorder(.X, ..., pos = "front")

colorderv(X, neworder = radixorder(names(X)),
pos = "front", regex = FALSE, ...)

Arguments

.X, X a data frame or list.

... for colorder: Column names of .X in the new order (can also use sequences
i.e. col1:coln, newname = colk, ...). For colorderv: Further arguments to
grep if regex = TRUE.

neworder a vector of column names, positive indices, a suitable logical vector, a function
such as is.numeric, or a vector of regular expressions matching column names
(if regex = TRUE).

pos integer or character. Different options regarding column arrangement if ...length()
< ncol(.X) (or length(neworder) < ncol(X)).

Int. String Description
1 "front" move specified columns to the front (the default).
2 "end" move specified columns to the end.
3 "exchange" just exchange the positions of selected columns, other columns remain in the same position.
4 "after" place all further selected columns behind the first selected column.

dapply 31

regex logical. TRUE will do regular expression search on the column names of X using
a (vector of) regular expression(s) passed to neworder. Matching is done using
grep. Note that multiple regular expressions will be matched in the order they
are passed, and funique will be applied to the resulting set of indices.

Value

.X/X with columns reordered (no deep copies).

See Also

roworder, Data Frame Manipulation, Collapse Overview

Examples

head(colorder(mtcars, vs, cyl:hp, am))
head(colorder(mtcars, vs, cyl:hp, am, pos = "end"))
head(colorder(mtcars, vs, cyl:hp, am, pos = "after"))
head(colorder(mtcars, vs, cyl, pos = "exchange"))
head(colorder(mtcars, vs, cyl:hp, new = am)) # renaming

Same in standard evaluation
head(colorderv(mtcars, c(8, 2:4, 9)))
head(colorderv(mtcars, c(8, 2:4, 9), pos = "end"))
head(colorderv(mtcars, c(8, 2:4, 9), pos = "after"))
head(colorderv(mtcars, c(8, 2), pos = "exchange"))

dapply Data Apply

Description

dapply efficiently applies functions to columns or rows of matrix-like objects and by default returns
an object of the same type and with the same attributes (unless the result is scalar and drop = TRUE).
Alternatively it is possible to return the result in a plain matrix or data.frame. A simple parallelism
is also available.

Usage

dapply(X, FUN, ..., MARGIN = 2, parallel = FALSE, mc.cores = 1L,
return = c("same", "matrix", "data.frame"), drop = TRUE)

32 dapply

Arguments

X a matrix, data frame or alike object.

FUN a function, can be scalar- or vector-valued.

... further arguments to FUN.

MARGIN integer. The margin which FUN will be applied over. Default 2 indicates columns
while 1 indicates rows. See also Details.

parallel logical. TRUE implements simple parallel execution by internally calling mclapply
instead of lapply.

mc.cores integer. Argument to mclapply indicating the number of cores to use for parallel
execution. Can use detectCores() to select all available cores.

return an integer or string indicating the type of object to return. The default 1 -
"same" returns the same object type (i.e. class and other attributes are retained,
just the names for the dimensions are adjusted). 2 - "matrix" always returns
the output as matrix and 3 - "data.frame" always returns a data frame.

drop logical. If the result has only one row or one column, drop = TRUE will drop
dimensions and return a (named) atomic vector.

Details

dapply is an efficient command to apply functions to rows or columns of data without loosing
information (attributes) about the data or changing the classes or format of the data. It is principally
an efficient wrapper around lapply and works as follows:

• Save the attributes of X.

• If MARGIN = 2 (columns), convert matrices to plain lists of columns using mctl and remove all
attributes from data frames.

• If MARGIN = 1 (rows), convert matrices to plain lists of rows using mrtl. For data frames
remove all attributes, efficiently convert to matrix using do.call(cbind, X) and also convert
to list of rows using mrtl.

• Call lapply or mclapply on these plain lists (which is faster than calling lapply on an object
with attributes).

• depending on the requested output type, use matrix, unlist or do.call(cbind, ...) to
convert the result back to a matrix or list of columns.

• modify the relevant attributes accordingly and efficiently attach to the object again (no further
checks).

The performance gain from working with plain lists makes dapply not much slower than calling
lapply itself on a data frame. Because of the conversions involved, row-operations require some
memory, but are still faster than apply.

Value

X where FUN was applied to every row or column.

data-transformations 33

See Also

BY, collap, Fast Statistical Functions, Data Transformations, Collapse Overview

Examples

head(dapply(mtcars, log)) # Take natural log of each variable
head(dapply(mtcars, log, return = "matrix")) # Return as matrix
m <- as.matrix(mtcars)
head(dapply(m, log)) # Same thing
head(dapply(m, log, return = "data.frame")) # Return data frame from matrix
dapply(mtcars, sum); dapply(m, sum) # Computing sum of each column, return as vector
dapply(mtcars, sum, drop = FALSE) # This returns a data frame of 1 row
dapply(mtcars, sum, MARGIN = 1) # Compute row-sum of each column, return as vector
dapply(m, sum, MARGIN = 1) # Same thing for matrices, faster t. apply(m, 1, sum)
head(dapply(m, sum, MARGIN = 1, drop = FALSE)) # Gives matrix with one column
head(dapply(m, quantile, MARGIN = 1)) # Compute row-quantiles
dapply(m, quantile) # Column-quantiles
head(dapply(mtcars, quantile, MARGIN = 1)) # Same for data frames, output is also a data.frame
dapply(mtcars, quantile)

With classed objects, we have to be a bit careful
Not run:
dapply(EuStockMarkets, quantile) # This gives an error because the tsp attribute is misspecified

End(Not run)
dapply(EuStockMarkets, quantile, return = "matrix") # These both work fine..
dapply(EuStockMarkets, quantile, return = "data.frame")

Similarly for grouped tibbles and other data frame based classes
library(dplyr)
gmtcars <- group_by(mtcars,cyl,vs,am)
head(dapply(gmtcars, log)) # Still gives a grouped tibble back
dapply(gmtcars, quantile, MARGIN = 1) # Here it makes sense to keep the groups attribute
dapply(gmtcars, quantile) # This does not make much sense, ...
dapply(gmtcars, quantile, # better convert to plain data.frame:

return = "data.frame")

data-transformations Data Transformations

Description

collapse provides an ensemble of functions to perform common data transformations efficiently and
user friendly:

• dapply applies functions to rows or columns of matrices and data frames, preserving the
data format.

• BY is an S3 generic for efficient Split-Apply-Combine computing, similar to dapply.

34 data-transformations

• A set of arithmetic operators facilitates row-wise %rr%, %r+%, %r-%, %r*%, %r/% and column-
wise %cr%, %c+%, %c-%, %c*%, %c/% replacing and sweeping operations involving a vec-
tor and a matrix or data frame / list. Since v1.7, the operators %+=%, %-=%, %*=% and %/=%
do column- and element- wise math by reference, and the function setop can also perform
sweeping out rows by reference.

• (set)TRA is a more advanced S3 generic to efficiently perform (groupwise) replacing and
sweeping out of statistics, either by creating a copy of the data or by reference. Supported
operations are:

Integer-id String-id Description
0 "na" or "replace_na" replace only missing values
1 "fill" or "replace_fill" replace everything
2 "replace" replace data but preserve missing values
3 "-" subtract
4 "-+" subtract group-statistics but add group-frequency weighted average of group statistics
5 "/" divide
6 "%" compute percentages
7 "+" add
8 "*" multiply
9 "%%" modulus
10 "-%%" subtract modulus

All of collapse’s Fast Statistical Functions have a built-in TRA argument for faster access (i.e.
you can compute (groupwise) statistics and use them to transform your data with a single
function call).

• fscale/STD is an S3 generic to perform (groupwise and / or weighted) scaling / standardiz-
ing of data and is orders of magnitude faster than scale.

• fwithin/W is an S3 generic to efficiently perform (groupwise and / or weighted) within-
transformations / demeaning / centering of data. Similarly fbetween/B computes (group-
wise and / or weighted) between-transformations / averages (also a lot faster than ave).

• fhdwithin/HDW, shorthand for ’higher-dimensional within transform’, is an S3 generic to ef-
ficiently center data on multiple groups and partial-out linear models (possibly involving
many levels of fixed effects and interactions). In other words, fhdwithin/HDW efficiently
computes residuals from linear models. Similarly fhdbetween/HDB, shorthand for ’higher-
dimensional between transformation’, computes the corresponding means or fitted values.

• flag/L/F, fdiff/D/Dlog and fgrowth/G are S3 generics to compute sequences of lags /
leads and suitably lagged and iterated (quasi-, log-) differences and growth rates on time
series and panel data. fcumsum flexibly computes (grouped, ordered) cumulative sums. More
in Time Series and Panel Series.

• STD, W, B, HDW, HDB, L, D, Dlog and G are parsimonious wrappers around the f- functions
above representing the corresponding transformation ’operators’. They have additional capa-
bilities when applied to data-frames (i.e. variable selection, formula input, auto-renaming and
id-variable preservation), and are easier to employ in regression formulas, but are otherwise
identical in functionality.

Table of Functions

descr 35

Function / S3 Generic Methods Description
dapply No methods, works with matrices and data frames Apply functions to rows or columns
BY default, matrix, data.frame, grouped_df Split-Apply-Combine computing
%(r/c)(r/+/-/*//)% No methods, works with matrices and data frames / lists Row- and column-arithmetic
(set)TRA default, matrix, data.frame, grouped_df Replace and sweep out statistics (by reference)
fscale/STD default, matrix, data.frame, pseries, pdata.frame, grouped_df Scale / standardize data
fwithin/W default, matrix, data.frame, pseries, pdata.frame, grouped_df Demean / center data
fbetween/B default, matrix, data.frame, pseries, pdata.frame, grouped_df Compute means / average data
fhdwithin/HDW default, matrix, data.frame, pseries, pdata.frame High-dimensional centering and lm residuals
fhdbetween/HDB default, matrix, data.frame, pseries, pdata.frame High-dimensional averages and lm fitted values
flag/L/F, fdiff/D/Dlog, fgrowth/G, fcumsum default, matrix, data.frame, pseries, pdata.frame, grouped_df (Sequences of) lags / leads, differences, growth rates and cumulative sums

See Also

Collapse Overview, Fast Statistical Functions, Time Series and Panel Series

descr Detailed Statistical Description of Data Frame

Description

descr offers a fast and detailed description of each variable in a data frame. Since v1.9.0 it fully
supports grouped and weighted computations.

Usage

descr(X, ...)

Default S3 method:
descr(X, by = NULL, w = NULL, cols = NULL,

Ndistinct = TRUE, higher = TRUE, table = TRUE, sort.table = "freq",
Qprobs = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99), Qtype = 7L,
label.attr = "label", stepwise = FALSE, ...)

S3 method for class 'grouped_df'
descr(X, w = NULL,

Ndistinct = TRUE, higher = TRUE, table = TRUE, sort.table = "freq",
Qprobs = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99), Qtype = 7L,
label.attr = "label", stepwise = FALSE, ...)

S3 method for class 'descr'
as.data.frame(x, ..., gid = "Group")

S3 method for class 'descr'
print(x, n = 14, perc = TRUE, digits = .op[["digits"]], t.table = TRUE, total = TRUE,

compact = FALSE, summary = !compact, reverse = FALSE, stepwise = FALSE, ...)

36 descr

Arguments

X a (grouped) data frame or list of atomic vectors. Atomic vectors, matrices or
arrays can be passed but will first be coerced to data frame using qDF.

by a factor, GRP object, or atomic vector / list of vectors (internally grouped with
GRP), or a one- or two-sided formula e.g. ~ group1 or var1 + var2 ~ group1 +
group2 to group X. See Examples.

w a numeric vector of (non-negative) weights. the default method also supports a
one-sided formulas i.e. ~ weightcol or ~ log(weightcol). The grouped_df
method supports lazy-expressions (same without ~). See Examples.

cols select columns to describe using column names, indices a logical vector or se-
lector function (e.g. is.numeric). Note: cols is ignored if a two-sided formula
is passed to by.

Ndistinct logical. TRUE (default) computes the number of distinct values on all variables
using fndistinct.

higher logical. Argument is passed down to qsu: TRUE (default) computes the skewness
and the kurtosis.

table logical. TRUE (default) computes a (sorted) frequency table for all categorical
variables (excluding Date variables).

sort.table an integer or character string specifying how the frequency table should be pre-
sented:

Int. String Description
1 "value" sort table by values.
2 "freq" sort table by frequencies.
3 "none" return table in first-appearance order of values, or levels for factors (most efficient).

Qprobs double. Probabilities for quantiles to compute on numeric variables, passed
down to .quantile. If something non-numeric is passed (i.e. NULL, FALSE, NA,
"" etc.), no quantiles are computed.

Qtype integer. Quantile types 5-9 following Hyndman and Fan (1996) who recom-
mended type 8, default 7 as in quantile.

label.attr character. The name of a label attribute to display for each variable (if variables
are labeled).

... for descr: other arguments passed to qsu.default. For [.descr: variable
names or indices passed to [.list. The argument is unused in the print and
as.data.frame methods.

x an object of class ’descr’.

n integer. The maximum number of table elements to print for categorical vari-
ables. If the number of distinct elements is <= n, the whole table is printed.
Otherwise the remaining items are summed into an ’... %s Others’ category.

perc logical. TRUE (default) adds percentages to the frequencies in the table for cate-
gorical variables, and, if !is.null(by), the percentage of observations in each
group.

descr 37

digits integer. The number of decimals to print in statistics, quantiles and percentage
tables.

t.table logical. TRUE (default) prints a transposed table.
total logical. TRUE (default) adds a ’Total’ column for grouped tables (when using by

argument).
compact logical. TRUE combines statistics and quantiles to generate a more compact print-

out. Especially useful with groups (by).
summary logical. TRUE (default) computes and displays a summary of the frequencies, if

the size of the table for a categorical variable exceeds n.
reverse logical. TRUE prints contents in reverse order, starting with the last column, so

that the dataset can be analyzed by scrolling up the console after calling descr.
stepwise logical. TRUE prints one variable at a time. The user needs to press [enter] to see

the printout for the next variable. If called from descr, the computation is also
done one variable at a time, and the finished ’descr’ object is returned invisibly.

gid character. Name assigned to the group-id column, when describing data by
groups.

Details

descr was heavily inspired by Hmisc::describe, but is much faster and has more advanced statis-
tical capabilities. It is principally a wrapper around qsu, fquantile (.quantile), and fndistinct
for numeric variables, and computes frequency tables for categorical variables using qtab. Date
variables are summarized with fnobs, fndistinct and frange.

Since v1.9.0 grouped and weighted computations are fully supported. The use of sampling weights
will produce a weighted mean, sd, skewness and kurtosis, and weighted quantiles for numeric
data. For categorical data, tables will display the sum of weights instead of the frequencies, and
percentage tables as well as the percentage of missing values indicated next to ’Statistics’ in print,
be relative to the total sum of weights. All this can be done by groups. Grouped (weighted) quantiles
are computed using BY.

For larger datasets, calling the stepwise option directly from descr() is recommended, as pre-
computing the statistics for all variables before digesting the results can be time consuming.

The list-object returned from descr can efficiently be converted to a tidy data frame using the
as.data.frame method. This representation will not include frequency tables computed for cate-
gorical variables.

Value

A 2-level nested list-based object of class ’descr’. The list has the same size as the dataset, and
contains the statistics computed for each variable, which are themselves stored in a list containing
the class, the label, the basic statistics and quantiles / tables computed for the variable (in matrix
form).

The object has attributes attached providing the ’name’ of the dataset, the number of rows in the
dataset (’N’), an attribute ’arstat’ indicating whether arrays of statistics where generated by pass-
ing arguments (e.g. pid) down to qsu.default, an attribute ’table’ indicating whether table =
TRUE (i.e. the object could contain tables for categorical variables), and attributes ’groups’ and/or
’weights’ providing a GRP object and/or weight vector for grouped and/or weighted data descrip-
tions.

38 efficient-programming

See Also

qsu, qtab, fquantile, pwcor, Summary Statistics, Fast Statistical Functions, Collapse Overview

Examples

Simple Use
descr(iris)
descr(wlddev)
descr(GGDC10S)

Some useful print options (also try stepwise argument)
print(descr(GGDC10S), reverse = TRUE, t.table = FALSE)
For bigger data consider: descr(big_data, stepwise = TRUE)

Generating a data frame
as.data.frame(descr(wlddev, table = FALSE))

Weighted Desciptions
descr(wlddev, w = ~ replace_na(POP)) # replacing NA's with 0's for fquantile()

Grouped Desciptions
descr(GGDC10S, ~ Variable)
descr(wlddev, ~ income)
print(descr(wlddev, ~ income), compact = TRUE)

Grouped & Weighted Desciptions
descr(wlddev, ~ income, w = ~ replace_na(POP))

Passing Arguments down to qsu.default: for Panel Data Statistics
descr(iris, pid = iris$Species)
descr(wlddev, pid = wlddev$iso3c)

efficient-programming Small Functions to Make R Programming More Efficient

Description

A small set of functions to address some common inefficiencies in R, such as the creation of logical
vectors to compare quantities, unnecessary copies of objects in elementary mathematical or sub-
setting operations, obtaining information about objects (esp. data frames), or dealing with missing
values.

Usage

anyv(x, value) # Faster than any(x == value). See also kit::panyv()
allv(x, value) # Faster than all(x == value). See also kit::pallv()
allNA(x) # Faster than all(is.na(x)). See also kit::pallNA()
whichv(x, value, # Faster than which(x == value)

efficient-programming 39

invert = FALSE) # or which(x != value). See also Note (3)
whichNA(x, invert = FALSE) # Faster than which((!)is.na(x))
x %==% value # Infix for whichv(v, value, FALSE), use e.g. in fsubset()
x %!=% value # Infix for whichv(v, value, TRUE). See also Note (3)
alloc(value, n, # Fast rep_len(value, n) or replicate(n, value).

simplify = TRUE) # simplify only works if length(value) == 1. See Details.
copyv(X, v, R, ..., invert # Fast replace(X, v, R), replace(X, X (!/=)= v, R) or

= FALSE, vind1 = FALSE, # replace(X, (!)v, R[(!)v]). See Details and Note (4).
xlist = FALSE) # For multi-replacement see also kit::vswitch()

setv(X, v, R, ..., invert # Same for X[v] <- r, X[x (!/=)= v] <- r or
= FALSE, vind1 = FALSE, # x[(!)v] <- r[(!)v]. Modifies X by reference, fastest.
xlist = FALSE) # X/R/V can also be lists/DFs. See Details and Examples.

setop(X, op, V, ..., # Faster than X <- X +\-*\/ V (modifies by reference)
rowwise = FALSE) # optionally can also add v to rows of a matrix or list

X %+=% V # Infix for setop(X, "+", V). See also Note (2)
X %-=% V # Infix for setop(X, "-", V). See also Note (2)
X %*=% V # Infix for setop(X, "*", V). See also Note (2)
X %/=% V # Infix for setop(X, "/", V). See also Note (2)
na_rm(x) # Fast: if(anyNA(x)) x[!is.na(x)] else x, last
na_locf(x, set = FALSE) # obs. carried forward and first obs. carried back.
na_focb(x, set = FALSE) # (by reference). These also support lists (NULL/empty)
na_omit(X, cols = NULL, # Faster na.omit for matrices and data frames,

na.attr = FALSE, # can use selected columns to check, attach indices,
prop = 0, ...) # and remove cases with a proportion of values missing

na_insert(X, prop = 0.1, # Insert missing values at random
value = NA)

missing_cases(X, cols=NULL, # The opposite of complete.cases(), faster for DF's.
prop = 0, count = FALSE) # See also kit::panyNA(), kit::pallNA(), kit::pcountNA()

vlengths(X, use.names=TRUE) # Faster lengths() and nchar() (in C, no method dispatch)
vtypes(X, use.names = TRUE) # Get data storage types (faster vapply(X, typeof, ...))
vgcd(x) # Greatest common divisor of positive integers or doubles
fnlevels(x) # Faster version of nlevels(x) (for factors)
fnrow(X) # Faster nrow for data frames (not faster for matrices)
fncol(X) # Faster ncol for data frames (not faster for matrices)
fdim(X) # Faster dim for data frames (not faster for matrices)
seq_row(X) # Fast integer sequences along rows of X
seq_col(X) # Fast integer sequences along columns of X
vec(X) # Vectorization (stacking) of matrix or data frame/list
cinv(x) # Choleski (fast) inverse of symmetric PD matrix, e.g. X'X

Arguments

X, V, R a vector, matrix or data frame.

x, v a (atomic) vector or matrix (na_rm also supports lists).

value a single value of any (atomic) vector type. For whichv it can also be a length(x)
vector.

invert logical. TRUE considers elements x != value.

set logical. TRUE transforms x by reference.

40 efficient-programming

simplify logical. If value is a length-1 atomic vector, alloc() with simplify = TRUE
returns a length-n atomic vector. If simplify = FALSE, the result is always a
list.

vind1 logical. If length(v) == 1L, setting vind1 = TRUE will interpret v as an index,
rather than a value to search and replace.

xlist logical. If X is a list, the default is to treat it like a data frame and replace rows.
Setting xlist = TRUE will treat X and its replacement R like 1-dimensional list
vectors.

op an integer or character string indicating the operation to perform.

Int. String Description
1 "+" add V
2 "-" subtract V
3 "*" multiply by V
4 "/" divide by V

rowwise logical. TRUE performs the operation between V and each row of X.

cols select columns to check for missing values using column names, indices, a logi-
cal vector or a function (e.g. is.numeric). The default is to check all columns,
which could be inefficient.

n integer. The length of the vector to allocate with value.

na.attr logical. TRUE adds an attribute containing the removed cases. For compatibility
reasons this is exactly the same format as na.omit i.e. the attribute is called
"na.action" and of class "omit".

prop double. For na_insert: the proportion of observations to be randomly replaced
with NA. For missing_cases and na_omit: the proportion of values missing
for the case to be considered missing (within cols if specified). For matrices
this is implemented in R as rowSums(is.na(X)) >= max(as.integer(prop *
ncol(X)), 1L). The C code for data frames works equivalently, and skips list-
and raw-columns (ncol(X) is adjusted downwards).

count logical. TRUE returns the row-wise missing value count (within cols). This
ignores prop.

use.names logical. Preserve names if X is a list.

... for na_omit: further arguments passed to [for vectors and matrices. With
indexed data it is also possible to specify the drop.index.levels argument,
see indexing. For copyv, setv and setop, the argument is unused, and serves
as a placeholder for possible future arguments.

Details

alloc is a fusion of rep_len and replicate that is faster in both cases. If value is a length one
atomic vector (logical, integer, double, string, complex or raw) and simplify = TRUE, the function-
ality is as rep_len(value, n) i.e. the output is a length n atomic vector with the same attributes
as value (apart from "names", "dim" and "dimnames"). For all other cases the functionality is

efficient-programming 41

as replicate(n, value, simplify = FALSE) i.e. the output is a length-n list of the objects. For
efficiency reasons the object is not copied i.e. only the pointer to the object is replicated.

copyv and setv are designed to optimize operations that require replacing data in objects in the
broadest sense. The only difference between them is that copyv first deep-copies X before doing
replacements whereas setv modifies X in place and returns the result invisibly. There are 3 ways
these functions can be used:

1. To replace a single value, setv(X, v, R) is an efficient alternative to X[X == v] <- R, and
copyv(X, v, R) is more efficient than replace(X, X == v, R). This can be inverted using
setv(X, v, R, invert = TRUE), equivalent to X[X != v] <- R.

2. To do standard replacement with integer or logical indices i.e. X[v] <- R is more efficient
using setv(X, v, R), and, if v is logical, setv(X, v, R, invert = TRUE) is efficient for X[!v]
<- R. To distinguish this from use case (1) when length(v) == 1, the argument vind1 = TRUE
can be set to ensure that v is always interpreted as an index.

3. To copy values from objects of equal size i.e. setv(X, v, R) is faster than X[v] <- R[v], and
setv(X, v, R, invert = TRUE) is faster than X[!v] <- R[!v].

Both X and R can be atomic or data frames / lists. If X is a list, the default behavior is to interpret
it like a data frame, and apply setv/copyv to each element/column of X. If R is also a list, this
is done using mapply. Thus setv/copyv can also be used to replace elements or rows in data
frames, or copy rows from equally sized frames. Note that for replacing subsets in data frames set
from data.table provides a more convenient interface (and there is also copy if you just want to
deep-copy an object without any modifications to it).

If X should not be interpreted like a data frame, setting xlist = TRUE will interpret it like a 1D
list-vector analogous to atomic vectors, except that use case (1) is not permitted i.e. no value
comparisons on list elements.

Note

1. None of these functions (apart from alloc) currently support complex vectors.

2. setop and the operators %+=%, %-=%, %*=% and %/=% also work with integer data, but do not
perform any integer related checks. R’s integers are bounded between +-2,147,483,647 and
NA_integer_ is stored as the value -2,147,483,648. Thus computations resulting in values
exceeding +-2,147,483,647 will result in integer overflows, and NA_integer_ should not oc-
cur on either side of a setop call. These are programmers functions and meant to provide the
most efficient math possible to responsible users.

3. It is possible to compare factors by the levels (e.g. iris$Species %==% "setosa")) or using
integers (iris$Species %==% 1L). The latter is slightly more efficient. Nothing special is im-
plemented for other objects apart from basic types, e.g. for dates (which are stored as doubles)
you need to generate a date object i.e. wlddev$date %==% as.Date("2019-01-01"). Using
wlddev$date %==% "2019-01-01" will give integer(0).

4. setv/copyv only allow positive integer indices being passed to v, and, for efficiency reasons,
they only check the first and the last index. Thus if there are indices in the middle that fall
outside of the data range it will terminate R.

See Also

Data Transformations, Small (Helper) Functions, Collapse Overview

42 efficient-programming

Examples

oldopts <- options(max.print = 70)
Which value
whichNA(wlddev$PCGDP) # Same as which(is.na(wlddev$PCGDP))
whichNA(wlddev$PCGDP, invert = TRUE) # Same as which(!is.na(wlddev$PCGDP))
whichv(wlddev$country, "Chad") # Same as which(wlddev$county == "Chad")
wlddev$country %==% "Chad" # Same thing
whichv(wlddev$country, "Chad", TRUE) # Same as which(wlddev$county != "Chad")
wlddev$country %!=% "Chad" # Same thing
lvec <- wlddev$country == "Chad" # If we already have a logical vector...
whichv(lvec, FALSE) # is fastver than which(!lvec)
rm(lvec)

Using the %==% operator can yield tangible performance gains
fsubset(wlddev, iso3c %==% "DEU") # 3x faster than:
fsubset(wlddev, iso3c == "DEU")

With multiple categories we can use %iin%
fsubset(wlddev, iso3c %iin% c("DEU", "ITA", "FRA"))

Math by reference: permissible types of operations
x <- alloc(1.0, 1e5) # Vector
x %+=% 1
x %+=% 1:1e5
xm <- matrix(alloc(1.0, 1e5), ncol = 100) # Matrix
xm %+=% 1
xm %+=% 1:1e3
setop(xm, "+", 1:100, rowwise = TRUE)
xm %+=% xm
xm %+=% 1:1e5
xd <- qDF(replicate(100, alloc(1.0, 1e3), simplify = FALSE)) # Data Frame
xd %+=% 1
xd %+=% 1:1e3
setop(xd, "+", 1:100, rowwise = TRUE)
xd %+=% xd
rm(x, xm, xd)

setv() and copyv()
x <- rnorm(100)
y <- sample.int(10, 100, replace = TRUE)
setv(y, 5, 0) # Faster than y[y == 5] <- 0
setv(y, 4, x) # Faster than y[y == 4] <- x[y == 4]
setv(y, 20:30, y[40:50]) # Faster than y[20:30] <- y[40:50]
setv(y, 20:30, x) # Faster than y[20:30] <- x[20:30]
rm(x, y)

Working with data frames, here returning copies of the frame
copyv(mtcars, 20:30, ss(mtcars, 10:20))
copyv(mtcars, 20:30, fscale(mtcars))
ftransform(mtcars, new = copyv(cyl, 4, vs))
Column-wise:
copyv(mtcars, 2:3, fscale(mtcars), xlist = TRUE)

fast-data-manipulation 43

copyv(mtcars, 2:3, mtcars[4:5], xlist = TRUE)

Missing values
mtc_na <- na_insert(mtcars, 0.15) # Set 15% of values missing at random
fnobs(mtc_na) # See observation count
missing_cases(mtc_na) # Fast equivalent to !complete.cases(mtc_na)
missing_cases(mtc_na, cols = 3:4) # Missing cases on certain columns?
missing_cases(mtc_na, count = TRUE) # Missing case count
missing_cases(mtc_na, prop = 0.8) # Cases with 80% or more missing
missing_cases(mtc_na, cols = 3:4, prop = 1) # Cases mssing columns 3 and 4
missing_cases(mtc_na, cols = 3:4, count = TRUE) # Missing case count on columns 3 and 4

na_omit(mtc_na) # 12x faster than na.omit(mtc_na)
na_omit(mtc_na, prop = 0.8) # Only remove cases missing 80% or more
na_omit(mtc_na, na.attr = TRUE) # Adds attribute with removed cases, like na.omit
na_omit(mtc_na, cols = .c(vs, am)) # Removes only cases missing vs or am
na_omit(qM(mtc_na)) # Also works for matrices
na_omit(mtc_na$vs, na.attr = TRUE) # Also works with vectors
na_rm(mtc_na$vs) # For vectors na_rm is faster ...
rm(mtc_na)

Efficient vectorization
head(vec(EuStockMarkets)) # Atomic objects: no copy at all
head(vec(mtcars)) # Lists: directly in C

options(oldopts)

fast-data-manipulation

Fast Data Manipulation

Description

collapse provides the following functions for fast manipulation of (mostly) data frames.

• fselect is a much faster alternative to dplyr::select to select columns using expressions
involving column names. get_vars is a more versatile and programmer friendly function to
efficiently select and replace columns by names, indices, logical vectors, regular expressions
or using functions to identify columns.

• The functions num_vars, cat_vars, char_vars, fact_vars, logi_vars and date_vars are
convenience functions to efficiently select and replace columns by data type.

• add_vars efficiently adds new columns at any position within a data frame (default at the
end). This can be done vie replacement (i.e. add_vars(data) <- newdata) or returning the
appended data (i.e. add_vars(data, newdata1, newdata2, ...)). Because of the latter,
add_vars is also a more efficient alternative to cbind.data.frame.

• rowbind efficiently combines data frames / lists row-wise. The implementation is derived
from data.table::rbindlist, it is also a fast alternative to rbind.data.frame.

• join provides fast class-agnostic and verbose table joins.

44 fast-data-manipulation

• pivot efficiently reshapes data, supporting longer, wider and recast pivoting, as well as multi-
column-pivots and taking along variable labels.

• fsubset is a much faster version of subset to efficiently subset vectors, matrices and data
frames. If the non-standard evaluation offered by fsubset is not needed, the function ss is a
much faster and also more secure alternative to [.data.frame.

• fsummarise is a much faster version of dplyr::summarise when used together with the
Fast Statistical Functions and fgroup_by, with whom it also supports super fast weighted
aggregation.

• fmutate is a much faster version of dplyr::mutate when used together with the Fast Statis-
tical Functions as well as fast Data Transformation Functions and fgroup_by.

• ftransform is a much faster version of transform, which also supports list input and nested
pipelines. settransform does all of that by reference, i.e. it modifies the data frame in
the global environment. fcompute is similar to ftransform but only returns modified and
computed columns in a new data frame.

• roworder is a fast substitute for dplyr::arrange, but the syntax is inspired by data.table::setorder.

• colorder efficiently reorders columns in a data frame, see also data.table::setcolorder.

• frename is a fast substitute for dplyr::rename, to efficiently rename various objects. setrename
renames objects by reference. relabel and setrelabel do the same thing for variable labels
(see also vlabels).

Table of Functions

Function / S3 Generic Methods Description
fselect(<-) No methods, for data frames Fast select or replace columns (non-standard evaluation)
get_vars(<-), num_vars(<-), cat_vars(<-), char_vars(<-), fact_vars(<-), logi_vars(<-), date_vars(<-) No methods, for data frames Fast select or replace columns
add_vars(<-) No methods, for data frames Fast add columns
rowbind No methods, for lists of lists/data frames Fast row-binding lists
join No methods, for data frames Fast table joins
pivot No methods, for data frames Fast reshaping
fsubset default, matrix, data.frame, pseries, pdata.frame Fast subset data (non-standard evaluation)
ss No methods, for data frames Fast subset data frames
fsummarise No methods, for data frames Fast data aggregation
fmutate, (f/set)ftransform(<-) No methods, for data frames Compute, modify or delete columns (non-standard evaluation)
fcompute(v) No methods, for data frames Compute or modify columns, returned in a new data frame (non-standard evaluation)
roworder(v) No methods, for data frames incl. pdata.frame Reorder rows and return data frame (standard and non-standard evaluation)
colorder(v) No methods, for data frames Reorder columns and return data frame (standard and non-standard evaluation)
(f/set)rename, (set)relabel No methods, for all objects with ’names’ attribute Rename and return object / relabel columns in a data frame.

See Also

Collapse Overview, Quick Data Conversion, Recode and Replace Values

fast-grouping-ordering 45

fast-grouping-ordering

Fast Grouping and Ordering

Description

collapse provides the following functions to efficiently group and order data:

• radixorder, provides fast radix-ordering through direct access to the method order(...,
method = "radix"), as well as the possibility to return some attributes very useful for group-
ing data and finding unique elements. radixorderv exists as a programmers alternative. The
function roworder(v) efficiently reorders a data frame based on an ordering computed by
radixorderv.

• group provides fast grouping in first-appearance order of rows, based on a hashing algorithm
in C. Objects have class ’qG’, see below.

• GRP creates collapse grouping objects of class ’GRP’ based on radixorderv or group. ’GRP’
objects form the central building block for grouped operations and programming in collapse
and are very efficient inputs to all collapse functions supporting grouped operations.

• fgroup_by provides a fast replacement for dplyr::group_by, creating a grouped data frame
(or data.table / tibble etc.) with a ’GRP’ object attached. This grouped frame can be used for
grouped operations using collapse’s fast functions.

• fmatch is a fast alternative to match, which also supports matching of data frame rows.

• funique is a faster version of unique. The data frame method also allows selecting unique
rows according to a subset of the columns. fnunique efficiently calculates the number of
unique values/rows. fduplicated is a fast alternative to duplicated. any_duplicated is a
simpler and faster alternative to anyDuplicated.

• fcount computes group counts based on a subset of columns in the data, and is a fast replace-
ment for dplyr::count. fcountv is a programmers version of the function.

• qF, shorthand for ’quick-factor’ implements very fast factor generation from atomic vectors
using either radix ordering method = "radix" or hashing method = "hash". Factors can also
be used for efficient grouped programming with collapse functions, especially if they are
generated using qF(x, na.exclude = FALSE) which assigns a level to missing values and
attaches a class ’na.included’ ensuring that no additional missing value checks are executed
by collapse functions.

• qG, shorthand for ’quick-group’, generates a kind of factor-light without the levels attribute
but instead an attribute providing the number of levels. Optionally the levels / groups can be
attached, but without converting them to character. Objects have a class ’qG’, which is also
recognized in the collapse ecosystem.

• fdroplevels is a substantially faster replacement for droplevels.

• finteraction is a fast alternative to interaction implemented as a wrapper around as_factor_GRP(GRP(...)).
It can be used to generate a factor from multiple vectors, factors or a list of vectors / factors.
Unused factor levels are always dropped.

46 fast-statistical-functions

• groupid is a generalization of data.table::rleid providing a run-length type group-id from
atomic vectors. It is generalization as it also supports passing an ordering vector and skipping
missing values. For example qF and qG with method = "radix" are essentially implemented
using groupid(x, radixorder(x)).

• seqid is a specialized function which creates a group-id from sequences of integer values.
For any regular panel dataset groupid(id, order(id, time)) and seqid(time, order(id,
time)) provide the same id variable. seqid is especially useful for identifying discontinuities
in time-sequences.

• timeid is a specialized function to convert integer or double vectors representing time (such
as ’Date’, ’POSIXct’ etc.) to factor or ’qG’ object based on the greatest common divisor of
elements (thus preserving gaps in time intervals).

Table of Functions

Function / S3 Generic Methods Description
radixorder(v) No methods, for data frames and vectors Radix-based ordering + grouping information
roworder(v) No methods, for data frames incl. pdata.frame Row sorting/reordering
group No methods, for data frames and vectors Hash-based grouping + grouping information
GRP default, GRP, factor, qG, grouped_df, pseries, pdata.frame Fast grouping and a flexible grouping object
fgroup_by No methods, for data frames Fast grouped data frame
fmatch No methods, for vectors and data frames Fast matching
funique, fnunique, fduplicated, any_duplicated default, data.frame, sf, pseries, pdata.frame, list Fast (number of) unique values/rows
fcount(v) Internal generic, supports vectors, matrices, data.frames, lists, grouped_df and pdata.frame Fast group counts
qF No methods, for vectors Quick factor generation
qG No methods, for vectors Quick grouping of vectors and a ’factor-light’ class
fdroplevels factor, data.frame, list Fast removal of unused factor levels
finteraction No methods, for data frames and vectors Fast interactions
groupid No methods, for vectors Run-length type group-id
seqid No methods, for integer vectors Run-length type integer sequence-id
timeid No methods, for integer or double vectors Integer-id from time/date sequences

See Also

Collapse Overview, Data Frame Manipulation, Time Series and Panel Series

fast-statistical-functions

Fast (Grouped, Weighted) Statistical Functions for Matrix-Like Ob-
jects

fast-statistical-functions 47

Description

With fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fnobs
and fndistinct, collapse presents a coherent set of extremely fast and flexible statistical functions
(S3 generics) to perform column-wise, grouped and weighted computations on vectors, matrices
and data frames, with special support for grouped data frames / tibbles (dplyr) and data.table’s.

Usage

All functions (FUN) follow a common syntax in 4 methods:
FUN(x, ...)

Default S3 method:
FUN(x, g = NULL, [w = NULL,] TRA = NULL, [na.rm = TRUE,]

use.g.names = TRUE, [nthreads = 1L,] ...)

S3 method for class 'matrix'
FUN(x, g = NULL, [w = NULL,] TRA = NULL, [na.rm = TRUE,]

use.g.names = TRUE, drop = TRUE, [nthreads = 1L,] ...)

S3 method for class 'data.frame'
FUN(x, g = NULL, [w = NULL,] TRA = NULL, [na.rm = TRUE,]

use.g.names = TRUE, drop = TRUE, [nthreads = 1L,] ...)

S3 method for class 'grouped_df'
FUN(x, [w = NULL,] TRA = NULL, [na.rm = TRUE,]

use.g.names = FALSE, keep.group_vars = TRUE,
[keep.w = TRUE,] [stub = TRUE,] [nthreads = 1L,] ...)

Arguments

x a vector, matrix, data frame or grouped data frame (class ’grouped_df’).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values. Supported by fsum, fprod, fmean, fmedian, fnth, fvar, fsd and fmode.
TRA an integer or quoted operator indicating the transformation to perform: 0 - "na" | 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 - "%%" | 10 - "-%%". See TRA.
na.rm logical. Skip missing values in x. Defaults to TRUE in all functions and implemented at very little computational cost. Not available for fnobs.
use.g.names logical. Make group-names and add to the result as names (default method) or row-names (matrix and data frame methods). No row-names are generated for data.table’s.
nthreads integer. The number of threads to utilize. Supported by fsum, fmean, fmedian, fnth, fmode and fndistinct.
drop matrix and data.frame methods: Logical. TRUE drops dimensions and returns an atomic vector if g = NULL and TRA = NULL.
keep.group_vars grouped_df method: Logical. FALSE removes grouping variables after computation. By default grouping variables are added, even if not present in the grouped_df.
keep.w grouped_df method: Logical. TRUE (default) also aggregates weights and saves them in a column, FALSE removes weighting variable after computation (if contained in grouped_df).
stub grouped_df method: Character. If keep.w = TRUE and stub = TRUE (default), the aggregated weights column is prefixed by the name of the aggregation function (mostly "sum."). Users can specify a different prefix through this argument, or set it to FALSE to avoid prefixing.
... arguments to be passed to or from other methods. If TRA is used, passing set = TRUE will transform data by reference and return the result invisibly (except for the grouped_df method which always returns visible output).

48 fast-statistical-functions

Details

Please see the documentation of individual functions.

Value

x suitably aggregated or transformed. Data frame column-attributes and overall attributes are gen-
erally preserved if the output is of the same data type.

Related Functionality

• Functions fquantile and frange are for atomic vectors.

• Panel-decomposed (i.e. between and within) statistics as well as grouped and weighted skew-
ness and kurtosis are implemented in qsu.

• The vector-valued functions and operators fcumsum, fscale/STD, fbetween/B, fhdbetween/HDB,
fwithin/W, fhdwithin/HDW, flag/L/F, fdiff/D/Dlog and fgrowth/G are grouped under
Data Transformations and Time Series and Panel Series. These functions also support indexed
data (plm).

Examples

default vector method
mpg <- mtcars$mpg
fsum(mpg) # Simple sum
fsum(mpg, TRA = "/") # Simple transformation: divide all values by the sum
fsum(mpg, mtcars$cyl) # Grouped sum
fmean(mpg, mtcars$cyl) # Grouped mean
fmean(mpg, w = mtcars$hp) # Weighted mean, weighted by hp
fmean(mpg, mtcars$cyl, mtcars$hp) # Grouped mean, weighted by hp
fsum(mpg, mtcars$cyl, TRA = "/") # Proportions / division by group sums
fmean(mpg, mtcars$cyl, mtcars$hp, # Subtract weighted group means, see also ?fwithin

TRA = "-")

data.frame method
fsum(mtcars)
fsum(mtcars, TRA = "%") # This computes percentages
fsum(mtcars, mtcars[c(2,8:9)]) # Grouped column sum
g <- GRP(mtcars, ~ cyl + vs + am) # Here precomputing the groups!
fsum(mtcars, g) # Faster !!
fmean(mtcars, g, mtcars$hp)
fmean(mtcars, g, mtcars$hp, "-") # Demeaning by weighted group means..
fmean(fgroup_by(mtcars, cyl, vs, am), hp, "-") # Another way of doing it..

fmode(wlddev, drop = FALSE) # Compute statistical modes of variables in this data
fmode(wlddev, wlddev$income) # Grouped statistical modes ..

matrix method
m <- qM(mtcars)

fast-statistical-functions 49

fsum(m)
fsum(m, g) # ..

method for grouped data frames - created with dplyr::group_by or fgroup_by
library(dplyr)
mtcars |> group_by(cyl,vs,am) |> select(mpg,carb) |> fsum()
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg,carb) |> fsum() # equivalent and faster !!
mtcars |> fgroup_by(cyl,vs,am) |> fsum(TRA = "%")
mtcars |> fgroup_by(cyl,vs,am) |> fmean(hp) # weighted grouped mean, save sum of weights
mtcars |> fgroup_by(cyl,vs,am) |> fmean(hp, keep.group_vars = FALSE)

Benchmark

This compares fsum with data.table (2 threads) and base::rowsum
Starting with small data
mtcDT <- qDT(mtcars)
f <- qF(mtcars$cyl)

library(microbenchmark)
microbenchmark(mtcDT[, lapply(.SD, sum), by = f],

rowsum(mtcDT, f, reorder = FALSE),
fsum(mtcDT, f, na.rm = FALSE), unit = "relative")

expr min lq mean median uq max neval cld
mtcDT[, lapply(.SD, sum), by = f] 145.436928 123.542134 88.681111 98.336378 71.880479 85.217726 100 c
rowsum(mtcDT, f, reorder = FALSE) 2.833333 2.798203 2.489064 2.937889 2.425724 2.181173 100 b
fsum(mtcDT, f, na.rm = FALSE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100 a

Now larger data
tdata <- qDT(replicate(100, rnorm(1e5), simplify = FALSE)) # 100 columns with 100.000 obs
f <- qF(sample.int(1e4, 1e5, TRUE)) # A factor with 10.000 groups

microbenchmark(tdata[, lapply(.SD, sum), by = f],
rowsum(tdata, f, reorder = FALSE),
fsum(tdata, f, na.rm = FALSE), unit = "relative")

expr min lq mean median uq max neval cld
tdata[, lapply(.SD, sum), by = f] 2.646992 2.975489 2.834771 3.081313 3.120070 1.2766475 100 c
rowsum(tdata, f, reorder = FALSE) 1.747567 1.753313 1.629036 1.758043 1.839348 0.2720937 100 b
fsum(tdata, f, na.rm = FALSE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 100 a

See Also

Collapse Overview, Data Transformations, Time Series and Panel Series

50 fbetween-fwithin

fbetween-fwithin Fast Between (Averaging) and (Quasi-)Within (Centering) Transfor-
mations

Description

fbetween and fwithin are S3 generics to efficiently obtain between-transformed (averaged) or
(quasi-)within-transformed (demeaned) data. These operations can be performed groupwise and/or
weighted. B and W are wrappers around fbetween and fwithin representing the ’between-operator’
and the ’within-operator’.

(B / W provide more flexibility than fbetween / fwithin when applied to data frames (i.e. col-
umn subsetting, formula input, auto-renaming and id-variable-preservation capabilities. . .), but are
otherwise identical.)

Usage

fbetween(x, ...)
fwithin(x, ...)

B(x, ...)
W(x, ...)

Default S3 method:
fbetween(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
Default S3 method:
fwithin(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)
Default S3 method:
B(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
Default S3 method:
W(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)

S3 method for class 'matrix'
fbetween(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
S3 method for class 'matrix'
fwithin(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)
S3 method for class 'matrix'
B(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, stub = .op[["stub"]], ...)
S3 method for class 'matrix'
W(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1,
stub = .op[["stub"]], ...)

S3 method for class 'data.frame'
fbetween(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
S3 method for class 'data.frame'
fwithin(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)
S3 method for class 'data.frame'
B(x, by = NULL, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],
fill = FALSE, stub = .op[["stub"]], keep.by = TRUE, keep.w = TRUE, ...)

fbetween-fwithin 51

S3 method for class 'data.frame'
W(x, by = NULL, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],
mean = 0, theta = 1, stub = .op[["stub"]], keep.by = TRUE, keep.w = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fbetween(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
S3 method for class 'pseries'
fwithin(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)
S3 method for class 'pseries'
B(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
S3 method for class 'pseries'
W(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)

S3 method for class 'pdata.frame'
fbetween(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, ...)
S3 method for class 'pdata.frame'
fwithin(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1, ...)
S3 method for class 'pdata.frame'
B(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],
fill = FALSE, stub = .op[["stub"]], keep.ids = TRUE, keep.w = TRUE, ...)

S3 method for class 'pdata.frame'
W(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],
mean = 0, theta = 1, stub = .op[["stub"]], keep.ids = TRUE, keep.w = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'
fbetween(x, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE,

keep.group_vars = TRUE, keep.w = TRUE, ...)
S3 method for class 'grouped_df'
fwithin(x, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1,

keep.group_vars = TRUE, keep.w = TRUE, ...)
S3 method for class 'grouped_df'
B(x, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE,
stub = .op[["stub"]], keep.group_vars = TRUE, keep.w = TRUE, ...)

S3 method for class 'grouped_df'
W(x, w = NULL, na.rm = .op[["na.rm"]], mean = 0, theta = 1,
stub = .op[["stub"]], keep.group_vars = TRUE, keep.w = TRUE, ...)

Arguments

x a numeric vector, matrix, data frame, ’indexed_series’ (’pseries’), ’indexed_frame’
(’pdata.frame’) or grouped data frame (’grouped_df’).

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x.

by B and W data.frame method: Same as g, but also allows one- or two-sided

52 fbetween-fwithin

formulas i.e. ~ group1 or var1 + var2 ~ group1 + group2. See Examples.

w a numeric vector of (non-negative) weights. B/W data frame and pdata.frame
methods also allow a one-sided formula i.e. ~ weightcol. The grouped_df
(dplyr) method supports lazy-evaluation. See Examples.

cols B/W (p)data.frame methods: Select columns to scale using a function, column
names, indices or a logical vector. Default: All numeric columns. Note: cols is
ignored if a two-sided formula is passed to by.

na.rm logical. Skip missing values in x and w when computing averages. If na.rm =
FALSE and a NA or NaN is encountered, the average for that group will be NA, and
all data points belonging to that group in the output vector will also be NA.

effect plm methods: Select which panel identifier should be used as grouping variable.
1L takes the first variable in the index, 2L the second etc. Index variables can
also be called by name using a character string. If more than one variable is
supplied, the corresponding index-factors are interacted.

stub character. A prefix/stub to add to the names of all transformed columns. TRUE
(default) uses "W."/"B.", FALSE will not rename columns.

fill option to fbetween/B: Logical. TRUE will overwrite missing values in x with the
respective average. By default missing values in x are preserved.

mean option to fwithin/W: The mean to center on, default is 0, but a different mean
can be supplied and will be added to the data after the centering is performed. A
special option when performing grouped centering is mean = "overall.mean".
In that case the overall mean of the data will be added after subtracting out group
means.

theta option to fwithin/W: Double. An optional scalar parameter for quasi-demeaning
i.e. x - theta * xi.. This is useful for variance components (’random-effects’)
estimators. see Details.

keep.by, keep.ids, keep.group_vars
B and W data.frame, pdata.frame and grouped_df methods: Logical. Retain
grouping / panel-identifier columns in the output. For data frames this only
works if grouping variables were passed in a formula.

keep.w B and W data.frame, pdata.frame and grouped_df methods: Logical. Retain col-
umn containing the weights in the output. Only works if w is passed as formula
/ lazy-expression.

... arguments to be passed to or from other methods.

Details

Without groups, fbetween/B replaces all data points in x with their mean or weighted mean (if w is
supplied). Similarly fwithin/W subtracts the (weighted) mean from all data points i.e. centers the
data on the mean.

With groups supplied to g, the replacement / centering performed by fbetween/B | fwithin/W be-
comes groupwise. In terms of panel data notation: If x is a vector in such a panel dataset, xit
denotes a single data-point belonging to group i in time-period t (t need not be a time-period).
Then xi. denotes x, averaged over t. fbetween/B now returns xi. and fwithin/W returns x - xi..

fbetween-fwithin 53

Thus for any data x and any grouping vector g: B(x,g) + W(x,g) = xi. + x - xi. = x. In terms
of variance, fbetween/B only retains the variance between group averages, while fwithin/W, by
subtracting out group means, only retains the variance within those groups.

The data replacement performed by fbetween/B can keep (default) or overwrite missing values
(option fill = TRUE) in x. fwithin/W can center data simply (default), or add back a mean af-
ter centering (option mean = value), or add the overall mean in groupwise computations (option
mean = "overall.mean"). Let x.. denote the overall mean of x, then fwithin/W with mean =
"overall.mean" returns x - xi. + x.. instead of x - xi.. This is useful to get rid of group-
differences but preserve the overall level of the data. In regression analysis, centering with mean =
"overall.mean" will only change the constant term. See Examples.

If theta != 1, fwithin/W performs quasi-demeaning x - theta * xi.. If mean = "overall.mean",
x - theta * xi. + theta * x.. is returned, so that the mean of the partially demeaned data is still
equal to the overall data mean x... A numeric value passed to mean will simply be added back to
the quasi-demeaned data i.e. x - theta * xi. + mean.

Now in the case of a linear panel model yit = β0 + β1Xit + uit with uit = αi + ϵit. If αi ̸=
α = const. (there exists individual heterogeneity), then pooled OLS is at least inefficient and
inference on β1 is invalid. If E[αi|Xit] = 0 (mean independence of individual heterogeneity αi),
the variance components or ’random-effects’ estimator provides an asymptotically efficient FGLS
solution by estimating a transformed model yit− θyi. = β0+β1(Xit− θXi.)+(uit− θui.), where
θ = 1 − σα√

(σ2
α+Tσ2

ϵ)
. An estimate of θ can be obtained from the an estimate of ûit (the residuals

from the pooled model). If E[αi|Xit] ̸= 0, pooled OLS is biased and inconsistent, and taking θ = 1
gives an unbiased and consistent fixed-effects estimator of β1. See Examples.

Value

fbetween/B returns x with every element replaced by its (groupwise) mean (xi.). Missing values
are preserved if fill = FALSE (the default). fwithin/W returns x where every element was sub-
tracted its (groupwise) mean (x - theta * xi. + mean or, if mean = "overall.mean", x - theta *
xi. + theta * x..). See Details.

References

Mundlak, Yair. 1978. On the Pooling of Time Series and Cross Section Data. Econometrica 46 (1):
69-85.

See Also

fhdbetween/HDB and fhdwithin/HDW, fscale/STD, TRA, Data Transformations, Collapse Overview

Examples

Simple centering and averaging
head(fbetween(mtcars))
head(B(mtcars))
head(fwithin(mtcars))
head(W(mtcars))
all.equal(fbetween(mtcars) + fwithin(mtcars), mtcars)

54 fcount

Groupwise centering and averaging
head(fbetween(mtcars, mtcars$cyl))
head(fwithin(mtcars, mtcars$cyl))
all.equal(fbetween(mtcars, mtcars$cyl) + fwithin(mtcars, mtcars$cyl), mtcars)

head(W(wlddev, ~ iso3c, cols = 9:13)) # Center the 5 series in this dataset by country
head(cbind(get_vars(wlddev,"iso3c"), # Same thing done manually using fwithin..

add_stub(fwithin(get_vars(wlddev,9:13), wlddev$iso3c), "W.")))

Using B() and W() for fixed-effects regressions:

Several ways of running the same regression with cyl-fixed effects
lm(W(mpg,cyl) ~ W(carb,cyl), data = mtcars) # Centering each individually
lm(mpg ~ carb, data = W(mtcars, ~ cyl, stub = FALSE)) # Centering the entire data
lm(mpg ~ carb, data = W(mtcars, ~ cyl, stub = FALSE, # Here only the intercept changes

mean = "overall.mean"))
lm(mpg ~ carb + B(carb,cyl), data = mtcars) # Procedure suggested by
..Mundlak (1978) - partialling out group averages amounts to the same as demeaning the data
plm::plm(mpg ~ carb, mtcars, index = "cyl", model = "within") # "Proof"..

This takes the interaction of cyl, vs and am as fixed effects
lm(W(mpg) ~ W(carb), data = iby(mtcars, id = finteraction(cyl, vs, am)))
lm(mpg ~ carb, data = W(mtcars, ~ cyl + vs + am, stub = FALSE))
lm(mpg ~ carb + B(carb,list(cyl,vs,am)), data = mtcars)

Now with cyl fixed effects weighted by hp:
lm(W(mpg,cyl,hp) ~ W(carb,cyl,hp), data = mtcars)
lm(mpg ~ carb, data = W(mtcars, ~ cyl, ~ hp, stub = FALSE))
lm(mpg ~ carb + B(carb,cyl,hp), data = mtcars) # WRONG ! Gives a different coefficient!!

Manual variance components (random-effects) estimation
res <- HDW(mtcars, mpg ~ carb)[[1]] # Get residuals from pooled OLS
sig2_u <- fvar(res)
sig2_e <- fvar(fwithin(res, mtcars$cyl))
T <- length(res) / fndistinct(mtcars$cyl)
sig2_alpha <- sig2_u - sig2_e
theta <- 1 - sqrt(sig2_alpha) / sqrt(sig2_alpha + T * sig2_e)
lm(mpg ~ carb, data = W(mtcars, ~ cyl, theta = theta, mean = "overall.mean", stub = FALSE))

A slightly different method to obtain theta...
plm::plm(mpg ~ carb, mtcars, index = "cyl", model = "random")

fcount Efficiently Count Observations by Group

Description

A much faster replacement for dplyr::count.

fcount 55

Usage

fcount(x, ..., w = NULL, name = "N", add = FALSE,
sort = FALSE, decreasing = FALSE)

fcountv(x, cols = NULL, w = NULL, name = "N", add = FALSE,
sort = FALSE, ...)

Arguments

x a data frame or list-like object, including ’grouped_df’ or ’indexed_frame’.
Atomic vectors or matrices can also be passed, but will be sent through qDF.

... for fcount: names or sequences of columns to count cases by - passed to
fselect. For fcountv: further arguments passed to GRP (such as decreasing,
na.last, method, effect etc.). Leaving this empty will count on all columns.

cols select columns to count cases by, using column names, indices, a logical vector
or a selector function (e.g. is_categorical).

w a numeric vector of weights, may contain missing values. In fcount this can
also be the (unquoted) name of a column in the data frame. fcountv also
supports a single character name. Note that the corresponding argument in
dplyr::count is called wt, but collapse has a global default for weights ar-
guments to be called w.

name character. The name of the column containing the count or sum of weights.
dplyr::count it is called "n", but "N" is more consistent with the rest of col-
lapse and data.table.

add TRUE adds the count column to x. Alternatively add = "group_vars" (or add =
"gv" for parsimony) can be used to retain only the variables selected for count-
ing in x and the count.

sort, decreasing
arguments passed to GRP affecting the order of rows in the output (if add =
FALSE), and the algorithm used for counting. In general, sort = FALSE is faster
unless data is already sorted by the columns used for counting.

Value

If x is a list, an object of the same type as x with a column (name) added at the end giving the count.
Otherwise, if x is atomic, a data frame returned from qDF(x) with the count column added. By
default (add = FALSE) only the unique rows of x of the columns used for counting are returned.

See Also

GRPN, fnobs, fndistinct, Fast Grouping and Ordering, Collapse Overview

Examples

fcount(mtcars, cyl, vs, am)
fcountv(mtcars, cols = .c(cyl, vs, am))
fcount(mtcars, cyl, vs, am, sort = TRUE)

56 fcumsum

fcount(mtcars, cyl, vs, am, add = TRUE)
fcount(mtcars, cyl, vs, am, add = "group_vars")

With grouped data
mtcars |> fgroup_by(cyl, vs, am) |> fcount()
mtcars |> fgroup_by(cyl, vs, am) |> fcount(add = TRUE)
mtcars |> fgroup_by(cyl, vs, am) |> fcount(add = "group_vars")

With indexed data: by default counting on the first index variable
wlddev |> findex_by(country, year) |> fcount()
wlddev |> findex_by(country, year) |> fcount(add = TRUE)
Use fcountv to pass additional arguments to GRP.pdata.frame,
here using the effect argument to choose a different index variable
wlddev |> findex_by(country, year) |> fcountv(effect = "year")
wlddev |> findex_by(country, year) |> fcountv(add = "group_vars", effect = "year")

fcumsum Fast (Grouped, Ordered) Cumulative Sum for Matrix-Like Objects

Description

fcumsum is a generic function that computes the (column-wise) cumulative sum of x, (optionally)
grouped by g and/or ordered by o. Several options to deal with missing values are provided.

Usage

fcumsum(x, ...)

Default S3 method:
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

S3 method for class 'matrix'
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

S3 method for class 'data.frame'
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fcumsum(x, na.rm = .op[["na.rm"]], fill = FALSE, shift = "time", ...)

S3 method for class 'pdata.frame'
fcumsum(x, na.rm = .op[["na.rm"]], fill = FALSE, shift = "time", ...)

Methods for grouped data frame / compatibility with dplyr:

fcumsum 57

S3 method for class 'grouped_df'
fcumsum(x, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE,

keep.ids = TRUE, ...)

Arguments

x a numeric vector / time series, (time series) matrix, data frame, ’indexed_series’
(’pseries’), ’indexed_frame’ (’pdata.frame’) or grouped data frame (’grouped_df’).

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x.

o a vector or list of vectors providing the order in which the elements of x are cu-
mulatively summed. Will be passed to radixorderv unless check.o = FALSE.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost.

fill if na.rm = TRUE, setting fill = TRUE will overwrite missing values with the pre-
vious value of the cumulative sum, starting from 0.

check.o logical. Programmers option: FALSE prevents passing o to radixorderv, re-
quiring o to be a valid ordering vector that is integer typed with each element in
the range [1, length(x)]. This gives some extra speed, but will terminate R if
any element of o is too large or too small.

shift pseries / pdata.frame methods: character. "time" or "row". See flag for de-
tails. The argument here does not control ’shifting’ of data but rather the order
in which elements are summed.

keep.ids pdata.frame / grouped_df methods: Logical. Drop all identifiers from the output
(which includes all grouping variables and variables passed to o). Note: For
grouped / panel data frames identifiers are dropped, but the "groups" / "index"
attributes are kept.

... arguments to be passed to or from other methods.

Details

If na.rm = FALSE, fcumsum works like cumsum and propagates missing values. The default na.rm
= TRUE skips missing values and computes the cumulative sum on the non-missing values. Miss-
ing values are kept. If fill = TRUE, missing values are replaced with the previous value of the
cumulative sum (starting from 0), computed on the non-missing values.

By default the cumulative sum is computed in the order in which elements appear in x. If o is
provided, the cumulative sum is computed in the order given by radixorderv(o), without the need
to first sort x. This applies as well if groups are used (g), in which case the cumulative sum is
computed separately in each group.

The pseries and pdata.frame methods assume that the last factor in the index is the time-variable and
the rest are grouping variables. The time-variable is passed to radixorderv and used for ordered
computation, so that cumulative sums are accurately computed regardless of whether the panel-data
is ordered or balanced.

fcumsum explicitly supports integers. Integers in R are bounded at bounded at +-2,147,483,647,
and an integer overflow error will be provided if the cumulative sum (within any group) exceeds
+-2,147,483,647. In that case data should be converted to double beforehand.

58 fdiff

Value

the cumulative sum of values in x, (optionally) grouped by g and/or ordered by o. See Details and
Examples.

See Also

fdiff, fgrowth, Time Series and Panel Series, Collapse Overview

Examples

Non-grouped
fcumsum(AirPassengers)
head(fcumsum(EuStockMarkets))
fcumsum(mtcars)

Non-grouped but ordered
o <- order(rnorm(nrow(EuStockMarkets)))
all.equal(copyAttrib(fcumsum(EuStockMarkets[o,], o = o)[order(o),], EuStockMarkets),

fcumsum(EuStockMarkets))

Grouped
head(with(wlddev, fcumsum(PCGDP, iso3c)))

Grouped and ordered
head(with(wlddev, fcumsum(PCGDP, iso3c, year)))
head(with(wlddev, fcumsum(PCGDP, iso3c, year, fill = TRUE)))

fdiff Fast (Quasi-, Log-) Differences for Time Series and Panel Data

Description

fdiff is a S3 generic to compute (sequences of) suitably lagged / leaded and iterated differences,
quasi-differences or (quasi-)log-differences. The difference and log-difference operators D and Dlog
also exists as parsimonious wrappers around fdiff, providing more flexibility than fdiff when
applied to data frames.

Usage

fdiff(x, n = 1, diff = 1, ...)
D(x, n = 1, diff = 1, ...)

Dlog(x, n = 1, diff = 1, ...)

Default S3 method:
fdiff(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, log = FALSE, rho = 1,

stubs = TRUE, ...)
Default S3 method:
D(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, rho = 1,

fdiff 59

stubs = .op[["stub"]], ...)
Default S3 method:
Dlog(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, rho = 1, stubs = .op[["stub"]],

...)

S3 method for class 'matrix'
fdiff(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, log = FALSE, rho = 1,

stubs = length(n) + length(diff) > 2L, ...)
S3 method for class 'matrix'
D(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, rho = 1,
stubs = .op[["stub"]], ...)

S3 method for class 'matrix'
Dlog(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, rho = 1, stubs = .op[["stub"]],

...)

S3 method for class 'data.frame'
fdiff(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, log = FALSE, rho = 1,

stubs = length(n) + length(diff) > 2L, ...)
S3 method for class 'data.frame'
D(x, n = 1, diff = 1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, rho = 1, stubs = .op[["stub"]], keep.ids = TRUE, ...)

S3 method for class 'data.frame'
Dlog(x, n = 1, diff = 1, by = NULL, t = NULL, cols = is.numeric,

fill = NA, rho = 1, stubs = .op[["stub"]], keep.ids = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fdiff(x, n = 1, diff = 1, fill = NA, log = FALSE, rho = 1,

stubs = length(n) + length(diff) > 2L, shift = "time", ...)
S3 method for class 'pseries'
D(x, n = 1, diff = 1, fill = NA, rho = 1, stubs = .op[["stub"]], shift = "time", ...)
S3 method for class 'pseries'
Dlog(x, n = 1, diff = 1, fill = NA, rho = 1, stubs = .op[["stub"]], shift = "time", ...)

S3 method for class 'pdata.frame'
fdiff(x, n = 1, diff = 1, fill = NA, log = FALSE, rho = 1,

stubs = length(n) + length(diff) > 2L, shift = "time", ...)
S3 method for class 'pdata.frame'
D(x, n = 1, diff = 1, cols = is.numeric, fill = NA, rho = 1, stubs = .op[["stub"]],
shift = "time", keep.ids = TRUE, ...)

S3 method for class 'pdata.frame'
Dlog(x, n = 1, diff = 1, cols = is.numeric, fill = NA, rho = 1, stubs = .op[["stub"]],

shift = "time", keep.ids = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'

60 fdiff

fdiff(x, n = 1, diff = 1, t = NULL, fill = NA, log = FALSE, rho = 1,
stubs = length(n) + length(diff) > 2L, keep.ids = TRUE, ...)

S3 method for class 'grouped_df'
D(x, n = 1, diff = 1, t = NULL, fill = NA, rho = 1, stubs = .op[["stub"]],
keep.ids = TRUE, ...)

S3 method for class 'grouped_df'
Dlog(x, n = 1, diff = 1, t = NULL, fill = NA, rho = 1, stubs = .op[["stub"]],

keep.ids = TRUE, ...)

Arguments

x a numeric vector / time series, (time series) matrix, data frame, ’indexed_series’
(’pseries’), ’indexed_frame’ (’pdata.frame’) or grouped data frame (’grouped_df’).

n integer. A vector indicating the number of lags or leads.

diff integer. A vector of integers > 1 indicating the order of differencing / log-
differencing.

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x. Note that without t, all values in a group need to be
consecutive and in the right order. See Details of flag.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~ group1 or var1 + var2 ~ group1 + group2. See Examples.

t a time vector or list of vectors. See flag.

cols data.frame method: Select columns to difference using a function, column names,
indices or a logical vector. Default: All numeric variables. Note: cols is ignored
if a two-sided formula is passed to by.

fill value to insert when vectors are shifted. Default is NA.

log logical. TRUE computes log-differences. See Details.

rho double. Autocorrelation parameter. Set to a value between 0 and 1 for quasi-
differencing. Any numeric value can be supplied.

stubs logical. TRUE (default) will rename all differenced columns by adding prefixes
"LnDdiff." / "FnDdiff." for differences "LnDlogdiff." / "FnDlogdiff." for
log-differences and replacing "D" / "Dlog" with "QD" / "QDlog" for quasi-
differences.

shift pseries / pdata.frame methods: character. "time" or "row". See flag for de-
tails.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all identifiers
from the output (which includes all variables passed to by or t using formulas).
Note: For ’grouped_df’ / ’pdata.frame’ identifiers are dropped, but the "groups"
/ "index" attributes are kept.

... arguments to be passed to or from other methods.

Details

By default, fdiff/D/Dlog return x with all columns differenced / log-differenced. Differences are
computed as repeat(diff) x[i] - rho*x[i-n], and log-differences as log(x[i]) - rho*log(x[i-n])

fdiff 61

for diff = 1 and repeat(diff-1) x[i] - rho*x[i-n] is used to compute subsequent differences
(usually diff = 1 for log-differencing). If rho < 1, this becomes quasi- (or partial) differencing,
which is a technique suggested by Cochrane and Orcutt (1949) to deal with serial correlation in
regression models, where rho is typically estimated by running a regression of the model residuals
on the lagged residuals. It is also possible to compute forward differences by passing negative n
values. n also supports arbitrary vectors of integers (lags), and diff supports positive sequences of
integers (differences):

If more than one value is passed to n and/or diff, the data is expanded-wide as follows: If x is an
atomic vector or time series, a (time series) matrix is returned with columns ordered first by lag,
then by difference. If x is a matrix or data frame, each column is expanded in like manor such that
the output has ncol(x)*length(n)*length(diff) columns ordered first by column name, then
by lag, then by difference.

For further computational details and efficiency considerations see the help page of flag.

Value

x differenced diff times using lags n of itself. Quasi and log-differences are toggled by the rho
and log arguments or the Dlog operator. Computations can be grouped by g/by and/or ordered by
t. See Details and Examples.

References

Cochrane, D.; Orcutt, G. H. (1949). Application of Least Squares Regression to Relationships
Containing Auto-Correlated Error Terms. Journal of the American Statistical Association. 44 (245):
32-61.

Prais, S. J. & Winsten, C. B. (1954). Trend Estimators and Serial Correlation. Cowles Commission
Discussion Paper No. 383. Chicago.

See Also

flag/L/F, fgrowth/G, Time Series and Panel Series, Collapse Overview

Examples

Simple Time Series: AirPassengers
D(AirPassengers) # 1st difference, same as fdiff(AirPassengers)
D(AirPassengers, -1) # Forward difference
Dlog(AirPassengers) # Log-difference
D(AirPassengers, 1, 2) # Second difference
Dlog(AirPassengers, 1, 2) # Second log-difference
D(AirPassengers, 12) # Seasonal difference (data is monthly)
D(AirPassengers, # Quasi-difference, see a better example below

rho = pwcor(AirPassengers, L(AirPassengers)))

head(D(AirPassengers, -2:2, 1:3)) # Sequence of leaded/lagged and iterated differences

let's do some visual analysis
plot(AirPassengers) # Plot the series - seasonal pattern is evident
plot(stl(AirPassengers, "periodic")) # Seasonal decomposition
plot(D(AirPassengers,c(1,12),1:2)) # Plotting ordinary and seasonal first and second differences

62 fdist

plot(stl(window(D(AirPassengers,12), # Taking seasonal differences removes most seasonal variation
1950), "periodic"))

Time Series Matrix of 4 EU Stock Market Indicators, recorded 260 days per year
plot(D(EuStockMarkets, c(0, 260))) # Plot series and annual differnces
mod <- lm(DAX ~., L(EuStockMarkets, c(0, 260))) # Regressing the DAX on its annual lag
summary(mod) # and the levels and annual lags others
r <- residuals(mod) # Obtain residuals
pwcor(r, L(r)) # Residual Autocorrelation
fFtest(r, L(r)) # F-test of residual autocorrelation

(better use lmtest :: bgtest)
modCO <- lm(QD1.DAX ~., D(L(EuStockMarkets, c(0, 260)), # Cochrane-Orcutt (1949) estimation

rho = pwcor(r, L(r))))
summary(modCO)
rCO <- residuals(modCO)
fFtest(rCO, L(rCO)) # No more autocorrelation

World Development Panel Data
head(fdiff(num_vars(wlddev), 1, 1, # Computes differences of numeric variables

wlddev$country, wlddev$year)) # fdiff requires external inputs..
head(D(wlddev, 1, 1, ~country, ~year)) # Differences of numeric variables
head(D(wlddev, 1, 1, ~country)) # Without t: Works because data is ordered
head(D(wlddev, 1, 1, PCGDP + LIFEEX ~ country, ~year)) # Difference of GDP & Life Expectancy
head(D(wlddev, 0:1, 1, ~ country, ~year, cols = 9:10)) # Same, also retaining original series
head(D(wlddev, 0:1, 1, ~ country, ~year, 9:10, # Dropping id columns

keep.ids = FALSE))

Indexed computations:
wldi <- findex_by(wlddev, iso3c, year)

Dynamic Panel Data Models:
summary(lm(D(PCGDP) ~ L(PCGDP) + D(LIFEEX), data = wldi)) # Simple case
summary(lm(Dlog(PCGDP) ~ L(log(PCGDP)) + Dlog(LIFEEX), data = wldi)) # In log-differneces
Adding a lagged difference...
summary(lm(D(PCGDP) ~ L(D(PCGDP, 0:1)) + L(D(LIFEEX), 0:1), data = wldi))
summary(lm(Dlog(PCGDP) ~ L(Dlog(PCGDP, 0:1)) + L(Dlog(LIFEEX), 0:1), data = wldi))
Same thing:
summary(lm(D1.PCGDP ~., data = L(D(wldi,0:1,1,9:10),0:1,keep.ids = FALSE)[,-1]))

Grouped data
library(magrittr)
wlddev |> fgroup_by(country) |>

fselect(PCGDP,LIFEEX) |> fdiff(0:1,1:2) # Adding a first and second difference
wlddev |> fgroup_by(country) |>

fselect(year,PCGDP,LIFEEX) |> D(0:1,1:2,year) # Also using t (safer)
wlddev |> fgroup_by(country) |> # Dropping id's

fselect(year,PCGDP,LIFEEX) |> D(0:1,1:2,year, keep.ids = FALSE)

fdist Fast and Flexible Distance Computations

fdist 63

Description

A fast and flexible replacement for dist, to compute euclidean distances.

Usage

fdist(x, v = NULL, ..., method = "euclidean", nthreads = .op[["nthreads"]])

Arguments

x a numeric vector or matrix. Data frames/lists can be passed but will be converted
to matrix using qM. Non-numeric (double) inputs will be coerced.

v an (optional) numeric (double) vector such that length(v) == NCOL(x), to com-
pute distances with (the rows of) x. Other vector types will be coerced.

... not used. A placeholder for possible future arguments.

method an integer or character string indicating the method of computing distances.

Int. String Description
1 "euclidean" euclidean distance
2 "euclidean_squared" squared euclidean distance (more efficient)

nthreads integer. The number of threads to use. If v = NULL (full distance matrix), multi-
threading is along the distance matrix columns (decreasing thread loads as ma-
trix is lower triangular). If v is supplied, multithreading is at the sub-column
level (across elements).

Value

If v = NULL, a full lower-triangular distance matrix between the rows of x is computed and returned
as a ’dist’ object (all methods apply, see dist). Otherwise, a numeric vector of distances of each
row of x with v is returned. See Examples.

Note

fdist does not check for missing values, so NA’s will result in NA distances.

kit::topn is a suitable complimentary function to find nearest neighbors. It is very efficient and
skips missing values by default.

See Also

flm, Fast Statistical Functions, Collapse Overview

Examples

Distance matrix
m = as.matrix(mtcars)
str(fdist(m)) # Same as dist(m)

64 fdroplevels

Distance with vector
d = fdist(m, fmean(m))
kit::topn(d, 5) # Index of 5 nearest neighbours

Mahalanobis distance
m_mahal = t(forwardsolve(t(chol(cov(m))), t(m)))
fdist(m_mahal, fmean(m_mahal))
sqrt(unattrib(mahalanobis(m, fmean(m), cov(m))))

Distance of two vectors
x <- rnorm(1e6)
y <- rnorm(1e6)
microbenchmark::microbenchmark(

fdist(x, y),
fdist(x, y, nthreads = 2),
sqrt(sum((x-y)^2))

)

fdroplevels Fast Removal of Unused Factor Levels

Description

A substantially faster replacement for droplevels.

Usage

fdroplevels(x, ...)

S3 method for class 'factor'
fdroplevels(x, ...)

S3 method for class 'data.frame'
fdroplevels(x, ...)

Arguments

x a factor, or data frame / list containing one or more factors.

... not used.

Details

droplevels passes a factor from which levels are to be dropped to factor, which first calls unique
and then match to drop unused levels. Both functions internally use a hash table, which is highly
inefficient. fdroplevels does not require mapping values at all, but uses a super fast boolean vector
method to determine which levels are unused and remove those levels. In addition, if no unused
levels are found, x is simply returned. Any missing values found in x are efficiently skipped in the
process of checking and replacing levels. All other attributes of x are preserved.

ffirst-flast 65

Value

x with unused factor levels removed.

Note

If x is malformed e.g. has too few levels, this function can cause a segmentation fault terminating
the R session, thus only use with ordinary / proper factors.

See Also

qF, funique, Fast Grouping and Ordering, Collapse Overview

Examples

f <- iris$Species[1:100]
fdroplevels(f)
identical(fdroplevels(f), droplevels(f))

fNA <- na_insert(f)
fdroplevels(fNA)
identical(fdroplevels(fNA), droplevels(fNA))

identical(fdroplevels(ss(iris, 1:100)), droplevels(ss(iris, 1:100)))

ffirst-flast Fast (Grouped) First and Last Value for Matrix-Like Objects

Description

ffirst and flast are S3 generic functions that (column-wise) returns the first and last values
in x, (optionally) grouped by g. The TRA argument can further be used to transform x using its
(groupwise) first and last values.

Usage

ffirst(x, ...)
flast(x, ...)

Default S3 method:
ffirst(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ...)
Default S3 method:
flast(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ...)

S3 method for class 'matrix'
ffirst(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

66 ffirst-flast

S3 method for class 'matrix'
flast(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
ffirst(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'data.frame'
flast(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
ffirst(x, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, ...)
S3 method for class 'grouped_df'
flast(x, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, ...)

Arguments

x a vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. TRUE skips missing values and returns the first / last non-missing value
i.e. if the first (1) / last (n) value is NA, take the second (2) / second-to-last (n-1)
value etc..

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Value

ffirst returns the first value in x, grouped by g, or (if TRA is used) x transformed by its first value,
grouped by g. Similarly flast returns the last value in x, . . .

fFtest 67

Note

Both functions are significantly faster if na.rm = FALSE, particularly ffirst which can take direct
advantage of the ’group.starts’ elements in GRP objects.

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method
ffirst(airquality$Ozone) # Simple first value
ffirst(airquality$Ozone, airquality$Month) # Grouped first value
ffirst(airquality$Ozone, airquality$Month,

na.rm = FALSE) # Grouped first, but without skipping initial NA's

data.frame method
ffirst(airquality)
ffirst(airquality, airquality$Month)
ffirst(airquality, airquality$Month, na.rm = FALSE) # Again first Ozone measurement in month 6 is NA

matrix method
aqm <- qM(airquality)
ffirst(aqm)
ffirst(aqm, airquality$Month) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
library(dplyr)
airquality |> group_by(Month) |> ffirst()
airquality |> group_by(Month) |> select(Ozone) |> ffirst(na.rm = FALSE)

Note: All examples generalize to flast.

fFtest Fast (Weighted) F-test for Linear Models (with Factors)

Description

fFtest computes an R-squared based F-test for the exclusion of the variables in exc, where the
full (unrestricted) model is defined by variables supplied to both exc and X. The test is efficient and
designed for cases where both exc and X may contain multiple factors and continuous variables.
There is also an efficient 2-part formula method.

Usage

fFtest(...) # Internal method dispatch: formula if is.call(..1) || is.call(..2)

Default S3 method:
fFtest(y, exc, X = NULL, w = NULL, full.df = TRUE, ...)

68 fFtest

S3 method for class 'formula'
fFtest(formula, data = NULL, weights = NULL, ...)

Arguments

y a numeric vector: the dependent variable.

exc a numeric vector, factor, numeric matrix or list / data frame of numeric vectors
and/or factors: variables to test / exclude.

X a numeric vector, factor, numeric matrix or list / data frame of numeric vectors
and/or factors: covariates to include in both the restricted (without exc) and
unrestricted model. If left empty (X = NULL), the test amounts to the F-test of the
regression of y on exc.

w numeric. A vector of (frequency) weights.

formula a 2-part formula: y ~ exc | X, where both exc and X are expressions connected
with +, and X can be omitted. Note that other operators (:, *, ^, -, etc.) are not
supported, you can interact variables using standard functions like finteraction/itn
or magrittr::multiply_by inside the formula e.g. log(y) ~ x1 + itn(x2,
x3) | x4 or log(y) ~ x1 + multiply_by(x2, x3) | x4.

data a named list or data frame.

weights a weights vector or expression that results in a vector when evaluated in the data
environment.

full.df logical. If TRUE (default), the degrees of freedom are calculated as if both re-
stricted and unrestricted models were estimated using lm() (i.e. as if factors
were expanded to matrices of dummies). FALSE only uses one degree of free-
dom per factor.

... other arguments passed to fFtest.default or to fhdwithin. Sensible options
might be the lm.method argument or further control parameters to fixest::demean,
the workhorse function underlying fhdwithin for higher-order centering tasks.

Details

Factors and continuous regressors are efficiently projected out using fhdwithin, and the option
full.df regulates whether a degree of freedom is subtracted for each used factor level (equivalent
to dummy-variable estimator / expanding factors), or only one degree of freedom per factor (treat-
ing factors as variables). The test automatically removes missing values and considers only the
complete cases of y, exc and X. Unused factor levels in exc and X are dropped.

Note that an intercept is always added by fhdwithin, so it is not necessary to include an intercept
in data supplied to exc / X.

Value

A 5 x 3 numeric matrix of statistics. The columns contain statistics:

1. the R-squared of the model

2. the numerator degrees of freedom i.e. the number of variables (k) and used factor levels if
full.df = TRUE

fFtest 69

3. the denominator degrees of freedom: N - k - 1.

4. the F-statistic

5. the corresponding P-value

The rows show these statistics for:

1. the Full (unrestricted) Model (y ~ exc + X)

2. the Restricted Model (y ~ X)

3. the Exclusion Restriction of exc. The R-squared shown is simply the difference of the full
and restricted R-Squared’s, not the R-Squared of the model y ~ exc.

If X = NULL, only a vector of the same 5 statistics testing the model (y ~ exc) is shown.

See Also

flm, fhdwithin, Data Transformations, Collapse Overview

Examples

We could use fFtest as a simple seasonality test:
fFtest(AirPassengers, qF(cycle(AirPassengers))) # Testing for level-seasonality
fFtest(AirPassengers, qF(cycle(AirPassengers)), # Seasonality test around a cubic trend

poly(seq_along(AirPassengers), 3))
fFtest(fdiff(AirPassengers), qF(cycle(AirPassengers))) # Seasonality in first-difference

A more classical example with only continuous variables
fFtest(mpg ~ cyl + vs | hp + carb, mtcars)
fFtest(mtcars$mpg, mtcars[c("cyl","vs")], mtcars[c("hp","carb")])

Now encoding cyl and vs as factors
fFtest(mpg ~ qF(cyl) + qF(vs) | hp + carb, mtcars)
fFtest(mtcars$mpg, lapply(mtcars[c("cyl","vs")], qF), mtcars[c("hp","carb")])

Using iris data: A factor and a continuous variable excluded
fFtest(Sepal.Length ~ Petal.Width + Species | Sepal.Width + Petal.Length, iris)
fFtest(iris$Sepal.Length, iris[4:5], iris[2:3])

Testing the significance of country-FE in regression of GDP on life expectancy
fFtest(log(PCGDP) ~ iso3c | LIFEEX, wlddev)
fFtest(log(wlddev$PCGDP), wlddev$iso3c, wlddev$LIFEEX)

Ok, country-FE are significant, what about adding time-FE
fFtest(log(PCGDP) ~ qF(year) | iso3c + LIFEEX, wlddev)
fFtest(log(wlddev$PCGDP), qF(wlddev$year), wlddev[c("iso3c","LIFEEX")])

Same test done using lm:
data <- na_omit(get_vars(wlddev, c("iso3c","year","PCGDP","LIFEEX")))
full <- lm(PCGDP ~ LIFEEX + iso3c + qF(year), data)
rest <- lm(PCGDP ~ LIFEEX + iso3c, data)
anova(rest, full)

70 fgrowth

fgrowth Fast Growth Rates for Time Series and Panel Data

Description

fgrowth is a S3 generic to compute (sequences of) suitably lagged / leaded, iterated and com-
pounded growth rates, obtained with via the exact method of computation or through log differenc-
ing. By default growth rates are provided in percentage terms, but any scale factor can be applied.
The growth operator G is a parsimonious wrapper around fgrowth, and also provides more flexibil-
ity when applied to data frames.

Usage

fgrowth(x, n = 1, diff = 1, ...)
G(x, n = 1, diff = 1, ...)

Default S3 method:
fgrowth(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA,

logdiff = FALSE, scale = 100, power = 1, stubs = TRUE, ...)
Default S3 method:
G(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, logdiff = FALSE,
scale = 100, power = 1, stubs = .op[["stub"]], ...)

S3 method for class 'matrix'
fgrowth(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA,

logdiff = FALSE, scale = 100, power = 1,
stubs = length(n) + length(diff) > 2L, ...)

S3 method for class 'matrix'
G(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA, logdiff = FALSE,
scale = 100, power = 1, stubs = .op[["stub"]], ...)

S3 method for class 'data.frame'
fgrowth(x, n = 1, diff = 1, g = NULL, t = NULL, fill = NA,

logdiff = FALSE, scale = 100, power = 1,
stubs = length(n) + length(diff) > 2L, ...)

S3 method for class 'data.frame'
G(x, n = 1, diff = 1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, logdiff = FALSE, scale = 100, power = 1, stubs = .op[["stub"]],
keep.ids = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fgrowth(x, n = 1, diff = 1, fill = NA, logdiff = FALSE, scale = 100,

power = 1, stubs = length(n) + length(diff) > 2L, shift = "time", ...)
S3 method for class 'pseries'
G(x, n = 1, diff = 1, fill = NA, logdiff = FALSE, scale = 100,

fgrowth 71

power = 1, stubs = .op[["stub"]], shift = "time", ...)

S3 method for class 'pdata.frame'
fgrowth(x, n = 1, diff = 1, fill = NA, logdiff = FALSE, scale = 100,

power = 1, stubs = length(n) + length(diff) > 2L, shift = "time", ...)
S3 method for class 'pdata.frame'
G(x, n = 1, diff = 1, cols = is.numeric, fill = NA, logdiff = FALSE,
scale = 100, power = 1, stubs = .op[["stub"]], shift = "time", keep.ids = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'
fgrowth(x, n = 1, diff = 1, t = NULL, fill = NA, logdiff = FALSE,

scale = 100, power = 1, stubs = length(n) + length(diff) > 2L,
keep.ids = TRUE, ...)

S3 method for class 'grouped_df'
G(x, n = 1, diff = 1, t = NULL, fill = NA, logdiff = FALSE,
scale = 100, power = 1, stubs = .op[["stub"]], keep.ids = TRUE, ...)

Arguments

x a numeric vector / time series, (time series) matrix, data frame, ’indexed_series’
(’pseries’), ’indexed_frame’ (’pdata.frame’) or grouped data frame (’grouped_df’).

n integer. A vector indicating the number of lags or leads.

diff integer. A vector of integers > 1 indicating the order of taking growth rates, e.g.
diff = 2 means computing the growth rate of the growth rate.

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x. Note that without t, all values in a group need to be
consecutive and in the right order. See Details of flag.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~ group1 or var1 + var2 ~ group1 + group2. See Examples.

t a time vector or list of vectors. See flag.

cols data.frame method: Select columns to compute growth rates using a function,
column names, indices or a logical vector. Default: All numeric variables. Note:
cols is ignored if a two-sided formula is passed to by.

fill value to insert when vectors are shifted. Default is NA.

logdiff logical. Compute log-difference growth rates instead of exact growth rates. See
Details.

scale logical. Scale factor post-applied to growth rates, default is 100 which gives
growth rates in percentage terms. See Details.

power numeric. Apply a power to annualize or compound growth rates e.g. fgrowth(AirPassengers,
12, power = 1/12) is equivalent to ((AirPassengers/flag(AirPassengers,
12))^(1/12)-1)*100.

stubs logical. TRUE (default) will rename all computed columns by adding a prefix
"LnGdiff." / "FnGdiff.", or "LnDlogdiff." / "FnDlogdiff." if logdiff =
TRUE.

72 fgrowth

shift pseries / pdata.frame methods: character. "time" or "row". See flag for de-
tails.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all identifiers
from the output (which includes all variables passed to by or t using formulas).
Note: For ’grouped_df’ / ’pdata.frame’ identifiers are dropped, but the "groups"
/ "index" attributes are kept.

... arguments to be passed to or from other methods.

Details

fgrowth/G by default computes exact growth rates using repeat(diff) ((x[i]/x[i-n])^power
- 1)*scale, so for diff > 1 it computes growth rate of growth rates. If logdiff = TRUE, approxi-
mate growth rates are computed using log(x[i]/x[i-n])*scale for diff = 1 and repeat(diff-1)
x[i] - x[i-n] thereafter (usually diff = 1 for log-differencing). For further details see the help
pages of fdiff and flag.

Value

x where the growth rate was taken diff times using lags n of itself, scaled by scale. Computations
can be grouped by g/by and/or ordered by t. See Details and Examples.

See Also

flag/L/F, fdiff/D/Dlog, Time Series and Panel Series, Collapse Overview

Examples

Simple Time Series: AirPassengers
G(AirPassengers) # Growth rate, same as fgrowth(AirPassengers)
G(AirPassengers, logdiff = TRUE) # Log-difference
G(AirPassengers, 1, 2) # Growth rate of growth rate
G(AirPassengers, 12) # Seasonal growth rate (data is monthly)

head(G(AirPassengers, -2:2, 1:3)) # Sequence of leaded/lagged and iterated growth rates

let's do some visual analysis
plot(G(AirPassengers, c(0, 1, 12)))
plot(stl(window(G(AirPassengers, 12), # Taking seasonal growth rate removes most seasonal variation

1950), "periodic"))

Time Series Matrix of 4 EU Stock Market Indicators, recorded 260 days per year
plot(G(EuStockMarkets,c(0,260))) # Plot series and annual growth rates
summary(lm(L260G1.DAX ~., G(EuStockMarkets,260))) # Annual growth rate of DAX regressed on the

growth rates of the other indicators

World Development Panel Data
head(fgrowth(num_vars(wlddev), 1, 1, # Computes growth rates of numeric variables

wlddev$country, wlddev$year)) # fgrowth requires external inputs..
head(G(wlddev, 1, 1, ~country, ~year)) # Growth of numeric variables, id's attached
head(G(wlddev, 1, 1, ~country)) # Without t: Works because data is ordered

fhdbetween-fhdwithin 73

head(G(wlddev, 1, 1, PCGDP + LIFEEX ~ country, ~year)) # Growth of GDP per Capita & Life Expectancy
head(G(wlddev, 0:1, 1, ~ country, ~year, cols = 9:10)) # Same, also retaining original series
head(G(wlddev, 0:1, 1, ~ country, ~year, 9:10, # Dropping id columns

keep.ids = FALSE))

fhdbetween-fhdwithin Higher-Dimensional Centering and Linear Prediction

Description

fhdbetween is a generalization of fbetween to efficiently predict with multiple factors and linear
models (i.e. predict with vectors/factors, matrices, or data frames/lists where the latter may contain
multiple factor variables). Similarly, fhdwithin is a generalization of fwithin to center on multiple
factors and partial-out linear models.

The corresponding operators HDB and HDW additionally allow to predict / partial out full lm() for-
mulas with interactions between variables.

Usage

fhdbetween(x, ...)
fhdwithin(x, ...)

HDB(x, ...)
HDW(x, ...)

Default S3 method:
fhdbetween(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)
Default S3 method:
fhdwithin(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)
Default S3 method:
HDB(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)
Default S3 method:
HDW(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)

S3 method for class 'matrix'
fhdbetween(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)
S3 method for class 'matrix'
fhdwithin(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, lm.method = "qr", ...)
S3 method for class 'matrix'
HDB(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, stub = .op[["stub"]],

lm.method = "qr", ...)
S3 method for class 'matrix'
HDW(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE, stub = .op[["stub"]],

lm.method = "qr", ...)

S3 method for class 'data.frame'
fhdbetween(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE,

74 fhdbetween-fhdwithin

variable.wise = FALSE, lm.method = "qr", ...)
S3 method for class 'data.frame'
fhdwithin(x, fl, w = NULL, na.rm = .op[["na.rm"]], fill = FALSE,

variable.wise = FALSE, lm.method = "qr", ...)
S3 method for class 'data.frame'
HDB(x, fl, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = FALSE,

variable.wise = FALSE, stub = .op[["stub"]], lm.method = "qr", ...)
S3 method for class 'data.frame'
HDW(x, fl, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]], fill = FALSE,

variable.wise = FALSE, stub = .op[["stub"]], lm.method = "qr", ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fhdbetween(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
S3 method for class 'pseries'
fhdwithin(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
S3 method for class 'pseries'
HDB(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)
S3 method for class 'pseries'
HDW(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE, ...)

S3 method for class 'pdata.frame'
fhdbetween(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE,

variable.wise = TRUE, ...)
S3 method for class 'pdata.frame'
fhdwithin(x, effect = "all", w = NULL, na.rm = .op[["na.rm"]], fill = TRUE,

variable.wise = TRUE, ...)
S3 method for class 'pdata.frame'
HDB(x, effect = "all", w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],

fill = TRUE, variable.wise = TRUE, stub = .op[["stub"]], ...)
S3 method for class 'pdata.frame'
HDW(x, effect = "all", w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],

fill = TRUE, variable.wise = TRUE, stub = .op[["stub"]], ...)

Arguments

x a numeric vector, matrix, data frame, ’indexed_series’ (’pseries’) or ’indexed_frame’
(’pdata.frame’).

fl a numeric vector, factor, matrix, data frame or list (which may or may not con-
tain factors). In the HDW/HDB data frame method fl can also be a one-or two
sided lm() formula with variables contained in x. Interactions (:) and full in-
teractions (*) are supported. See Examples and the Note.

w a vector of (non-negative) weights.

cols data.frame methods: Select columns to center (partial-out) or predict using col-
umn names, indices, a logical vector or a function. Unless specified otherwise
all numeric columns are selected. If NULL, all columns are selected.

fhdbetween-fhdwithin 75

na.rm remove missing values from both x and fl. by default rows with missing values
in x or fl are removed. In that case an attribute "na.rm" is attached containing
the rows removed.

fill If na.rm = TRUE, fill = TRUE will not remove rows with missing values in x or
fl, but fill them with NA’s.

variable.wise (p)data.frame methods: Setting variable.wise = TRUE will process each col-
umn individually i.e. use all non-missing cases in each column and in fl (fl is
only checked for missing values if na.rm = TRUE). This is a lot less efficient but
uses all data available in each column.

effect plm methods: Select which panel identifiers should be used for centering. 1L
takes the first variable in the index, 2L the second etc.. Index variables can
also be called by name using a character vector. The keyword "all" uses all
identifiers.

stub character. A prefix/stub to add to the names of all transformed columns. TRUE
(default) uses "HDW."/"HDB.", FALSE will not rename columns.

lm.method character. The linear fitting method. Supported are "chol" and "qr". See flm.

... further arguments passed to fixest::demean (other than notes and im_confident)
and chol / qr. Possible choices are tol to set a uniform numerical tolerance for
the entire fitting process, or nthreads and iter to govern the higher-order cen-
tering process.

Details

fhdbetween/HDB and fhdwithin/HDW are powerful functions for high-dimensional linear predic-
tion problems involving large factors and datasets, but can just as well handle ordinary regression
problems. They are implemented as efficient wrappers around fbetween / fwithin, flm and some
C++ code from the fixest package that is imported for higher-order centering tasks (thus fixest
needs to be installed for problems involving more than one factor).

Intended areas of use are to efficiently obtain residuals and predicted values from data, and to
prepare data for complex linear models involving multiple levels of fixed effects. Such models can
now be fitted using (g)lm() on data prepared with fhdwithin / HDW (relying on bootstrapped SE’s
for inference, or implementing the appropriate corrections). See Examples.

If fl is a vector or matrix, the result are identical to lm i.e. fhdbetween / HDB returns fitted(lm(x
~ fl)) and fhdwithin / HDW residuals(lm(x ~ fl)). If fl is a list containing factors, all vari-
ables in x and non-factor variables in fl are centered on these factors using either fbetween /
fwithin for a single factor or fixest C++ code for multiple factors. Afterwards the centered data
is regressed on the centered predictors. If fl is just a list of factors, fhdwithin/HDW returns the
centered data and fhdbetween/HDB the corresponding means. Take as a most general example a
list fl = list(fct1, fct2, ..., var1, var2, ...) where fcti are factors and vari are contin-
uous variables. The output of fhdwithin/HDW | fhdbetween/HDB will then be identical to calling
resid | fitted on lm(x ~ fct1 + fct2 + ... + var1 + var2 + ...). The computations performed
by fhdwithin/HDW and fhdbetween/HDB are however much faster and more memory efficient than
lm because factors are not passed to model.matrix and expanded to matrices of dummies but pro-
jected out beforehand.

The formula interface to the data.frame method (only supported by the operators HDW | HDB) pro-
vides ease of use and allows for additional modeling complexity. For example it is possible to

76 fhdbetween-fhdwithin

project out formulas like HDW(data, ~ fct1*var1 + fct2:fct3 + var2:fct2:fct3 + var2:var3
+ poly(var5,3)*fct5) containing simple (:) or full (*) interactions of factors with continuous
variables or polynomials of continuous variables, and two-or three-way interactions of factors and
continuous variables. If the formula is one-sided as in the example above (the space left of (~) is left
empty), the formula is applied to all variables selected through cols. The specification provided
in cols (default: all numeric variables not used in the formula) can be overridden by supplying
one-or more dependent variables. For example HDW(data, var1 + var2 ~ fct1 + fct2) will return
a data.frame with var1 and var2 centered on fct1 and fct2.

The special methods for ’indexed_series’ (plm::pseries) and ’indexed_frame’s (plm::pdata.frame)
center a panel series or variables in a panel data frame on all panel-identifiers. By default in these
methods fill = TRUE and variable.wise = TRUE, so missing values are kept. This change in the
default arguments was done to ensure a coherent framework of functions and operators applied to
plm panel data classes.

Value

HDB returns fitted values of regressing x on fl. HDW returns residuals. See Details and Examples.

Note

On the differences between fhdwithin/HDW. . . and fwithin/W. . . ::
• fhdwithin/HDW can center data on multiple factors and also partial out continuous variables

and factor-continuous interactions while fwithin/W only centers on one factor or the inter-
action of a set of factors, and does that very efficiently.

• HDW(data, ~ qF(group1) + qF(group2)) simultaneously centers numeric variables in data
on group1 and group2, while W(data, ~ group1 + group2) centers data on the interaction of
group1 and group2. The equivalent operation in HDW would be: HDW(data, ~ qF(group1):qF(group2)).

• W always does computations on the variable-wise complete observations (in both matrices and
data frames), whereas by default HDW removes all cases missing in either x or fl. In short,
W(data, ~ group1 + group2) is actually equivalent to HDW(data, ~ qF(group1):qF(group2),
variable.wise = TRUE). HDW(data, ~ qF(group1):qF(group2)) would remove any miss-
ing cases.

• fbetween/B and fwithin/W have options to fill missing cases using group-averages and
to add the overall mean back to group-demeaned data. These options are not available in
fhdbetween/HDB and fhdwithin/HDW. Since HDB and HDW by default remove missing cases,
they also don’t have options to keep grouping-columns as in B and W.

See Also

fbetween, fwithin, fscale, TRA, flm, fFtest, Data Transformations, Collapse Overview

Examples

HDW(mtcars$mpg, mtcars$carb) # Simple regression problems
HDW(mtcars$mpg, mtcars[-1])
HDW(mtcars$mpg, qM(mtcars[-1]))
head(HDW(qM(mtcars[3:4]), mtcars[1:2]))
head(HDW(iris[1:2], iris[3:4])) # Partialling columns 3 and 4 out of columns 1 and 2
head(HDW(iris[1:2], iris[3:5])) # Adding the Species factor -> fixed effect

flag 77

head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c + qF(year))) # Partialling out 2 fixed effects
head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c + qF(year), variable.wise = TRUE)) # Variable-wise
head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c + qF(year) + ODA)) # Adding ODA as a continuous regressor
head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c:qF(decade) + qF(year) + ODA)) # Country-decade and year FE's

head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c*year)) # Country specific time trends
head(HDW(wlddev, PCGDP + LIFEEX ~ iso3c*poly(year, 3))) # Country specific cubic trends

More complex examples
lm(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear + wt:gear:carb))
lm(mpg ~ hp + factor(cyl)*carb + vs + wt:gear + wt:gear:carb, data = mtcars)

lm(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ factor(cyl)*carb + vs + wt:gear))
lm(mpg ~ hp + factor(cyl)*carb + vs + wt:gear, data = mtcars)

lm(HDW.mpg ~ HDW.hp, data = HDW(mtcars, ~ cyl*carb + vs + wt:gear))
lm(mpg ~ hp + cyl*carb + vs + wt:gear, data = mtcars)

lm(HDW.mpg ~ HDW.hp, data = HDW(mtcars, mpg + hp ~ cyl*carb + factor(cyl)*poly(drat,2)))
lm(mpg ~ hp + cyl*carb + factor(cyl)*poly(drat,2), data = mtcars)

flag Fast Lags and Leads for Time Series and Panel Data

Description

flag is an S3 generic to compute (sequences of) lags and leads. L and F are wrappers around
flag representing the lag- and lead-operators, such that L(x,-1) = F(x,1) = F(x) and L(x,-3:3)
= F(x,3:-3). L and F provide more flexibility than flag when applied to data frames (i.e. column
subsetting, formula input and id-variable-preservation capabilities. . .), but are otherwise identical.

Note: Since v1.9.0, F is no longer exported, but can be accessed using collapse:::F, or through
setting options(collapse_export_F = TRUE) before loading the package. The syntax is the same
as L.

Usage

flag(x, n = 1, ...)
L(x, n = 1, ...)

Default S3 method:
flag(x, n = 1, g = NULL, t = NULL, fill = NA, stubs = TRUE, ...)
Default S3 method:
L(x, n = 1, g = NULL, t = NULL, fill = NA, stubs = .op[["stub"]], ...)

S3 method for class 'matrix'
flag(x, n = 1, g = NULL, t = NULL, fill = NA, stubs = length(n) > 1L, ...)

78 flag

S3 method for class 'matrix'
L(x, n = 1, g = NULL, t = NULL, fill = NA, stubs = .op[["stub"]], ...)

S3 method for class 'data.frame'
flag(x, n = 1, g = NULL, t = NULL, fill = NA, stubs = length(n) > 1L, ...)
S3 method for class 'data.frame'
L(x, n = 1, by = NULL, t = NULL, cols = is.numeric,
fill = NA, stubs = .op[["stub"]], keep.ids = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
flag(x, n = 1, fill = NA, stubs = length(n) > 1L, shift = "time", ...)
S3 method for class 'pseries'
L(x, n = 1, fill = NA, stubs = .op[["stub"]], shift = "time", ...)

S3 method for class 'pdata.frame'
flag(x, n = 1, fill = NA, stubs = length(n) > 1L, shift = "time", ...)
S3 method for class 'pdata.frame'
L(x, n = 1, cols = is.numeric, fill = NA, stubs = .op[["stub"]],
shift = "time", keep.ids = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'
flag(x, n = 1, t = NULL, fill = NA, stubs = length(n) > 1L, keep.ids = TRUE, ...)
S3 method for class 'grouped_df'
L(x, n = 1, t = NULL, fill = NA, stubs = .op[["stub"]], keep.ids = TRUE, ...)

Arguments

x a vector / time series, (time series) matrix, data frame, ’indexed_series’ (’pseries’),
’indexed_frame’ (’pdata.frame’) or grouped data frame (’grouped_df’). Data
must not be numeric.

n integer. A vector indicating the lags / leads to compute (passing negative integers
to flag or L computes leads, passing negative integers to F computes lags).

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x. Note that without t, all values in a group need to be
consecutive and in the right order. See Details.

by data.frame method: Same as g, but also allows one- or two-sided formulas i.e.
~ group1 or var1 + var2 ~ group1 + group2. See Examples.

t a time vector or list of vectors. Data frame methods also allows one-sided for-
mula i.e. ~time. grouped_df method supports lazy-evaluation i.e. time (no
quotes). Either support wrapping a transformation function e.g. ~timeid(time),
qG(time) etc.. See also Details on how t is processed.

cols data.frame method: Select columns to lag using a function, column names, in-
dices or a logical vector. Default: All numeric variables. Note: cols is ignored
if a two-sided formula is passed to by.

flag 79

fill value to insert when vectors are shifted. Default is NA.

stubs logical. TRUE (default) will rename all lagged / leaded columns by adding a stub
or prefix "Ln." / "Fn.".

shift pseries / pdata.frame methods: character. "time" performs a fully identified
time-lag (if the index contains a time variable), whereas "row" performs a sim-
ple (group) lag, where observations are shifted based on the present order of
rows (in each group). The latter is significantly faster, but requires time series /
panels to be regularly spaced and sorted by time within each group.

keep.ids data.frame / pdata.frame / grouped_df methods: Logical. Drop all identifiers
from the output (which includes all variables passed to by or t using formulas).
Note: For ’grouped_df’ / ’pdata.frame’ identifiers are dropped, but the "groups"
/ "index" attributes are kept.

... arguments to be passed to or from other methods.

Details

If a single integer is passed to n, and g/by and t are left empty, flag/L/F just returns x with all
columns lagged / leaded by n. If length(n)>1, and x is an atomic vector (time series), flag/L/F
returns a (time series) matrix with lags / leads computed in the same order as passed to n. If instead
x is a matrix / data frame, a matrix / data frame with ncol(x)*length(n) columns is returned
where columns are sorted first by variable and then by lag (so all lags computed on a variable are
grouped together). x can be of any standard data type.

With groups/panel-identifiers supplied to g/by, flag/L/F efficiently computes a panel-lag/lead by
shifting the entire vector(s) but inserting fill elements in the right places. If t is left empty, the
data needs to be ordered such that all values belonging to a group are consecutive and in the right
order. It is not necessary that the groups themselves are alphabetically ordered. If a time-variable is
supplied to t (or a list of time-variables uniquely identifying the time-dimension), the series / panel
is fully identified and lags / leads can be securely computed even if the data is unordered / irregular.

Note that the t argument is processed as follows: If is.factor(t) || (is.numeric(t) && !is.object(t))
(i.e. t is a factor or plain numeric vector), it is assumed to represent unit timesteps (e.g. a ’year’
variable in a typical dataset), and thus coerced to integer using as.integer(t) and directly passed
to C++ without further checks or transformations at the R-level. Otherwise, if is.object(t) &&
is.numeric(unclass(t)) (i.e. t is a numeric time object, most likely ’Date’ or ’POSIXct’),
this object is passed through timeid before going to C++. Else (e.g. t is character), it is passed
through qG which performs ordered grouping. If t is a list of multiple variables, it is passed
through finteraction. You can customize this behavior by calling any of these functions (in-
cluding unclass/as.integer) on your time variable beforehand.

At the C++ level, if both g/by and t are supplied, flag works as follows: Use two initial passes
to create an ordering through which the data are accessed. First-pass: Calculate minimum and
maximum time-value for each individual. Second-pass: Generate an internal ordering vector (o) by
placing the current element index into the vector slot obtained by adding the cumulative group size
and the current time-value subtracted its individual-minimum together. This method of computation
is faster than any sort-based method and delivers optimal performance if the panel-id supplied to
g/by is already a factor variable, and if t is an integer/factor variable. For irregular time/panel series,
length(o) > length(x), and o represents the unobserved ’complete series’. If length(o) > 1e7
&& length(o) > 3*length(x), a warning is issued to make you aware of potential performance
implications of the oversized ordering vector.

80 flag

The ’indexed_series’ (’pseries’) and ’indexed_frame’ (’pdata.frame’) methods automatically utilize
the identifiers attached to these objects, which are already factors, thus lagging is quite efficient.
However, the internal ordering vector still needs to be computed, thus if data are known to be
ordered and regularly spaced, using shift = "row" to toggle a simple group-lag (same as utilizing
g but not t in other methods) can yield a significant performance gain.

Value

x lagged / leaded n-times, grouped by g/by, ordered by t. See Details and Examples.

See Also

fdiff, fgrowth, Time Series and Panel Series, Collapse Overview

Examples

Simple Time Series: AirPassengers
L(AirPassengers) # 1 lag
flag(AirPassengers) # Same
L(AirPassengers, -1) # 1 lead

head(L(AirPassengers, -1:3)) # 1 lead and 3 lags - output as matrix

Time Series Matrix of 4 EU Stock Market Indicators, 1991-1998
tsp(EuStockMarkets) # Data is recorded on 260 days per year
freq <- frequency(EuStockMarkets)
plot(stl(EuStockMarkets[,"DAX"], freq)) # There is some obvious seasonality
head(L(EuStockMarkets, -1:3 * freq)) # 1 annual lead and 3 annual lags
summary(lm(DAX ~., data = L(EuStockMarkets,-1:3*freq))) # DAX regressed on its own annual lead,

lags and the lead/lags of the other series
World Development Panel Data
head(flag(wlddev, 1, wlddev$iso3c, wlddev$year)) # This lags all variables,
head(L(wlddev, 1, ~iso3c, ~year)) # This lags all numeric variables
head(L(wlddev, 1, ~iso3c)) # Without t: Works because data is ordered
head(L(wlddev, 1, PCGDP + LIFEEX ~ iso3c, ~year)) # This lags GDP per Capita & Life Expectancy
head(L(wlddev, 0:2, ~ iso3c, ~year, cols = 9:10)) # Same, also retaining original series
head(L(wlddev, 1:2, PCGDP + LIFEEX ~ iso3c, ~year, # Two lags, dropping id columns

keep.ids = FALSE))

Regressing GDP on its's lags and life-Expectancy and its lags
summary(lm(PCGDP ~ ., L(wlddev, 0:2, ~iso3c, ~year, 9:10, keep.ids = FALSE)))

Indexing the data: facilitates time-based computations
wldi <- findex_by(wlddev, iso3c, year)
head(L(wldi, 0:2, cols = 9:10)) # Again 2 lags of GDP and LIFEEX
head(L(wldi$PCGDP)) # Lagging an indexed series
summary(lm(PCGDP ~ L(PCGDP,1:2) + L(LIFEEX,0:2), wldi)) # Running the lm again
summary(lm(PCGDP ~ ., L(wldi, 0:2, 9:10, keep.ids = FALSE))) # Same thing

Using grouped data:
library(magrittr)
wlddev |> fgroup_by(iso3c) |> fselect(PCGDP,LIFEEX) |> flag(0:2)

flm 81

wlddev |> fgroup_by(iso3c) |> fselect(year,PCGDP,LIFEEX) |> flag(0:2,year) # Also using t (safer)

flm Fast (Weighted) Linear Model Fitting

Description

flm is a fast linear model command that (by default) only returns a coefficient matrix. 6 different
efficient fitting methods are implemented: 4 using base R linear algebra, and 2 utilizing the RcppAr-
madillo and RcppEigen packages. The function itself only has an overhead of 5-10 microseconds,
and is thus well suited as a bootstrap workhorse.

Usage

flm(...) # Internal method dispatch: default if is.atomic(..1)

Default S3 method:
flm(y, X, w = NULL, add.icpt = FALSE, return.raw = FALSE,

method = c("lm", "solve", "qr", "arma", "chol", "eigen"),
eigen.method = 3L, ...)

S3 method for class 'formula'
flm(formula, data = NULL, weights = NULL, add.icpt = TRUE, ...)

Arguments

y a response vector or matrix. Multiple dependent variables are only supported by
methods "lm", "solve", "qr" and "chol".

X a matrix of regressors.

w a weight vector.

add.icpt logical. TRUE adds an intercept column named ’(Intercept)’ to X.

formula a lm formula, without factors, interaction terms or other operators (:, *, ^,
-, etc.), may include regular transformations e.g. log(var), cbind(y1, y2),
magrittr::multiply_by(var1, var2), magrittr::raise_to_power(var, 2).

data a named list or data frame.

weights a weights vector or expression that results in a vector when evaluated in the data
environment.

return.raw logical. TRUE returns the original output from the different methods. For ’lm’,
’arma’ and ’eigen’, this includes additional statistics such as residuals, fitted val-
ues or standard errors. The other methods just return coefficients but in different
formats.

method an integer or character string specifying the method of computation:

Int. String Description

82 flm

1 "lm" uses .lm.fit.
2 "solve" solve(crossprod(X), crossprod(X, y)).
3 "qr" qr.coef(qr(X), y).
4 "arma" uses RcppArmadillo::fastLmPure.
5 "chol" chol2inv(chol(crossprod(X))) %*% crossprod(X, y) (quite fast, requires crossprod(X) to be positive definite i.e. problematic if multicollinearity).
6 "eigen" uses RcppEigen::fastLmPure (very fast but, depending on the method, also unstable if multicollinearity).

eigen.method integer. Select the method of computation used by RcppEigen::fastLmPure:

Int. Description
0 column-pivoted QR decomposition.
1 unpivoted QR decomposition.
2 LLT Cholesky.
3 LDLT Cholesky.
4 Jacobi singular value decomposition (SVD).
5 method based on the eigenvalue-eigenvector decomposition of X’X.

See vignette("RcppEigen-Introduction", package = "RcppEigen") for de-
tails on these methods and benchmark results. Run source(system.file("examples",
"lmBenchmark.R", package = "RcppEigen")) to re-run the benchmark on your
machine.

... further arguments passed to other methods. For the formula method further argu-
ments passed to the default method. Additional arguments can also be passed to
the default method e.g. tol = value to set a numerical tolerance for the solution
- applicable with methods "lm", "solve" and "qr" (default is 1e-7), or LAPACK
= TRUE with method "qr" to use LAPACK routines to for the qr decomposition
(typically faster than the LINPACK default).

Value

If return.raw = FALSE, a matrix of coefficients with the rows corresponding to the columns of X,
otherwise the raw results from the various methods are returned.

Note

Method "qr" supports sparse matrices, so for an X matrix with many dummy variables consider
method "qr" passing as(X, "dgCMatrix") instead of just X.

See Also

fhdwithin/HDW, fFtest, Data Transformations, Collapse Overview

Examples

Simple usage
coef <- flm(mpg ~ hp + carb, mtcars, w = wt)

fmatch 83

Same thing in programming usage
flm(mtcars$mpg, qM(mtcars[c("hp","carb")]), mtcars$wt, add.icpt = TRUE)

Check this is correct
lmcoef <- coef(lm(mpg ~ hp + carb, weights = wt, mtcars))
all.equal(drop(coef), lmcoef)

Multi-dependent variable (only some methods)
flm(cbind(mpg, qsec) ~ hp + carb, mtcars, w = wt)

Returning raw results from solver: different for different methods
flm(mpg ~ hp + carb, mtcars, return.raw = TRUE)
flm(mpg ~ hp + carb, mtcars, method = "qr", return.raw = TRUE)

Test that all methods give the same result
all_obj_equal(lapply(1:6, function(i)

flm(mpg ~ hp + carb, mtcars, w = wt, method = i)))

fmatch Fast Matching

Description

Fast matching of elements/rows in x to elements/rows in table.

This is a much faster replacement for match that works with atomic vectors and data frames / lists
of equal-length vectors. It is the workhorse function of join.

Usage

fmatch(x, table, nomatch = NA_integer_,
count = FALSE, overid = 1L)

Check match: throws an informative error for non-matched elements
Default message reflects frequent internal use to check data frame columns
ckmatch(x, table, e = "Unknown columns:", ...)

Infix operators based on fmatch():
x %!in% table # Opposite of %in%
x %iin% table # = which(x %in% table), but more efficient
x %!iin% table # = which(x %!in% table), but more efficient
Use set_collapse(mask = "%in%") to replace %in% with
a much faster version based on fmatch()

Arguments

x a vector, list or data frame whose elements are matched against table. If a
list/data frame, matches are found by comparing rows, unlike match which com-
pares columns.

84 fmatch

table a vector, list or data frame to match against.

nomatch integer. Value to be returned in the case when no match is found. Default is
NA_integer_.

count logical. Counts number of (unique) matches and attaches 4 attributes:

• "N.nomatch": The number of elements in x not matched = sum(result ==
nomatch).

• "N.groups": The size of the table = NROW(table).
• "N.distinct": The number of unique matches = fndistinct(result[result
!= nomatch]).

• "class": The "qG" class: needed for optimized computations on the results
object (e.g. funique(result), which is needed for a full join).

Note that computing these attributes requires an extra pass through the match-
ing vector. Also note that these attributes contain no general information about
whether either x or table are unique, except for two special cases when N.groups
= N.distinct (table is unique) or length(result) = N.distinct (x is unique). Other-
wise use any_duplicated to check x/table.

overid integer. If x/table are lists/data frames, fmatch compares the rows incremen-
tally, starting with the first two columns, and matching further columns as nec-
essary (see Details). Overidentification corresponds to the case when a subset of
the columns uniquely identify the data. In this case this argument controls the
behavior:

• 0: Early termination: stop matching additional columns. Most efficient.
• 1: Continue matching columns and issue a warning that the data is overi-

dentified.
• 2: Continue matching columns without warning.

e the error message thrown by ckmatch for non-matched elements. The message
is followed by the comma-separated non-matched elements.

... further arguments to fmatch.

Details

With data frames / lists, fmatch compares the rows but moves through the data on a column-by-
column basis (like a vectorized hash join algorithm). With two or more columns, the first two
columns are hashed simultaneously for speed. Further columns can be added to this match. It
is likely that the first 2, 3, 4 etc. columns of a data frame fully identify the data. After each
column fmatch() internally checks whether the table rows that are still eligible for matching
(eliminating nomatch rows from earlier columns) are unique. If this is the case and overid = 0,
fmatch() terminates early without considering further columns. This is efficient but may give
undesirable/wrong results if considering further columns would turn some additional elements of
the result vector into nomatch values.

Value

Integer vector containing the positions of first matches of x in table. nomatch is returned for
elements of x that have no match in table. If count = TRUE, the result has additional attributes and
a class "qG".

fmean 85

See Also

join, funique, group, Fast Grouping and Ordering, Collapse Overview

Examples

x <- c("b", "c", "a", "e", "f", "ff")
fmatch(x, letters)
fmatch(x, letters, nomatch = 0)
fmatch(x, letters, count = TRUE)

Table 1
df1 <- data.frame(

id1 = c(1, 1, 2, 3),
id2 = c("a", "b", "b", "c"),
name = c("John", "Bob", "Jane", "Carl")

)
head(df1)
Table 2
df2 <- data.frame(

id1 = c(1, 2, 3, 3),
id2 = c("a", "b", "c", "e"),
name = c("John", "Janne", "Carl", "Lynne")

)
head(df2)

This gives an overidentification warning: columns 1:2 identify the data
if(FALSE) fmatch(df1, df2)
This just runs through without warning
fmatch(df1, df2, overid = 2)
This terminates computation after first 2 columns
fmatch(df1, df2, overid = 0)
fmatch(df1[1:2], df2[1:2]) # Same thing!
-> note that here we get an additional match based on the unique ids,
which we didn't get before because "Jane" != "Janne"

fmean Fast (Grouped, Weighted) Mean for Matrix-Like Objects

Description

fmean is a generic function that computes the (column-wise) mean of x, (optionally) grouped by
g and/or weighted by w. The TRA argument can further be used to transform x using its (grouped,
weighted) mean.

Usage

fmean(x, ...)

Default S3 method:

86 fmean

fmean(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],
use.g.names = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'matrix'
fmean(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'data.frame'
fmean(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'grouped_df'
fmean(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE,
keep.w = TRUE, stub = .op[["stub"]], nthreads = .op[["nthreads"]], ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

w a numeric vector of (non-negative) weights, may contain missing values.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

nthreads integer. The number of threads to utilize. See Details of fsum.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

stub character. If keep.w = TRUE and stub = TRUE (default), the summed weights
column is prefixed by "sum.". Users can specify a different prefix through this
argument, or set it to FALSE to avoid prefixing.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

fmean 87

Details

The weighted mean is computed as sum(x * w) / sum(w), using a single pass in C. If na.rm = TRUE,
missing values will be removed from both x and w i.e. utilizing only x[complete.cases(x,w)]
and w[complete.cases(x,w)].

For further computational details see fsum, which works equivalently.

Value

The (w weighted) mean of x, grouped by g, or (if TRA is used) x transformed by its (grouped,
weighted) mean.

See Also

fmedian, fmode, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fmean(mpg) # Simple mean
fmean(mpg, w = mtcars$hp) # Weighted mean: Weighted by hp
fmean(mpg, TRA = "-") # Simple transformation: demeaning (See also ?W)
fmean(mpg, mtcars$cyl) # Grouped mean
fmean(mpg, mtcars[8:9]) # another grouped mean.
g <- GRP(mtcars[c(2,8:9)])
fmean(mpg, g) # Pre-computing groups speeds up the computation
fmean(mpg, g, mtcars$hp) # Grouped weighted mean
fmean(mpg, g, TRA = "-") # Demeaning by group
fmean(mpg, g, mtcars$hp, "-") # Group-demeaning using weighted group means

data.frame method
fmean(mtcars)
fmean(mtcars, g)
fmean(fgroup_by(mtcars, cyl, vs, am)) # Another way of doing it..
head(fmean(mtcars, g, TRA = "-")) # etc..

matrix method
m <- qM(mtcars)
fmean(m)
fmean(m, g)
head(fmean(m, g, TRA = "-")) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fmean() # Ordinary
mtcars |> fgroup_by(cyl,vs,am) |> fmean(hp) # Weighted
mtcars |> fgroup_by(cyl,vs,am) |> fmean(hp, "-") # Weighted Transform
mtcars |> fgroup_by(cyl,vs,am) |>

fselect(mpg,hp) |> fmean(hp, "-") # Only mpg

88 fmin-fmax

fmin-fmax Fast (Grouped) Maxima and Minima for Matrix-Like Objects

Description

fmax and fmin are generic functions that compute the (column-wise) maximum and minimum value
of all values in x, (optionally) grouped by g. The TRA argument can further be used to transform x
using its (grouped) maximum or minimum value.

Usage

fmax(x, ...)
fmin(x, ...)

Default S3 method:
fmax(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ...)
Default S3 method:
fmin(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ...)

S3 method for class 'matrix'
fmax(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'matrix'
fmin(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
fmax(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)
S3 method for class 'data.frame'
fmin(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fmax(x, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, ...)
S3 method for class 'grouped_df'
fmin(x, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

fmin-fmax 89

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

Missing-value removal as controlled by the na.rm argument is done at no extra cost since in C++
any logical comparison involving NA or NaN evaluates to FALSE. Large performance gains can never-
theless be achieved in the presence of missing values if na.rm = FALSE, since then the corresponding
computation is terminated once a NA is encountered and NA is returned (unlike max and min which
just run through without any checks).

For further computational details see fsum.

Value

fmax returns the maximum value of x, grouped by g, or (if TRA is used) x transformed by its
(grouped) maximum value. Analogous, fmin returns the minimum value . . .

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fmax(mpg) # Maximum value
fmin(mpg) # Minimum value (all examples below use fmax but apply to fmin)
fmax(mpg, TRA = "%") # Simple transformation: Take percentage of maximum value
fmax(mpg, mtcars$cyl) # Grouped maximum value
fmax(mpg, mtcars[c(2,8:9)]) # More groups..
g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !
fmax(mpg, g)
fmax(mpg, g, TRA = "%") # Groupwise percentage of maximum value
fmax(mpg, g, TRA = "replace") # Groupwise replace by maximum value

data.frame method

90 fmode

fmax(mtcars)
head(fmax(mtcars, TRA = "%"))
fmax(mtcars, g)
fmax(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method
m <- qM(mtcars)
fmax(m)
head(fmax(m, TRA = "%"))
fmax(m, g) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fmax()
mtcars |> fgroup_by(cyl,vs,am) |> fmax("%")
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg) |> fmax()

fmode Fast (Grouped, Weighted) Statistical Mode for Matrix-Like Objects

Description

fmode is a generic function and returns the (column-wise) statistical mode i.e. the most frequent
value of x, (optionally) grouped by g and/or weighted by w. The TRA argument can further be used
to transform x using its (grouped, weighted) mode. Ties between multiple possible modes can be
resolved by taking the minimum, maximum, (default) first or last occurring mode.

Usage

fmode(x, ...)

Default S3 method:
fmode(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ties = "first", nthreads = .op[["nthreads"]], ...)

S3 method for class 'matrix'
fmode(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ties = "first", nthreads = .op[["nthreads"]], ...)

S3 method for class 'data.frame'
fmode(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ties = "first", nthreads = .op[["nthreads"]], ...)

S3 method for class 'grouped_df'
fmode(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, stub = .op[["stub"]],
ties = "first", nthreads = .op[["nthreads"]], ...)

fmode 91

Arguments

x a vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

w a numeric vector of (non-negative) weights, may contain missing values.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE, NA is treated as any other value.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

ties an integer or character string specifying the method to resolve ties between mul-
tiple possible modes i.e. multiple values with the maximum frequency or sum
of weights:

Int. String Description
1 "first" take the first occurring mode.
2 "min" take the smallest of the possible modes.
3 "max" take the largest of the possible modes.
4 "last" take the last occurring mode.

Note: "min"/"max" don’t work with character data. See also Details.

nthreads integer. The number of threads to utilize. Parallelism is across groups for
grouped computations and at the column-level otherwise.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain sum of weighting variable after computa-
tion (if contained in grouped_df).

stub character. If keep.w = TRUE and stub = TRUE (default), the summed weights
column is prefixed by "sum.". Users can specify a different prefix through this
argument, or set it to FALSE to avoid prefixing.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

fmode implements a pretty fast C-level hashing algorithm inspired by the kit package to find the
statistical mode.

92 fmode

If na.rm = FALSE, NA is not removed but treated as any other value (i.e. its frequency is counted). If
all values are NA, NA is always returned.

The weighted mode is computed by summing up the weights for all distinct values and choosing
the value with the largest sum. If na.rm = TRUE, missing values will be removed from both x and w
i.e. utilizing only x[complete.cases(x,w)] and w[complete.cases(x,w)].

It is possible that multiple values have the same mode (the maximum frequency or sum of weights).
Typical cases are simply when all values are either all the same or all distinct. In such cases, the
default option ties = "first" returns the first occurring value in the data reaching the maximum
frequency count or sum of weights. For example in a sample x = c(1, 3, 2, 2, 4, 4, 1, 7), the
first mode is 2 as fmode goes through the data from left to right. ties = "last" on the other hand
gives 1. It is also possible to take the minimum or maximum mode, i.e. fmode(x, ties = "min")
returns 1, and fmode(x, ties = "max") returns 4. It should be noted that options ties = "min" and
ties = "max" give unintuitive results for character data (no strict alphabetic sorting, similar to using
< and > to compare character values in R). These options are also best avoided if missing values
are counted (na.rm = FALSE) since no proper logical comparison with missing values is possible:
With numeric data it depends, since in C++ any comparison with NA_real_ evaluates to FALSE,
NA_real_ is chosen as the min or max mode only if it is also the first mode, and never otherwise.
For integer data, NA_integer_ is stored as the smallest integer in C++, so it will always be chosen
as the min mode and never as the max mode. For character data, NA_character_ is stored as the
string "NA" in C++ and thus the behavior depends on the other character content.

fmode preserves all the attributes of the objects it is applied to (apart from names or row-names
which are adjusted as necessary in grouped operations). If a data frame is passed to fmode and drop
= TRUE (the default), unlist will be called on the result, which might not be sensible depending on
the data at hand.

Value

The (w weighted) statistical mode of x, grouped by g, or (if TRA is used) x transformed by its
(grouped, weighed) mode.

See Also

fmean, fmedian, Fast Statistical Functions, Collapse Overview

Examples

x <- c(1, 3, 2, 2, 4, 4, 1, 7, NA, NA, NA)
fmode(x) # Default is ties = "first"
fmode(x, ties = "last")
fmode(x, ties = "min")
fmode(x, ties = "max")
fmode(x, na.rm = FALSE) # Here NA is the mode, regardless of ties option
fmode(x[-length(x)], na.rm = FALSE) # Not anymore..

World Development Data
attach(wlddev)
default vector method
fmode(PCGDP) # Numeric mode
head(fmode(PCGDP, iso3c)) # Grouped numeric mode

fndistinct 93

head(fmode(PCGDP, iso3c, LIFEEX)) # Grouped and weighted numeric mode
fmode(region) # Factor mode
fmode(date) # Date mode (defaults to first value since panel is balanced)
fmode(country) # Character mode (also defaults to first value)
fmode(OECD) # Logical mode

..all the above can also be performed grouped and weighted
matrix method
m <- qM(airquality)
fmode(m)
fmode(m, na.rm = FALSE) # NA frequency is also counted
fmode(m, airquality$Month) # Groupwise
fmode(m, w = airquality$Day) # Weighted: Later days in the month are given more weight
fmode(m>50, airquality$Month) # Groupwise logical mode

etc..
data.frame method
fmode(wlddev) # Calling unlist -> coerce to character vector
fmode(wlddev, drop = FALSE) # Gives one row
head(fmode(wlddev, iso3c)) # Grouped mode
head(fmode(wlddev, iso3c, LIFEEX)) # Grouped and weighted mode

detach(wlddev)

fndistinct Fast (Grouped) Distinct Value Count for Matrix-Like Objects

Description

fndistinct is a generic function that (column-wise) computes the number of distinct values in x,
(optionally) grouped by g. It is significantly faster than length(unique(x)). The TRA argument
can further be used to transform x using its (grouped) distinct value count.

Usage

fndistinct(x, ...)

Default S3 method:
fndistinct(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'matrix'
fndistinct(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'data.frame'
fndistinct(x, g = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'grouped_df'
fndistinct(x, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, nthreads = .op[["nthreads"]], ...)

94 fndistinct

Arguments

x a vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. TRUE: Skip missing values in x (faster computation). FALSE: Also con-
sider ’NA’ as one distinct value.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

nthreads integer. The number of threads to utilize. Parallelism is across groups for
grouped computations and at the column-level otherwise.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

fndistinct implements a pretty fast C-level hashing algorithm inspired by the kit package to find
the number of distinct values.

If na.rm = TRUE (the default), missing values will be skipped yielding substantial performance gains
in data with many missing values. If na.rm = FALSE, missing values will simply be treated as any
other value and read into the hash-map. Thus with the former, a numeric vector c(1.25,NaN,3.56,NA)
will have a distinct value count of 2, whereas the latter will return a distinct value count of 4.

fndistinct preserves all attributes of non-classed vectors / columns, and only the ’label’ attribute
(if available) of classed vectors / columns (i.e. dates or factors). When applied to data frames and
matrices, the row-names are adjusted as necessary.

Value

Integer. The number of distinct values in x, grouped by g, or (if TRA is used) x transformed by its
distinct value count, grouped by g.

See Also

fnunique, fnobs, Fast Statistical Functions, Collapse Overview

fnobs 95

Examples

default vector method
fndistinct(airquality$Solar.R) # Simple distinct value count
fndistinct(airquality$Solar.R, airquality$Month) # Grouped distinct value count

data.frame method
fndistinct(airquality)
fndistinct(airquality, airquality$Month)
fndistinct(wlddev) # Works with data of all types!
head(fndistinct(wlddev, wlddev$iso3c))

matrix method
aqm <- qM(airquality)
fndistinct(aqm) # Also works for character or logical matrices
fndistinct(aqm, airquality$Month)

method for grouped data frames - created with dplyr::group_by or fgroup_by
airquality |> fgroup_by(Month) |> fndistinct()
wlddev |> fgroup_by(country) |>

fselect(PCGDP,LIFEEX,GINI,ODA) |> fndistinct()

fnobs Fast (Grouped) Observation Count for Matrix-Like Objects

Description

fnobs is a generic function that (column-wise) computes the number of non-missing values in x,
(optionally) grouped by g. It is much faster than sum(!is.na(x)). The TRA argument can further
be used to transform x using its (grouped) observation count.

Usage

fnobs(x, ...)

Default S3 method:
fnobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, ...)

S3 method for class 'matrix'
fnobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
fnobs(x, g = NULL, TRA = NULL, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fnobs(x, TRA = NULL, use.g.names = FALSE, keep.group_vars = TRUE, ...)

96 fnobs

Arguments

x a vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

fnobs preserves all attributes of non-classed vectors / columns, and only the ’label’ attribute (if
available) of classed vectors / columns (i.e. dates or factors). When applied to data frames and
matrices, the row-names are adjusted as necessary.

Value

Integer. The number of non-missing observations in x, grouped by g, or (if TRA is used) x trans-
formed by its number of non-missing observations, grouped by g.

See Also

fndistinct, Fast Statistical Functions, Collapse Overview

Examples

default vector method
fnobs(airquality$Solar.R) # Simple Nobs
fnobs(airquality$Solar.R, airquality$Month) # Grouped Nobs

data.frame method
fnobs(airquality)
fnobs(airquality, airquality$Month)
fnobs(wlddev) # Works with data of all types!
head(fnobs(wlddev, wlddev$iso3c))

matrix method
aqm <- qM(airquality)
fnobs(aqm) # Also works for character or logical matrices

fnth-fmedian 97

fnobs(aqm, airquality$Month)

method for grouped data frames - created with dplyr::group_by or fgroup_by
airquality |> fgroup_by(Month) |> fnobs()
wlddev |> fgroup_by(country) |>

fselect(PCGDP,LIFEEX,GINI,ODA) |> fnobs()

fnth-fmedian Fast (Grouped, Weighted) N’th Element/Quantile for Matrix-Like Ob-
jects

Description

fnth (column-wise) returns the n’th smallest element from a set of unsorted elements x correspond-
ing to an integer index (n), or to a probability between 0 and 1. If n is passed as a probability, ties
can be resolved using the lower, upper, or average of the possible elements, or, since v1.9.0, contin-
uous quantile estimation. The new default is quantile type 7 (as in quantile). For n > 1, the lower
element is always returned (as in sort(x, partial = n)[n]). See Details.

fmedian is a simple wrapper around fnth, which fixes n = 0.5 and (default) ties = "mean" i.e. it
averages eligible elements. See Details.

Usage

fnth(x, n = 0.5, ...)
fmedian(x, ...)

Default S3 method:
fnth(x, n = 0.5, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ties = "q7", nthreads = .op[["nthreads"]],
o = NULL, check.o = is.null(attr(o, "sorted")), ...)

Default S3 method:
fmedian(x, ..., ties = "mean")

S3 method for class 'matrix'
fnth(x, n = 0.5, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ties = "q7", nthreads = .op[["nthreads"]], ...)
S3 method for class 'matrix'
fmedian(x, ..., ties = "mean")

S3 method for class 'data.frame'
fnth(x, n = 0.5, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ties = "q7", nthreads = .op[["nthreads"]], ...)
S3 method for class 'data.frame'
fmedian(x, ..., ties = "mean")

S3 method for class 'grouped_df'
fnth(x, n = 0.5, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

98 fnth-fmedian

use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, stub = .op[["stub"]],
ties = "q7", nthreads = .op[["nthreads"]], ...)

S3 method for class 'grouped_df'
fmedian(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, stub = .op[["stub"]],
ties = "mean", nthreads = .op[["nthreads"]], ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).

n the element to return using a single integer index such that 1 < n < NROW(x), or
a probability 0 < n < 1. See Details.

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

w a numeric vector of (non-negative) weights, may contain missing values only
where x is also missing.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

ties an integer or character string specifying the method to resolve ties between ad-
jacent qualifying elements:

Int. String Description
1 "mean" take the arithmetic mean of all qualifying elements.
2 "min" take the smallest of the elements.
3 "max" take the largest of the elements.
5-9 "qn" continuous quantile types 5-9, see fquantile.

nthreads integer. The number of threads to utilize. Parallelism is across groups for
grouped computations on vectors and data frames, and at the column-level oth-
erwise. See Details.

o integer. A valid ordering of x, e.g. radixorder(x). With groups, the grouping
needs to be accounted e.g. radixorder(g, x).

check.o logical. TRUE checks that each element of o is within [1, length(x)]. The
default uses the fact that orderings from radixorder have a "sorted" attribute
which let’s fnth infer that the ordering is valid. The length and data type of o is
always checked, regardless of check.o.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

fnth-fmedian 99

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain sum of weighting variable after computa-
tion (if contained in grouped_df).

stub character. If keep.w = TRUE and stub = TRUE (default), the summed weights
column is prefixed by "sum.". Users can specify a different prefix through this
argument, or set it to FALSE to avoid prefixing.

... for fmedian: further arguments passed to fnth (apart from n). If TRA is used,
passing set = TRUE will transform data by reference and return the result invisi-
bly.

Details

For v1.9.0 fnth was completely rewritten in C and offers significantly enhanced speed and func-
tionality. It uses a combination of quickselect, quicksort, and radixsort algorithms, combined with
several (weighted) quantile estimation methods and, where possible, OpenMP multithreading. This
synthesis can be summarised as follows:

• without weights, quickselect is used to determine a (lower) order statistic. If ties %!in%
c("min", "max") a second order statistic is found by taking the max of the upper part of the
partitioned array, and the two statistics are averaged using a simple mean (ties = "mean"),
or weighted average according to a quantile method (ties = "q5"-"q9"). For n = 0.5, all
supported quantile methods give the sample median. With matrices, multithreading is always
across columns, for vectors and data frames it is across groups unless is.null(g) for data
frames.

• with weights and no groups (is.null(g)), radixorder is called internally (on each column
of x). The ordering is used to sum the weights in order of x and determine weighted order
statistics or quantiles. See details below. Multithreading is disabled as radixorder cannot be
called concurrently on the same memory stack.

• with weights and groups (!is.null(g)), R’s quicksort algorithm is used to sort the data in
each group and return an index which can be used to sum the weights in order and proceed as
before. This is multithreaded across columns for matrices, and across groups otherwise.

• in fnth.default, an ordering of x can be supplied to ’o’ e.g. fnth(x, 0.75, o = radixorder(x)).
This dramatically speeds up the estimation both with and without weights, and is useful if
fnth is to be invoked repeatedly on the same data. With groups, o needs to also account
for the grouping e.g. fnth(x, 0.75, g, o = radixorder(g, x)). Multithreading is possible
across groups. See Examples.

If n > 1, the result is equivalent to (column-wise) sort(x, partial = n)[n]. Internally, n is con-
verted to a probability using p = (n-1)/(NROW(x)-1), and that probability is applied to the set
of non-missing elements to find the as.integer(p*(fnobs(x)-1))+1L’th element (which corre-
sponds to option ties = "min"). When using grouped computations with n > 1, n is transformed to
a probability p = (n-1)/(NROW(x)/ng-1) (where ng contains the number of unique groups in g).

If weights are used and ties = "q5"-"q9", weighted continuous quantile estimation is done as
described in fquantile.

100 fnth-fmedian

For ties %in% c("mean", "min", "max"), a target partial sum of weights p*sum(w) is calculated,
and the weighted n’th element is the element k such that all elements smaller than k have a sum of
weights <= p*sum(w), and all elements larger than k have a sum of weights <= (1 - p)*sum(w). If
the partial-sum of weights (p*sum(w)) is reached exactly for some element k, then (summing from
the lower end) both k and k+1 would qualify as the weighted n’th element. If the weight of element
k+1 is zero, k, k+1 and k+2 would qualify... . If n > 1, k is chosen (consistent with the unweighted
behavior). If 0 < n < 1, the ties option regulates how to resolve such conflicts, yielding lower (ties
= "min": k), upper (ties = "max": k+2) or average weighted (ties = "mean": mean(k, k+1, k+2))
n’th elements.

Thus, in the presence of zero weights, the weighted median (default ties = "mean") can be an
arithmetic average of >2 qualifying elements. Users may prefer a quantile based weighted median
by setting ties = "q5"-"q9", which is a continuous function of p and ignores elements with zero
weights.

For data frames, column-attributes and overall attributes are preserved if g is used or drop = FALSE.

Value

The (w weighted) n’th element/quantile of x, grouped by g, or (if TRA is used) x transformed by its
(grouped, weighted) n’th element/quantile.

See Also

fquantile, fmean, fmode, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fnth(mpg) # Simple nth element: Median (same as fmedian(mpg))
fnth(mpg, 5) # 5th smallest element
sort(mpg, partial = 5)[5] # Same using base R, fnth is 2x faster.
fnth(mpg, 0.75) # Third quartile
fnth(mpg, 0.75, w = mtcars$hp) # Weighted third quartile: Weighted by hp
fnth(mpg, 0.75, TRA = "-") # Simple transformation: Subtract third quartile
fnth(mpg, 0.75, mtcars$cyl) # Grouped third quartile
fnth(mpg, 0.75, mtcars[c(2,8:9)]) # More groups..
g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !
fnth(mpg, 0.75, g)
fnth(mpg, 0.75, g, mtcars$hp) # Grouped weighted third quartile
fnth(mpg, 0.75, g, TRA = "-") # Groupwise subtract third quartile
fnth(mpg, 0.75, g, mtcars$hp, "-") # Groupwise subtract weighted third quartile

data.frame method
fnth(mtcars, 0.75)
head(fnth(mtcars, 0.75, TRA = "-"))
fnth(mtcars, 0.75, g)
fnth(fgroup_by(mtcars, cyl, vs, am), 0.75) # Another way of doing it..
fnth(mtcars, 0.75, g, use.g.names = FALSE) # No row-names generated

matrix method
m <- qM(mtcars)

fprod 101

fnth(m, 0.75)
head(fnth(m, 0.75, TRA = "-"))
fnth(m, 0.75, g) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fnth(0.75)
mtcars |> fgroup_by(cyl,vs,am) |> fnth(0.75, hp) # Weighted
mtcars |> fgroup_by(cyl,vs,am) |> fnth(0.75, TRA = "/") # Divide by third quartile
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg, hp) |> # Faster selecting

fnth(0.75, hp, "/") # Divide mpg by its third weighted group-quartile, using hp as weights

Efficient grouped estimation of multiple quantiles
mtcars |> fgroup_by(cyl,vs,am) |>

fmutate(o = radixorder(GRPid(), mpg)) |>
fsummarise(mpg_Q1 = fnth(mpg, 0.25, o = o),

mpg_median = fmedian(mpg, o = o),
mpg_Q3 = fnth(mpg, 0.75, o = o))

fmedian()
fmedian(mpg) # Simple median value
fmedian(mpg, w = mtcars$hp) # Weighted median: Weighted by hp
fmedian(mpg, TRA = "-") # Simple transformation: Subtract median value
fmedian(mpg, mtcars$cyl) # Grouped median value
fmedian(mpg, mtcars[c(2,8:9)]) # More groups..
fmedian(mpg, g)
fmedian(mpg, g, mtcars$hp) # Grouped weighted median
fmedian(mpg, g, TRA = "-") # Groupwise subtract median value
fmedian(mpg, g, mtcars$hp, "-") # Groupwise subtract weighted median value

data.frame method
fmedian(mtcars)
head(fmedian(mtcars, TRA = "-"))
fmedian(mtcars, g)
fmedian(fgroup_by(mtcars, cyl, vs, am)) # Another way of doing it..
fmedian(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method
fmedian(m)
head(fmedian(m, TRA = "-"))
fmedian(m, g) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fmedian()
mtcars |> fgroup_by(cyl,vs,am) |> fmedian(hp) # Weighted
mtcars |> fgroup_by(cyl,vs,am) |> fmedian(TRA = "-") # De-median
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg, hp) |> # Faster selecting

fmedian(hp, "-") # Weighted de-median mpg, using hp as weights

fprod Fast (Grouped, Weighted) Product for Matrix-Like Objects

102 fprod

Description

fprod is a generic function that computes the (column-wise) product of all values in x, (optionally)
grouped by g and/or weighted by w. The TRA argument can further be used to transform x using its
(grouped, weighted) product.

Usage

fprod(x, ...)

Default S3 method:
fprod(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, ...)

S3 method for class 'matrix'
fprod(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
fprod(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'grouped_df'
fprod(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE,
keep.w = TRUE, stub = .op[["stub"]], ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).
g a factor, GRP object, atomic vector (internally converted to factor) or a list of

vectors / factors (internally converted to a GRP object) used to group x.
w a numeric vector of (non-negative) weights, may contain missing values.
TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"

| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain product of weighting variable after com-
putation (if contained in grouped_df).

fprod 103

stub character. If keep.w = TRUE and stub = TRUE (default), the weights column is
prefixed by "prod.". Users can specify a different prefix through this argument,
or set it to FALSE to avoid prefixing.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

Non-grouped product computations internally utilize long-doubles in C, for additional numeric pre-
cision.

The weighted product is computed as prod(x * w), using a single pass in C. If na.rm = TRUE, miss-
ing values will be removed from both x and w i.e. utilizing only x[complete.cases(x,w)] and
w[complete.cases(x,w)].

For further computational details see fsum, which works equivalently.

Value

The (w weighted) product of x, grouped by g, or (if TRA is used) x transformed by its (grouped,
weighted) product.

See Also

fsum, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fprod(mpg) # Simple product
fprod(mpg, w = mtcars$hp) # Weighted product
fprod(mpg, TRA = "/") # Simple transformation: Divide by product
fprod(mpg, mtcars$cyl) # Grouped product
fprod(mpg, mtcars$cyl, mtcars$hp) # Weighted grouped product
fprod(mpg, mtcars[c(2,8:9)]) # More groups..
g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !
fprod(mpg, g)
fprod(mpg, g, TRA = "/") # Groupwise divide by product

data.frame method
fprod(mtcars)
head(fprod(mtcars, TRA = "/"))
fprod(mtcars, g)
fprod(mtcars, g, use.g.names = FALSE) # No row-names generated

matrix method
m <- qM(mtcars)
fprod(m)
head(fprod(m, TRA = "/"))
fprod(m, g) # etc..

104 fquantile

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fprod()
mtcars |> fgroup_by(cyl,vs,am) |> fprod(TRA = "/")
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg) |> fprod()

fquantile Fast (Weighted) Sample Quantiles and Range

Description

A faster alternative to quantile (written fully in C), that supports sampling weights, and can also
quickly compute quantiles from an ordering vector (e.g. order(x)). frange provides a fast alter-
native to range.

Usage

fquantile(x, probs = c(0, 0.25, 0.5, 0.75, 1), w = NULL,
o = if(length(x) > 1e5L && length(probs) > log(length(x)))

radixorder(x) else NULL,
na.rm = .op[["na.rm"]], type = 7L, names = TRUE,
check.o = is.null(attr(o, "sorted")))

Programmers version: no names, intelligent defaults, or checks
.quantile(x, probs = c(0, 0.25, 0.5, 0.75, 1), w = NULL, o = NULL,

na.rm = TRUE, type = 7L, names = FALSE, check.o = FALSE)

Fast range (min and max)
frange(x, na.rm = .op[["na.rm"]], finite = FALSE)
.range(x, na.rm = TRUE, finite = FALSE)

Arguments

x a numeric or integer vector.

probs numeric vector of probabilities with values in [0,1].

w a numeric vector of sampling weights. Missing weights are only supported if x
is also missing.

o integer. An vector giving the ordering of the elements in x, such that identical(x[o],
sort(x)). If available this considerably speeds up the estimation.

na.rm logical. Remove missing values, default TRUE.

finite logical. Omit all non-finite values.

type integer. Quantile types 5-9. See quantile. Further details are provided in
Hyndman and Fan (1996) who recommended type 8. The default method is
type 7.

names logical. Generates names of the form paste0(round(probs * 100, 1), "%")
(in C). Set to FALSE for speedup.

fquantile 105

check.o logical. If o is supplied, TRUE runs through o once and checks that it is valid, i.e.
that each element is in [1, length(x)]. Set to FALSE for significant speedup if
o is known to be valid.

Details

fquantile is implemented using a quickselect algorithm in C, inspired by data.table’s gmedian.
The algorithm is applied incrementally to different sections of the array to find individual quantiles.
If many quantile probabilities are requested, sorting the whole array with the fast radixorder
algorithm is more efficient. The default threshold for this (length(x) > 1e5L && length(probs) >
log(length(x))) is conservative, given that quickselect is generally more efficient on longitudinal
data with similar values repeated by groups. With random data, my investigations yield that a
threshold of length(probs) > log10(length(x)) would be more appropriate.

Weighted quantile estimation, in a nutshell, is done by internally calling radixorder(x) (unless o
is supplied), and summing the weights in order until the lowest required order statistic j is found,
which corresponds to exceeding a target sum of weights that is a function of the probability p, the
quantile method (see quantile), the total sum of weights, and the smallest (non-zero) weight. For
quantile type 7 the target sum is sumwp = (sum(w) - min(w)) * p (resembling (n - 1) * p in the
unweighted case). Then, a continuous index h in [0, 1] is determined as one minus the difference
between the sum of weights associated with j and the target sum, divided by the weight of ele-
ment j, that is h = 1 - (sumwj - sumwp) / w[j]. A weighted quantile can then be computed as a
weighted average of 2 order statistics, exactly as in the unweighted case: WQ[i](p) = (1 - h) x[j]
+ h x[j+1]. If the order statistic j+1 has a zero weight, j+2 is taken (or j+3 if j+2 also has zero
weight etc..). The Examples section provides a demonstration in R that is roughly equivalent to the
algorithm just outlined.

frange is considerably more efficient than range, which calls both min and max, and thus requires 2
full passes instead of 1 required by frange. If only probabilities 0 and 1 are requested, fquantile
internally calls frange.

Value

A vector of quantiles. If names = TRUE, fquantile generates names as paste0(round(probs *
100, 1), "%") (in C).

See Also

fnth, Fast Statistical Functions, Collapse Overview

Examples

frange(mtcars$mpg)

Checking computational equivalence to stats::quantile()
w = alloc(abs(rnorm(1)), 32)
o = radixorder(mtcars$mpg)
for (i in 5:9) print(all_obj_equal(fquantile(mtcars$mpg, type = i),

fquantile(mtcars$mpg, type = i, w = w),
fquantile(mtcars$mpg, type = i, o = o),
fquantile(mtcars$mpg, type = i, w = w, o = o),
quantile(mtcars$mpg, type = i)))

106 frename

Demonstaration: weighted quantiles type 7 in R
wquantile7R <- function(x, w, probs = c(0.25, 0.5, 0.75), na.rm = TRUE, names = TRUE) {

if(na.rm && anyNA(x)) { # Removing missing values (only in x)
cc = whichNA(x, invert = TRUE) # The C code first calls radixorder(x), which places
x = x[cc]; w = w[cc] # missing values last, so removing = early termination

}
if(anyv(w, 0)) { # Removing zero weights
nzw = whichv(w, 0, invert = TRUE) # In C, skipping zero weight order statistics is built
x = x[nzw]; w = w[nzw] # into the quantile algorithm, as outlined above

}
o = radixorder(x) # Ordering
wo = w[o]
w_cs = cumsum(wo) # Cumulative sum
sumwp = sum(w) # Computing sum(w) - min(w)
sumwp = sumwp - wo[1L]
sumwp = sumwp * probs # Target sums of weights for quantile type 7
res = sapply(sumwp, function(tsump) {

j = which.max(w_cs > tsump) # Lower order statistic
hl = (w_cs[j] - tsump) / wo[j] # Index weight of x[j] (h = 1 - hl)
hl * x[o[j]] + (1 - hl) * x[o[j+1L]] # Weighted quantile

})
if(names) names(res) = paste0(as.integer(probs * 100), "%")
res

} # Note: doesn't work for min and max. Overall the C code is significantly more rigorous.

wquantile7R(mtcars$mpg, mtcars$wt)

all.equal(wquantile7R(mtcars$mpg, mtcars$wt),
fquantile(mtcars$mpg, c(0.25, 0.5, 0.75), mtcars$wt))

Efficient grouped quantile estimation: use .quantile for less call overhead
BY(mtcars$mpg, mtcars$cyl, .quantile, names = TRUE, expand.wide = TRUE)
BY(mtcars, mtcars$cyl, .quantile, names = TRUE)
library(magrittr)
mtcars |> fgroup_by(cyl) |> BY(.quantile)

With weights
BY(mtcars$mpg, mtcars$cyl, .quantile, w = mtcars$wt, names = TRUE, expand.wide = TRUE)
BY(mtcars, mtcars$cyl, .quantile, w = mtcars$wt, names = TRUE)
mtcars |> fgroup_by(cyl) |> fselect(-wt) |> BY(.quantile, w = mtcars$wt)
mtcars |> fgroup_by(cyl) |> fsummarise(across(-wt, .quantile, w = wt))

frename Fast Renaming and Relabelling Objects

Description

frename returns a renamed shallow-copy, setrename renames objects by reference. These func-
tions also work with objects other than data frames that have a ’names’ attribute. relabel and

frename 107

setrelabel do that same for labels attached to data frame columns.

Usage

frename(.x, ..., cols = NULL, .nse = TRUE)
rnm(.x, ..., cols = NULL, .nse = TRUE) # Shorthand for frename()

setrename(.x, ..., cols = NULL, .nse = TRUE)

relabel(.x, ..., cols = NULL, attrn = "label")

setrelabel(.x, ..., cols = NULL, attrn = "label")

Arguments

.x for (f/set)rename: an R object with a "names" attribute. For (set)relabel:
a named list.

... either tagged vector expressions of the form name = newname / name = newlabel
(frename also supports newname = name), a (named) vector of names/labels, or a
single function (+ optional arguments to the function) applied to all names/labels
(of columns/elements selected in cols).

cols If ... is a function, select a subset of columns/elements to rename/relabel using
names, indices, a logical vector or a function applied to the columns if .x is a
list (e.g. is.numeric).

.nse logical. TRUE allows non-standard evaluation of tagged vector expressions, al-
lowing you to supply new names without quotes. Set to FALSE for programming
or passing vectors of names.

attrn character. Name of attribute to store labels or retrieve labels from.

Value

.x renamed / relabelled. setrename and setrelabel return .x invisibly.

Note

Note that both relabel and setrelabel modify .x by reference. This is because labels are attached
to columns themselves, making it impossible to avoid permanent modification by taking a shallow
copy of the encompassing list / data.frame. On the other hand frename makes a shallow copy
whereas setrename also modifies by reference.

See Also

Data Frame Manipulation, Collapse Overview

108 fscale

Examples

Using tagged expressions
head(frename(iris, Sepal.Length = SL, Sepal.Width = SW,

Petal.Length = PL, Petal.Width = PW))
head(frename(iris, Sepal.Length = "S L", Sepal.Width = "S W",

Petal.Length = "P L", Petal.Width = "P W"))

Since v2.0.0 this is also supported
head(frename(iris, SL = Sepal.Length, SW = Sepal.Width,

PL = Petal.Length, PW = Petal.Width))

Using a function
head(frename(iris, tolower))
head(frename(iris, tolower, cols = 1:2))
head(frename(iris, tolower, cols = is.numeric))
head(frename(iris, paste, "new", sep = "_", cols = 1:2))

Using vectors of names and programming
newname = "sepal_length"
head(frename(iris, Sepal.Length = newname, .nse = FALSE))
newnames = c("sepal_length", "sepal_width")
head(frename(iris, newnames, cols = 1:2))
newnames = c(Sepal.Length = "sepal_length", Sepal.Width = "sepal_width")
head(frename(iris, newnames, .nse = FALSE))
Since v2.0.0, this works as well
newnames = c(sepal_length = "Sepal.Length", sepal_width = "Sepal.Width")
head(frename(iris, newnames, .nse = FALSE))

Renaming by reference
setrename(iris, tolower)
head(iris)
rm(iris)
etc...

Relabelling (by reference)
namlab(relabel(wlddev, PCGDP = "GDP per Capita", LIFEEX = "Life Expectancy"))
namlab(relabel(wlddev, toupper))

fscale Fast (Grouped, Weighted) Scaling and Centering of Matrix-like Ob-
jects

Description

fscale is a generic function to efficiently standardize (scale and center) data. STD is a wrapper
around fscale representing the ’standardization operator’, with more options than fscale when
applied to matrices and data frames. Standardization can be simple or groupwise, ordinary or

fscale 109

weighted. Arbitrary target means and standard deviations can be set, with special options for
grouped scaling and centering. It is also possible to scale data without centering i.e. perform
mean-preserving scaling.

Usage

fscale(x, ...)
STD(x, ...)

Default S3 method:
fscale(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)
Default S3 method:
STD(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)

S3 method for class 'matrix'
fscale(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)
S3 method for class 'matrix'
STD(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1,

stub = .op[["stub"]], ...)

S3 method for class 'data.frame'
fscale(x, g = NULL, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)
S3 method for class 'data.frame'
STD(x, by = NULL, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],

mean = 0, sd = 1, stub = .op[["stub"]], keep.by = TRUE, keep.w = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fscale(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)
S3 method for class 'pseries'
STD(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)

S3 method for class 'pdata.frame'
fscale(x, effect = 1L, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1, ...)
S3 method for class 'pdata.frame'
STD(x, effect = 1L, w = NULL, cols = is.numeric, na.rm = .op[["na.rm"]],

mean = 0, sd = 1, stub = .op[["stub"]], keep.ids = TRUE, keep.w = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'
fscale(x, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1,

keep.group_vars = TRUE, keep.w = TRUE, ...)
S3 method for class 'grouped_df'
STD(x, w = NULL, na.rm = .op[["na.rm"]], mean = 0, sd = 1,

stub = .op[["stub"]], keep.group_vars = TRUE, keep.w = TRUE, ...)

110 fscale

Arguments

x a numeric vector, matrix, data frame, ’indexed_series’ (’pseries’), ’indexed_frame’
(’pdata.frame’) or grouped data frame (’grouped_df’).

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x.

by STD data.frame method: Same as g, but also allows one- or two-sided formulas
i.e. ~ group1 or var1 + var2 ~ group1 + group2. See Examples.

cols STD (p)data.frame method: Select columns to scale using a function, column
names, indices or a logical vector. Default: All numeric columns. Note: cols is
ignored if a two-sided formula is passed to by.

w a numeric vector of (non-negative) weights. STD data frame and pdata.frame
methods also allow a one-sided formula i.e. ~ weightcol. The grouped_df
(dplyr) method supports lazy-evaluation. See Examples.

na.rm logical. Skip missing values in x or w when computing means and sd’s.
effect plm methods: Select which panel identifier should be used as group-id. 1L takes

the first variable in the index, 2L the second etc.. Index variables can also be
called by name using a character string. More than one variable can be supplied.

stub character. A prefix/stub to add to the names of all transformed columns. TRUE
(default) uses "STD.", FALSE will not rename columns.

mean the mean to center on (default is 0). If mean = FALSE, no centering will be per-
formed. In that case the scaling is mean-preserving. A numeric value differ-
ent from 0 (i.e. mean = 5) will be added to the data after subtracting out the
mean(s), such that the data will have a mean of 5. A special option when per-
forming grouped scaling and centering is mean = "overall.mean". In that case
the overall mean of the data will be added after subtracting out group means.

sd the standard deviation to scale the data to (default is 1). A numeric value dif-
ferent from 0 (i.e. sd = 3) will scale the data to have a standard deviation of
3. A special option when performing grouped scaling is sd = "within.sd". In
that case the within standard deviation (= the standard deviation of the group-
centered series) will be calculated and applied to each group. The results is
that the variance of the data within each group is harmonized without forcing a
certain variance (such as 1).

keep.by, keep.ids, keep.group_vars
data.frame, pdata.frame and grouped_df methods: Logical. Retain grouping /
panel-identifier columns in the output. For STD.data.frame this only works if
grouping variables were passed in a formula.

keep.w data.frame, pdata.frame and grouped_df methods: Logical. Retain column con-
taining the weights in the output. Only works if w is passed as formula / lazy-
expression.

... arguments to be passed to or from other methods.

Details

If g = NULL, fscale by default (column-wise) subtracts the mean or weighted mean (if w is supplied)
from all data points in x, and then divides this difference by the standard deviation or frequency-
weighted standard deviation. The result is that all columns in x will have a (weighted) mean 0 and

fscale 111

(weighted) standard deviation 1. Alternatively, data can be scaled to have a mean of mean and a
standard deviation of sd. If mean = FALSE the data is only scaled (not centered) such that the mean
of the data is preserved.

Means and standard deviations are computed using Welford’s numerically stable online algorithm.

With groups supplied to g, this standardizing becomes groupwise, so that in each group (in each
column) the data points will have mean mean and standard deviation sd. Naturally if mean = FALSE
then each group is just scaled and the mean is preserved. For centering without scaling see fwithin.

If na.rm = FALSE and a NA or NaN is encountered, the mean and sd for that group will be NA, and all
data points belonging to that group will also be NA in the output.

If na.rm = TRUE, means and sd’s are computed (column-wise) on the available data points, and also
the weight vector can have missing values. In that case, the weighted mean an sd are computed on
(column-wise) complete.cases(x, w), and x is scaled using these statistics. Note that fscale will
not insert a missing value in x if the weight for that value is missing, rather, that value will be scaled
using a weighted mean and standard-deviated computed without itself! (The intention here is that
a few (randomly) missing weights shouldn’t break the computation when na.rm = TRUE, but it is
not meant for weight vectors with many missing values. If you don’t like this behavior, you should
prepare your data using x[is.na(w),] <- NA, or impute your weight vector for non-missing x).

Special options for grouped scaling are mean = "overall.mean" and sd = "within.sd". The for-
mer group-centers vectors on the overall mean of the data (see fwithin for more details) and
the latter scales the data in each group to have the within-group standard deviation (= the stan-
dard deviation of the group-centered data). Thus scaling a grouped vector with options mean =
"overall.mean" and sd = "within.sd" amounts to removing all differences in the mean and
standard deviations between these groups. In weighted computations, mean = "overall.mean"
will subtract weighted group-means from the data and add the overall weighted mean of the data,
whereas sd = "within.sd" will compute the weighted within- standard deviation and apply it to
each group.

Value

x standardized (mean = mean, standard deviation = sd), grouped by g/by, weighted with w. See
Details.

Note

For centering without scaling see fwithin/W. For simple not mean-preserving scaling use fsd(...,
TRA = "/"). To sweep pre-computed means and scale-factors out of data see TRA.

See Also

fwithin, fsd, TRA, Fast Statistical Functions, Data Transformations, Collapse Overview

Examples

Simple Scaling & Centering / Standardizing
head(fscale(mtcars)) # Doesn't rename columns
head(STD(mtcars)) # By default adds a prefix
qsu(STD(mtcars)) # See that is works

112 fselect-get_vars-add_vars

qsu(STD(mtcars, mean = 5, sd = 3)) # Assigning a mean of 5 and a standard deviation of 3
qsu(STD(mtcars, mean = FALSE)) # No centering: Scaling is mean-preserving

Panel Data
head(fscale(get_vars(wlddev,9:12), wlddev$iso3c)) # Standardizing 4 series within each country
head(STD(wlddev, ~iso3c, cols = 9:12)) # Same thing using STD, id's added
pwcor(fscale(get_vars(wlddev,9:12), wlddev$iso3c)) # Correlaing panel series after standardizing

fmean(get_vars(wlddev, 9:12)) # This calculates the overall means
fsd(fwithin(get_vars(wlddev, 9:12), wlddev$iso3c)) # This calculates the within standard deviations
head(qsu(fscale(get_vars(wlddev, 9:12), # This group-centers on the overall mean and

wlddev$iso3c, # group-scales to the within standard deviation
mean = "overall.mean", sd = "within.sd"), # -> data harmonized in the first 2 moments
by = wlddev$iso3c))

Indexed data
wldi <- findex_by(wlddev, iso3c, year)
head(STD(wldi)) # Standardizing all numeric variables by country
head(STD(wldi, effect = 2L)) # Standardizing all numeric variables by year

Weighted Standardizing
weights = abs(rnorm(nrow(wlddev)))
head(fscale(get_vars(wlddev,9:12), wlddev$iso3c, weights))
head(STD(wlddev, ~iso3c, weights, 9:12))

Grouped data
wlddev |> fgroup_by(iso3c) |> fselect(PCGDP,LIFEEX) |> STD()
wlddev |> fgroup_by(iso3c) |> fselect(PCGDP,LIFEEX) |> STD(weights) # weighted standardizing
wlddev |> fgroup_by(iso3c) |> fselect(PCGDP,LIFEEX,POP) |> STD(POP) # weighting by POP ->
..keeps the weight column unless keep.w = FALSE

fselect-get_vars-add_vars

Fast Select, Replace or Add Data Frame Columns

Description

Efficiently select and replace (or add) a subset of columns from (to) a data frame. This can be done
by data type, or using expressions, column names, indices, logical vectors, selector functions or
regular expressions matching column names.

Usage

Select and replace variables, analgous to dplyr::select but significantly faster
fselect(.x, ..., return = "data")
fselect(x, ...) <- value
slt(.x, ..., return = "data") # Shorthand for fselect
slt(x, ...) <- value # Shorthand for fselect<-

fselect-get_vars-add_vars 113

Select and replace columns by names, indices, logical vectors,
regular expressions or using functions to identify columns

get_vars(x, vars, return = "data", regex = FALSE, rename = FALSE, ...)
gv(x, vars, return = "data", ...) # Shorthand for get_vars

gvr(x, vars, return = "data", ...) # Shorthand for get_vars(..., regex = TRUE)

get_vars(x, vars, regex = FALSE, ...) <- value
gv(x, vars, ...) <- value # Shorthand for get_vars<-

gvr(x, vars, ...) <- value # Shorthand for get_vars<-(..., regex = TRUE)

Add columns at any position within a data.frame

add_vars(x, ..., pos = "end")
add_vars(x, pos = "end") <- value

av(x, ..., pos = "end") # Shorthand for add_vars
av(x, pos = "end") <- value # Shorthand for add_vars<-

Select and replace columns by data type

num_vars(x, return = "data")
num_vars(x) <- value

nv(x, return = "data") # Shorthand for num_vars
nv(x) <- value # Shorthand for num_vars<-

cat_vars(x, return = "data") # Categorical variables, see is_categorical
cat_vars(x) <- value
char_vars(x, return = "data")
char_vars(x) <- value
fact_vars(x, return = "data")
fact_vars(x) <- value
logi_vars(x, return = "data")
logi_vars(x) <- value
date_vars(x, return = "data") # See is_date
date_vars(x) <- value

Arguments

x, .x a data frame or list.

value a data frame or list of columns whose dimensions exactly match those of the
extracted subset of x. If only 1 variable is in the subset of x, value can also be
an atomic vector or matrix, provided that NROW(value) == nrow(x).

vars a vector of column names, indices (can be negative), a suitable logical vector,
or a vector of regular expressions matching column names (if regex = TRUE). It
is also possible to pass a function returning TRUE or FALSE when applied to the
columns of x.

return an integer or string specifying what the selector function should return. The
options are:

114 fselect-get_vars-add_vars

Int. String Description
1 "data" subset of data frame (default)
2 "names" column names
3 "indices" column indices
4 "named_indices" named column indices
5 "logical" logical selection vector
6 "named_logical" named logical vector

Note: replacement functions only replace data, however column names are re-
placed together with the data (if available).

regex logical. TRUE will do regular expression search on the column names of x using
a (vector of) regular expression(s) passed to vars. Matching is done using grep.

rename logical. If vars is a named vector of column names or indices, rename = TRUE
will use the (non missing) names to rename columns.

pos the position where columns are added in the data frame. "end" (default) will
append the data frame at the end (right) side. "front" will add columns in front
(left). Alternatively one can pass a vector of positions (matching length(value)
if value is a list). In that case the other columns will be shifted around the new
ones while maintaining their order.

... for fselect: column names and expressions e.g. fselect(mtcars, newname =
mpg, hp, carb:vs). for get_vars: further arguments passed to grep, if regex
= TRUE. For add_vars: multiple lists/data frames or vectors (which should be
given names e.g. name = vector). A single argument passed may also be an
(unnamed) vector or matrix.

Details

get_vars(<-) is around 2x faster than `[.data.frame` and 8x faster than `[<-.data.frame`, so
the common operation data[cols] <- someFUN(data[cols]) can be made 10x more efficient (ab-
stracting from computations performed by someFUN) using get_vars(data, cols) <- someFUN(get_vars(data,
cols)) or the shorthand gv(data, cols) <- someFUN(gv(data, cols)).

Similarly type-wise operations like data[sapply(data, is.numeric)] or data[sapply(data,
is.numeric)] <- value are facilitated and more efficient using num_vars(data) and num_vars(data)
<- value or the shortcuts nv and nv<- etc.

fselect provides an efficient alternative to dplyr::select, allowing the selection of variables
based on expressions evaluated within the data frame, see Examples. It is about 100x faster than
dplyr::select but also more simple as it does not provide special methods (except for ’sf’ and
’data.table’ which are handled internally) .

Finally, add_vars(data1, data2, data3, ...) is a lot faster than cbind(data1, data2, data3,
...), and preserves the attributes of data1 (i.e. it is like adding columns to data1). The replace-
ment function add_vars(data) <- someFUN(get_vars(data, cols)) efficiently appends data
with computed columns. The pos argument allows adding columns at positions other than the
end (right) of the data frame, see Examples. Note that add_vars does not check duplicated column
names or NULL columns, and does not evaluate expressions in a data environment, or replicate length
1 inputs like cbind. All of this is provided by ftransform.

fselect-get_vars-add_vars 115

All functions introduced here perform their operations class-independent. They all basically work
like this: (1) save the attributes of x, (2) unclass x, (3) subset, replace or append x as a list, (4)
modify the "names" component of the attributes of x accordingly and (5) efficiently attach the
attributes again to the result from step (3). Thus they can freely be applied to data.table’s, grouped
tibbles, panel data frames and other classes and will return an object of exactly the same class and
the same attributes.

Note

In many cases functions here only check the length of the first column, which is one of the reasons
why they are so fast. When lists of unequal-length columns are offered as replacements this yields
a malformed data frame (which will also print a warning in the console i.e. you will notice that).

See Also

fsubset, ftransform, rowbind, Data Frame Manipulation, Collapse Overview

Examples

Wold Development Data
head(fselect(wlddev, Country = country, Year = year, ODA)) # Fast dplyr-like selecting
head(fselect(wlddev, -country, -year, -PCGDP))
head(fselect(wlddev, country, year, PCGDP:ODA))
head(fselect(wlddev, -(PCGDP:ODA)))
fselect(wlddev, country, year, PCGDP:ODA) <- NULL # Efficient deleting
head(wlddev)
rm(wlddev)

head(num_vars(wlddev)) # Select numeric variables
head(cat_vars(wlddev)) # Select categorical (non-numeric) vars
head(get_vars(wlddev, is_categorical)) # Same thing

num_vars(wlddev) <- num_vars(wlddev) # Replace Numeric Variables by themselves
get_vars(wlddev,is.numeric) <- get_vars(wlddev,is.numeric) # Same thing

head(get_vars(wlddev, 9:12)) # Select columns 9 through 12, 2x faster
head(get_vars(wlddev, -(9:12))) # All except columns 9 through 12
head(get_vars(wlddev, c("PCGDP","LIFEEX","GINI","ODA"))) # Select using column names
head(get_vars(wlddev, "[[:upper:]]", regex = TRUE)) # Same thing: match upper-case var. names
head(gvr(wlddev, "[[:upper:]]")) # Same thing

get_vars(wlddev, 9:12) <- get_vars(wlddev, 9:12) # 9x faster wlddev[9:12] <- wlddev[9:12]
add_vars(wlddev) <- STD(gv(wlddev,9:12), wlddev$iso3c) # Add Standardized columns 9 through 12
head(wlddev) # gv and av are shortcuts

get_vars(wlddev, 14:17) <- NULL # Efficient Deleting added columns again
av(wlddev, "front") <- STD(gv(wlddev,9:12), wlddev$iso3c) # Again adding in Front
head(wlddev)
get_vars(wlddev, 1:4) <- NULL # Deleting
av(wlddev,c(10,12,14,16)) <- W(wlddev,~iso3c, cols = 9:12, # Adding next to original variables

keep.by = FALSE)
head(wlddev)

116 fsubset

get_vars(wlddev, c(10,12,14,16)) <- NULL # Deleting

head(add_vars(wlddev, new = STD(wlddev$PCGDP))) # Can also add columns like this
head(add_vars(wlddev, STD(nv(wlddev)), new = W(wlddev$PCGDP))) # etc...

head(add_vars(mtcars, mtcars, mpg = mtcars$mpg, mtcars), 2) # add_vars does not check names!

fsubset Fast Subsetting Matrix-Like Objects

Description

fsubset returns subsets of vectors, matrices or data frames which meet conditions. It is pro-
grammed very efficiently and uses C source code from the data.table package. The methods also
provide enhanced functionality compared to subset. The function ss provides an (internal generic)
programmers alternative to [that does not drop dimensions and is significantly faster than [for data
frames.

Usage

fsubset(.x, ...)
sbt(.x, ...) # Shorthand for fsubset

Default S3 method:
fsubset(.x, subset, ...)

S3 method for class 'matrix'
fsubset(.x, subset, ..., drop = FALSE)

S3 method for class 'data.frame'
fsubset(.x, subset, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
fsubset(.x, subset, ..., drop.index.levels = "id")

S3 method for class 'pdata.frame'
fsubset(.x, subset, ..., drop.index.levels = "id")

Fast subsetting (replaces `[` with drop = FALSE, programmers choice)
ss(x, i, j, check = TRUE)

Arguments

.x object to be subsetted according to different methods.

fsubset 117

x a data frame / list, matrix or vector/array (only i).

subset logical expression indicating elements or rows to keep: missing values are taken
as FALSE. The default, matrix and pseries methods only support logical vectors
or row-indices (or a character vector of rownames if the matrix has rownames).

... For the matrix or data frame method: multiple comma-separated expressions
indicating columns to select. Otherwise: further arguments to be passed to or
from other methods.

drop passed on to [indexing operator. Only available for the matrix method.

i positive or negative row-indices or a logical vector to subset the rows of x.

j a vector of column names, positive or negative indices or a suitable logical vector
to subset the columns of x. Note: Negative indices are converted to positive ones
using j <- seq_along(x)[j].

check logical. FALSE skips checks on i and j, e.g. whether indices are negative. This
offers a speedup to programmers, but can terminate R if zero or negative indices
are passed.

drop.index.levels

character. Either "id", "time", "all" or "none". See indexing.

Details

fsubset is a generic function, with methods supplied for vectors, matrices, and data frames (includ-
ing lists). It represents an improvement over subset in terms of both speed and functionality. The
function ss is an improvement of [to subset (vectors) matrices and data frames without dropping
dimensions. It is significantly faster than [.data.frame.

For ordinary vectors, subset can be integer or logical, subsetting is done in C and more efficient
than [for large vectors.

For matrices the implementation is all base-R but slightly more efficient and more versatile than
subset.matrix. Thus it is possible to subset matrix rows using logical or integer vectors, or
character vectors matching rownames. The drop argument is passed on to the [method for matrices.

For both matrices and data frames, the ... argument can be used to subset columns, and is evaluated
in a non-standard way. Thus it can support vectors of column names, indices or logical vectors, but
also multiple comma separated column names passed without quotes, each of which may also be
replaced by a sequence of columns i.e. col1:coln, and new column names may be assigned e.g.
fsubset(data, col1 > 20, newname = col2, col3:col6) (see examples).

For data frames, the subset argument is also evaluated in a non-standard way. Thus next to vector
of row-indices or logical vectors, it supports logical expressions of the form col2 > 5 & col2 < col3
etc. (see examples). The data frame method is implemented in C, hence it is significantly faster than
subset.data.frame. If fast data frame subsetting is required but no non-standard evaluation, the
function ss is slightly simpler and faster.

Factors may have empty levels after subsetting; unused levels are not automatically removed. See
fdroplevels to drop all unused levels from a data frame.

Value

An object similar to .x/x containing just the selected elements (for a vector), rows and columns
(for a matrix or data frame).

118 fsum

Note

ss offers no support for indexed data. Use fsubset with indices instead.

No replacement method fsubset<- or ss<- is offered in collapse. For efficient subset replacement
(without copying) use data.table::set, which can also be used with data frames and tibbles. To
search and replace certain elements without copying, and to efficiently copy elements / rows from
an equally sized vector / data frame, see setv.

For subsetting columns alone, please also see selecting and replacing columns.

Note that the use of %==% can yield significant performance gains on large data.

See Also

fselect, get_vars, ftransform, Data Frame Manipulation, Collapse Overview

Examples

fsubset(airquality, Temp > 90, Ozone, Temp)
fsubset(airquality, Temp > 90, OZ = Ozone, Temp) # With renaming
fsubset(airquality, Day == 1, -Temp)
fsubset(airquality, Day == 1, -(Day:Temp))
fsubset(airquality, Day == 1, Ozone:Wind)
fsubset(airquality, Day == 1 & !is.na(Ozone), Ozone:Wind, Month)
fsubset(airquality, Day %==% 1, -Temp) # Faster for big data, as %==% directly returns indices

ss(airquality, 1:10, 2:3) # Significantly faster than airquality[1:10, 2:3]
fsubset(airquality, 1:10, 2:3) # This is possible but not advised

fsum Fast (Grouped, Weighted) Sum for Matrix-Like Objects

Description

fsum is a generic function that computes the (column-wise) sum of all values in x, (optionally)
grouped by g and/or weighted by w (e.g. to calculate survey totals). The TRA argument can further
be used to transform x using its (grouped, weighted) sum.

Usage

fsum(x, ...)

Default S3 method:
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, fill = FALSE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'matrix'
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, fill = FALSE, nthreads = .op[["nthreads"]], ...)

fsum 119

S3 method for class 'data.frame'
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, fill = FALSE, nthreads = .op[["nthreads"]], ...)

S3 method for class 'grouped_df'
fsum(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, stub = .op[["stub"]],
fill = FALSE, nthreads = .op[["nthreads"]], ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

w a numeric vector of (non-negative) weights, may contain missing values.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

fill logical. Initialize result with 0 instead of NA when na.rm = TRUE e.g. fsum(NA,
fill = TRUE) returns 0 instead of NA.

nthreads integer. The number of threads to utilize. See Details.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

stub character. If keep.w = TRUE and stub = TRUE (default), the summed weights
column is prefixed by "sum.". Users can specify a different prefix through this
argument, or set it to FALSE to avoid prefixing.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

The weighted sum (e.g. survey total) is computed as sum(x * w), but in one pass and about twice
as efficient. If na.rm = TRUE, missing values will be removed from both x and w i.e. utilizing only
x[complete.cases(x,w)] and w[complete.cases(x,w)].

This all seamlessly generalizes to grouped computations, which are performed in a single pass
(without splitting the data) and are therefore extremely fast. See Benchmark and Examples below.

120 fsum

When applied to data frames with groups or drop = FALSE, fsum preserves all column attributes.
The attributes of the data frame itself are also preserved.

Since v1.6.0 fsum explicitly supports integers. Integers are summed using the long long type in
C which is bounded at +-9,223,372,036,854,775,807 (so ~4.3 billion times greater than the min-
imum/maximum R integer bounded at +-2,147,483,647). If the value of the sum is outside +-
2,147,483,647, a double containing the result is returned, otherwise an integer is returned. With
groups, an integer results vector is initialized, and an integer overflow error is provided if the sum
in any group is outside +-2,147,483,647. Data needs to be coerced to double beforehand in such
cases.

Multithreading, added in v1.8.0, applies at the column-level unless g = NULL and nthreads > NCOL(x).
Parallelism over groups is not available because sums are computed simultaneously within each
group. nthreads = 1L uses a serial version of the code, not parallel code running on one thread.
This serial code is always used with less than 100,000 obs (length(x) < 100000 for vectors and
matrices), because parallel execution itself has some overhead.

Value

The (w weighted) sum of x, grouped by g, or (if TRA is used) x transformed by its (grouped,
weighted) sum.

See Also

fprod, fmean, Fast Statistical Functions, Collapse Overview

Examples

default vector method
mpg <- mtcars$mpg
fsum(mpg) # Simple sum
fsum(mpg, w = mtcars$hp) # Weighted sum (total): Weighted by hp
fsum(mpg, TRA = "%") # Simple transformation: obtain percentages of mpg
fsum(mpg, mtcars$cyl) # Grouped sum
fsum(mpg, mtcars$cyl, mtcars$hp) # Weighted grouped sum (total)
fsum(mpg, mtcars[c(2,8:9)]) # More groups..
g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !
fsum(mpg, g)
fmean(mpg, g) == fsum(mpg, g) / fnobs(mpg, g)
fsum(mpg, g, TRA = "%") # Percentages by group

data.frame method
fsum(mtcars)
fsum(mtcars, TRA = "%")
fsum(mtcars, g)
fsum(mtcars, g, TRA = "%")

matrix method
m <- qM(mtcars)
fsum(m)
fsum(m, TRA = "%")
fsum(m, g)
fsum(m, g, TRA = "%")

fsummarise 121

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fsum(hp) # Weighted grouped sum (total)
mtcars |> fgroup_by(cyl,vs,am) |> fsum(TRA = "%")
mtcars |> fgroup_by(cyl,vs,am) |> fselect(mpg) |> fsum()

This compares fsum with data.table and base::rowsum
Starting with small data
library(data.table)
opts <- set_collapse(nthreads = getDTthreads())
mtcDT <- qDT(mtcars)
f <- qF(mtcars$cyl)

library(microbenchmark)
microbenchmark(mtcDT[, lapply(.SD, sum), by = f],

rowsum(mtcDT, f, reorder = FALSE),
fsum(mtcDT, f, na.rm = FALSE), unit = "relative")

Now larger data
tdata <- qDT(replicate(100, rnorm(1e5), simplify = FALSE)) # 100 columns with 100.000 obs
f <- qF(sample.int(1e4, 1e5, TRUE)) # A factor with 10.000 groups

microbenchmark(tdata[, lapply(.SD, sum), by = f],
rowsum(tdata, f, reorder = FALSE),
fsum(tdata, f, na.rm = FALSE), unit = "relative")

Reset options
set_collapse(opts)

fsummarise Fast Summarise

Description

fsummarise is a much faster version of dplyr::summarise, when used together with the Fast
Statistical Functions.

fsummarize and fsummarise are synonyms.

Usage

fsummarise(.data, ..., keep.group_vars = TRUE, .cols = NULL)
fsummarize(.data, ..., keep.group_vars = TRUE, .cols = NULL)
smr(.data, ..., keep.group_vars = TRUE, .cols = NULL) # Shorthand

Arguments

.data a (grouped) data frame or named list of columns. Grouped data can be created
with fgroup_by or dplyr::group_by.

122 fsummarise

... name-value pairs of summary functions, across statements, or arbitrary ex-
pressions resulting in a list. See Examples. For fast performance use the Fast
Statistical Functions.

keep.group_vars

logical. FALSE removes grouping variables after computation.

.cols for expressions involving .data, .cols can be used to subset columns, e.g.
mtcars |> gby(cyl) |> smr(mctl(cor(.data), TRUE), .cols = 5:7). Can pass
column names, indices, a logical vector or a selector function (e.g. is.numericr).

Value

If .data is grouped by fgroup_by or dplyr::group_by, the result is a data frame of the same class
and attributes with rows reduced to the number of groups. If .data is not grouped, the result is a
data frame of the same class and attributes with 1 row.

Note

Since v1.7, fsummarise is fully featured, allowing expressions using functions and columns of the
data as well as external scalar values (just like dplyr::summarise). NOTE however that once a
Fast Statistical Function is used, the execution will be vectorized instead of split-apply-combine
computing over groups. Please see the first Example.

See Also

across, collap, Data Frame Manipulation, Fast Statistical Functions, Collapse Overview

Examples

Since v1.7, fsummarise supports arbitrary expressions, and expressions
containing fast statistical functions receive vectorized execution:

(a) This is an expression using base R functions which is executed by groups
mtcars |> fgroup_by(cyl) |> fsummarise(res = mean(mpg) + min(qsec))

(b) Here, the use of fmean causes the whole expression to be executed
in a vectorized way i.e. the expression is translated to something like
fmean(mpg, g = cyl) + min(mpg) and executed, thus the result is different
from (a), because the minimum is calculated over the entire sample
mtcars |> fgroup_by(cyl) |> fsummarise(mpg = fmean(mpg) + min(qsec))

(c) For fully vectorized execution, use fmin. This yields the same as (a)
mtcars |> fgroup_by(cyl) |> fsummarise(mpg = fmean(mpg) + fmin(qsec))

More advanced use: vectorized grouped regression slopes: mpg ~ carb
mtcars |>

fgroup_by(cyl) |>
fmutate(dm_carb = fwithin(carb)) |>
fsummarise(beta = fsum(mpg, dm_carb) %/=% fsum(dm_carb^2))

In across() statements it is fine to mix different functions, each will

fsummarise 123

be executed on its own terms (i.e. vectorized for fmean and standard for sum)
mtcars |> fgroup_by(cyl) |> fsummarise(across(mpg:hp, list(fmean, sum)))

Note that this still detects fmean as a fast function, the names of the list
are irrelevant, but the function name must be typed or passed as a character vector,
Otherwise functions will be executed by groups e.g. function(x) fmean(x) won't vectorize
mtcars |> fgroup_by(cyl) |> fsummarise(across(mpg:hp, list(mu = fmean, sum = sum)))

We can force none-vectorized execution by setting .apply = TRUE
mtcars |> fgroup_by(cyl) |> fsummarise(across(mpg:hp, list(mu = fmean, sum = sum), .apply = TRUE))

Another argument of across(): Order the result first by function, then by column
mtcars |> fgroup_by(cyl) |>

fsummarise(across(mpg:hp, list(mu = fmean, sum = sum), .transpose = FALSE))

Since v1.9.0, can also evaluate arbitrary expressions
mtcars |> fgroup_by(cyl, vs, am) |>

fsummarise(mctl(cor(cbind(mpg, wt, carb)), names = TRUE))

This can also be achieved using across():
corfun <- function(x) mctl(cor(x), names = TRUE)
mtcars |> fgroup_by(cyl, vs, am) |>

fsummarise(across(c(mpg, wt, carb), corfun, .apply = FALSE))

#--
Examples that also work for pre 1.7 versions

Simple use
fsummarise(mtcars, mean_mpg = fmean(mpg),

sd_mpg = fsd(mpg))

Using base functions (not a big difference without groups)
fsummarise(mtcars, mean_mpg = mean(mpg),

sd_mpg = sd(mpg))

Grouped use
mtcars |> fgroup_by(cyl) |>

fsummarise(mean_mpg = fmean(mpg),
sd_mpg = fsd(mpg))

This is still efficient but quite a bit slower on large data (many groups)
mtcars |> fgroup_by(cyl) |>

fsummarise(mean_mpg = mean(mpg),
sd_mpg = sd(mpg))

Weighted aggregation
mtcars |> fgroup_by(cyl) |>

fsummarise(w_mean_mpg = fmean(mpg, wt),
w_sd_mpg = fsd(mpg, wt))

Can also group with dplyr::group_by, but at a conversion cost, see ?GRP

124 ftransform

library(dplyr)
mtcars |> group_by(cyl) |>

fsummarise(mean_mpg = fmean(mpg),
sd_mpg = fsd(mpg))

Again less efficient...
mtcars |> group_by(cyl) |>

fsummarise(mean_mpg = mean(mpg),
sd_mpg = sd(mpg))

ftransform Fast Transform and Compute Columns on a Data Frame

Description

ftransform is a much faster version of transform for data frames. It returns the data frame with
new columns computed and/or existing columns modified or deleted. settransform does all of that
by reference. fcompute computes and returns new columns. These functions evaluate all arguments
simultaneously, allow list-input (nested pipelines) and disregard grouped data.

Catering to the tidyverse user, v1.7.0 introduced fmutate, providing familiar functionality i.e. ar-
guments are evaluated sequentially, computation on grouped data is done by groups, and functions
can be applied to multiple columns using across. See also the Details.

Usage

dplyr-style mutate (sequential evaluation + across() feature)
fmutate(.data, ..., .keep = "all", .cols = NULL)
mtt(.data, ..., .keep = "all", .cols = NULL) # Shorthand for fmutate

Modify and return data frame
ftransform(.data, ...)
ftransformv(.data, vars, FUN, ..., apply = TRUE)
tfm(.data, ...) # Shorthand for ftransform
tfmv(.data, vars, FUN, ..., apply = TRUE)

Modify data frame by reference
settransform(.data, ...)
settransformv(.data, ...) # Same arguments as ftransformv
settfm(.data, ...) # Shorthand for settransform
settfmv(.data, ...)

Replace/add modified columns in/to a data frame
ftransform(.data) <- value
tfm(.data) <- value # Shorthand for ftransform<-

ftransform 125

Compute columns, returned as a new data frame
fcompute(.data, ..., keep = NULL)
fcomputev(.data, vars, FUN, ..., apply = TRUE, keep = NULL)

Arguments

.data a data frame or named list of columns.

... further arguments of the form column = value. The value can be a combination
of other columns, a scalar value, or NULL, which deletes column. Alternatively
it is also possible to place a single list here, which will be treated like a list of
column = value arguments. For ftransformv and fcomputev, ... can be used
to pass further arguments to FUN. The ellipsis (...) is always evaluated within
the data frame (.data) environment. See Examples. fmutate additionally sup-
ports across statements, and evaluates tagged vector expressions sequentially.
With grouped execution, dots can also contain arbitrary expressions that result
in a list of data-length columns. See Examples.

vars variables to be transformed by applying FUN to them: select using names, in-
dices, a logical vector or a selector function (e.g. is.numeric). Since v1.7 vars
is evaluated within the .data environment, permitting expressions on columns
e.g. c(col1, col3:coln).

FUN a single function yielding a result of length NROW(.data) or 1. See also apply.

apply logical. TRUE (default) will apply FUN to each column selected in vars; FALSE
will apply FUN to the subsetted data frame i.e. FUN(get_vars(.data, vars),
...). The latter is useful for collapse functions with data frame or grouped
/ panel data frame methods, yielding performance gains and enabling grouped
transformations. See Examples.

value a named list of replacements, it will be treated like an evaluated list of column =
value arguments.

keep select columns to preserve using column names, indices or a function (e.g.
is.numeric). By default computed columns are added after the preserved ones,
unless they are assigned the same name in which case the preserved columns
will be replaced in order.

.keep either one of "all", "used", "unused" or "none" (see mutate), or columns
names/indices/function as keep. Note that this does not work well with across()
or other expressions supported since v1.9.0. The only sensible option you have
there is to supply a character vector of all columns in the final dataset that you
want to keep.

.cols for expressions involving .data, .cols can be used to subset columns, e.g.
mtcars |> gby(cyl) |> mtt(broom::augment(lm(mpg ~., .data)), .cols =
1:7). Can pass column names, indices, a logical vector or a selector function
(e.g. is.numericr).

Details

The ... arguments to ftransform are tagged vector expressions, which are evaluated in the data
frame .data. The tags are matched against names(.data), and for those that match, the val-
ues replace the corresponding variable in .data, whereas the others are appended to .data. It is

126 ftransform

also possible to delete columns by assigning NULL to them, i.e. ftransform(data, colk = NULL)
removes colk from the data. Note that names(.data) and the names of the ... arguments are
checked for uniqueness beforehand, yielding an error if this is not the case.

Since collapse v1.3.0, is is also possible to pass a single named list to ..., i.e. ftransform(data,
newdata). This list will be treated like a list of tagged vector expressions. Note the different be-
havior: ftransform(data, list(newcol = col1)) is the same as ftransform(data, newcol =
col1), whereas ftransform(data, newcol = as.list(col1)) creates a list column. Something
like ftransform(data, as.list(col1)) gives an error because the list is not named. See Exam-
ples.

The function ftransformv added in v1.3.2 provides a fast replacement for the functions dplyr::mutate_at
and dplyr::mutate_if (without the grouping feature) facilitating mutations of groups of columns
(dplyr::mutate_all is already accounted for by dapply). See Examples.

The function settransform does all of that by reference, but uses base-R’s copy-on modify seman-
tics, which is equivalent to replacing the data with <- (thus it is still memory efficient but the data
will have a different memory address afterwards).

The function fcompute(v) works just like ftransform(v), but returns only the changed / com-
puted columns without modifying or appending the data in .data. See Examples.

The function fmutate added in v1.7.0, provides functionality familiar from dplyr 1.0.0 and higher.
It evaluates tagged vector expressions sequentially and does operations by groups on a grouped
frame (thus it is slower than ftransform if you have many tagged expressions or a grouped
data frame). Note however that collapse does not depend on rlang, so things like lambda ex-
pressions are not available. Note also that fmutate operates differently on grouped data whether
you use .FAST_FUN or base R functions / functions from other packages. With .FAST_FUN (in-
cluding .OPERATOR_FUN, excluding fhdbetween / fhdwithin / HDW / HDB), fmutate performs an
efficient vectorized execution, i.e. the grouping object from the grouped data frame is passed to
the g argument of these functions, and for .FAST_STAT_FUN also TRA = "replace_fill" is set
(if not overwritten by the user), yielding internal grouped computation by these functions with-
out the need for splitting the data by groups. For base R and other functions, fmutate performs
classical split-apply combine computing i.e. the relevant columns of the data are selected and
split into groups, the expression is evaluated for each group, and the result is recombined and
suitably expanded to match the original data frame. Note that it is not possible to mix vector-
ized and standard execution in the same expression!! Vectorized execution is performed if any
.FAST_FUN or .OPERATOR_FUN is part of the expression, thus a code like mtcars |> gby(cyl) |>
fmutate(new = fmin(mpg) / min(mpg)) will be expanded to something like mtcars |> gby(cyl)
|> ftransform(new = fmin(mpg, g = GRP(.), TRA = "replace_fill") / min(mpg)) and then ex-
ecuted, i.e. fmin(mpg) will be executed in a vectorized way, and min(mpg) will not be executed by
groups at all.

Value

The modified data frame .data, or, for fcompute, a new data frame with the columns computed on
.data. All attributes of .data are preserved.

Note

ftransform ignores grouped data. This is on purpose as it allows non-grouped transformation in-
side a pipeline on grouped data, and affords greater flexibility and performance in programming

ftransform 127

with the .FAST_FUN. In particular, you can run a nested pipeline inside ftransform, and decide
which expressions should be grouped, and you can use the ad-hoc grouping functionality of the
.FAST_FUN, allowing operations where different groupings are applied simultaneously in an ex-
pression. See Examples or the answer provided here.

fmutate on the other hand supports grouped operations just like dplyr::mutate, but works in two
different ways depending on whether you use .FAST_FUN in an expression or other functions. See
the Examples.

See Also

across, fsummarise, Data Frame Manipulation, Collapse Overview

Examples

fmutate() examples ---

Please note that expressions are vectorized whenever they contain 'ANY' fast function
mtcars |>

fgroup_by(cyl, vs, am) |>
fmutate(mean_mpg = fmean(mpg), # Vectorized

mean_mpg_base = mean(mpg), # Non-vectorized
mpg_cumpr = fcumsum(mpg) / fsum(mpg), # Vectorized
mpg_cumpr_base = cumsum(mpg) / sum(mpg), # Non-vectorized

mpg_cumpr_mixed = fcumsum(mpg) / sum(mpg)) # Vectorized: division by overall sum

Using across: here fmean() gets vectorized across both groups and columns (requiring a single
call to fmean.data.frame which goes to C), whereas weighted.mean needs to be called many times.
mtcars |> fgroup_by(cyl, vs, am) |>
fmutate(across(disp:qsec, list(mu = fmean, mu2 = weighted.mean), w = wt, .names = "flip"))

Can do more complex things...
mtcars |> fgroup_by(cyl) |>

fmutate(res = resid(lm(mpg ~ carb + hp, weights = wt)))

Since v1.9.0: supports arbitrary expressions returning suitable lists
Not run:
mtcars |> fgroup_by(cyl) |>

fmutate(broom::augment(lm(mpg ~ carb + hp, weights = wt)))

Same thing using across() (supported before 1.9.0)
modelfun <- function(data) broom::augment(lm(mpg ~ carb + hp, data, weights = wt))
mtcars |> fgroup_by(cyl) |>

fmutate(across(c(mpg, carb, hp, wt), modelfun, .apply = FALSE))

End(Not run)

ftransform() / fcompute() examples: --

ftransform modifies and returns a data.frame
head(ftransform(airquality, Ozone = -Ozone))
head(ftransform(airquality, new = -Ozone, Temp = (Temp-32)/1.8))

https://stackoverflow.com/questions/67349744/using-ftransform-along-with-fgroup-by-from-collapse-r-package

128 ftransform

head(ftransform(airquality, new = -Ozone, new2 = 1, Temp = NULL)) # Deleting Temp
head(ftransform(airquality, Ozone = NULL, Temp = NULL)) # Deleting columns

With collapse's grouped and weighted functions, complex operations are done on the fly
head(ftransform(airquality, # Grouped operations by month:

Ozone_Month_median = fmedian(Ozone, Month, TRA = "fill"),
Ozone_Month_sd = fsd(Ozone, Month, TRA = "replace"),
Ozone_Month_centered = fwithin(Ozone, Month)))

Grouping by month and above/below average temperature in each month
head(ftransform(airquality, Ozone_Month_high_median =

fmedian(Ozone, list(Month, Temp > fbetween(Temp, Month)), TRA = "fill")))

ftransformv can be used to modify multiple columns using a function
head(ftransformv(airquality, 1:3, log))
head(`[<-`(airquality, 1:3, value = lapply(airquality[1:3], log))) # Same thing in base R

head(ftransformv(airquality, 1:3, log, apply = FALSE))
head(`[<-`(airquality, 1:3, value = log(airquality[1:3]))) # Same thing in base R

Using apply = FALSE yields meaningful performance gains with collapse functions
This calls fwithin.default, and repeates the grouping by month 3 times:
head(ftransformv(airquality, 1:3, fwithin, Month))

This calls fwithin.data.frame, and only groups one time -> 5x faster!
head(ftransformv(airquality, 1:3, fwithin, Month, apply = FALSE))

This also works for grouped and panel data frames (calling fwithin.grouped_df)
airquality |> fgroup_by(Month) |>

ftransformv(1:3, fwithin, apply = FALSE) |> head()

But this gives the WRONG result (calling fwithin.default). Need option apply = FALSE!!
airquality |> fgroup_by(Month) |>

ftransformv(1:3, fwithin) |> head()

For grouped modification of single columns in a grouped dataset, we can use GRP():
library(magrittr)
airquality |> fgroup_by(Month) %>%

ftransform(W_Ozone = fwithin(Ozone, GRP(.)), # Grouped centering
sd_Ozone_m = fsd(Ozone, GRP(.), TRA = "replace"), # In-Month standard deviation
sd_Ozone = fsd(Ozone, TRA = "replace"), # Overall standard deviation
sd_Ozone2 = fsd(Ozone, TRA = "fill"), # Same, overwriting NA's

sd_Ozone3 = fsd(Ozone)) |> head() # Same thing (calling alloc())

For more complex mutations we can use ftransform with compound pipes
airquality |> fgroup_by(Month) %>%

ftransform(get_vars(., 1:3) |> fwithin() |> flag(0:2)) |> head()

airquality %>% ftransform(STD(., cols = 1:3) |> replace_na(0)) |> head()

The list argument feature also allows flexible operations creating multiple new columns
airquality |> # The variance of Wind and Ozone, by month, weighted by temperature:
ftransform(fvar(list(Wind_var = Wind, Ozone_var = Ozone), Month, Temp, "replace")) |> head()

ftransform 129

Same as above using a grouped data frame (a bit more complex)
airquality |> fgroup_by(Month) %>%
ftransform(fselect(., Wind, Ozone) |> fvar(Temp, "replace") |> add_stub("_var", FALSE)) |>
fungroup() |> head()

This performs 2 different multi-column grouped operations (need c() to make it one list)
ftransform(airquality, c(fmedian(list(Wind_Day_median = Wind,

Ozone_Day_median = Ozone), Day, TRA = "replace"),
fsd(list(Wind_Month_sd = Wind,

Ozone_Month_sd = Ozone), Month, TRA = "replace"))) |> head()

settransform(v) works like ftransform(v) but modifies a data frame in the global environment..
settransform(airquality, Ratio = Ozone / Temp, Ozone = NULL, Temp = NULL)
head(airquality)
rm(airquality)

Grouped and weighted centering
settransformv(airquality, 1:3, fwithin, Month, Temp, apply = FALSE)
head(airquality)
rm(airquality)

Suitably lagged first-differences
settransform(airquality, get_vars(airquality, 1:3) |> fdiff() |> flag(0:2))
head(airquality)
rm(airquality)

Same as above using magrittr::`%<>%`
airquality %<>% ftransform(get_vars(., 1:3) |> fdiff() |> flag(0:2))
head(airquality)
rm(airquality)

It is also possible to achieve the same thing via a replacement method (if needed)
ftransform(airquality) <- get_vars(airquality, 1:3) |> fdiff() |> flag(0:2)
head(airquality)
rm(airquality)

fcompute only returns the modified / computed columns
head(fcompute(airquality, Ozone = -Ozone))
head(fcompute(airquality, new = -Ozone, Temp = (Temp-32)/1.8))
head(fcompute(airquality, new = -Ozone, new2 = 1))

Can preserve existing columns, computed ones are added to the right if names are different
head(fcompute(airquality, new = -Ozone, new2 = 1, keep = 1:3))

If given same name as preserved columns, preserved columns are replaced in order...
head(fcompute(airquality, Ozone = -Ozone, new = 1, keep = 1:3))

Same holds for fcomputev
head(fcomputev(iris, is.numeric, log)) # Same as:
iris |> get_vars(is.numeric) |> dapply(log) |> head()

head(fcomputev(iris, is.numeric, log, keep = "Species")) # Adds in front

130 funique

head(fcomputev(iris, is.numeric, log, keep = names(iris))) # Preserve order

Keep a subset of the data, add standardized columns
head(fcomputev(iris, 3:4, STD, apply = FALSE, keep = names(iris)[3:5]))

funique Fast Unique Elements / Rows

Description

funique is an efficient alternative to unique (or unique.data.table, kit::funique, dplyr::distinct).

fnunique is an alternative to NROW(unique(x)) (or data.table::uniqueN, kit::uniqLen, dplyr::n_distinct).

fduplicated is an alternative to duplicated (or duplicated.data.table, kit::fduplicated).

The collapse versions are versatile and highly competitive.

any_duplicated(x) is faster than any(fduplicated(x)). Note that for atomic vectors, anyDuplicated
is currently more efficient if there are duplicates at the beginning of the vector.

Usage

funique(x, ...)

Default S3 method:
funique(x, sort = FALSE, method = "auto", ...)

S3 method for class 'data.frame'
funique(x, cols = NULL, sort = FALSE, method = "auto", ...)

S3 method for class 'sf'
funique(x, cols = NULL, sort = FALSE, method = "auto", ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
funique(x, sort = FALSE, method = "auto", drop.index.levels = "id", ...)

S3 method for class 'pdata.frame'
funique(x, cols = NULL, sort = FALSE, method = "auto", drop.index.levels = "id", ...)

fnunique(x) # Fast NROW(unique(x)), for vectors and lists
fduplicated(x, all = FALSE) # Fast duplicated(x), for vectors and lists
any_duplicated(x) # Simple logical TRUE|FALSE duplicates check

funique 131

Arguments

x a atomic vector or data frame / list of equal-length columns.

sort logical. TRUE orders the unique elements / rows. FALSE returns unique values in
order of first occurrence.

method an integer or character string specifying the method of computation:

Int. String Description
1 "auto" automatic selection: hash if sort = FALSE else radix.
2 "radix" use radix ordering to determine unique values. Supports sort = FALSE but only for character data.
3 "hash" use index hashing to determine unique values. Supports sort = TRUE but only for atomic vectors (default method).

cols compute unique rows according to a subset of columns. Columns can be se-
lected using column names, indices, a logical vector or a selector function (e.g.
is.character). Note: All columns are returned.

... arguments passed to radixorderv, e.g. decreasing or na.last. Only applica-
ble if method = "radix".

drop.index.levels

character. Either "id", "time", "all" or "none". See indexing.

all logical. TRUE returns all duplicated values, including the first occurrence.

Details

If all values/rows are already unique, then x is returned. Otherwise a copy of x with duplicate rows
removed is returned. See group for some additional computational details.

The sf method simply ignores the geometry column when determining unique values.

Methods for indexed data also subset the index accordingly.

any_duplicated is currently simply implemented as fnunique(x) < NROW(x), which means it
does not have facilities to terminate early, and users are advised to use anyDuplicated with atomic
vectors if chances are high that there are duplicates at the beginning of the vector. With no duplicate
values or data frames, any_duplicated is considerably faster than anyDuplicated.

Value

funique returns x with duplicate elements/rows removed, fnunique returns an integer giving the
number of unique values/rows, fduplicated gives a logical vector with TRUE indicating duplicated
elements/rows.

Note

These functions treat lists like data frames, unlike unique which has a list method to determine
uniqueness of (non-atomic/heterogeneous) elements in a list.

No matrix method is provided. Please use the alternatives provided in package kit with matrices.

See Also

fndistinct, group, Fast Grouping and Ordering, Collapse Overview.

132 fvar-fsd

Examples

funique(mtcars$cyl)
funique(gv(mtcars, c(2,8,9)))
funique(mtcars, cols = c(2,8,9))
fnunique(gv(mtcars, c(2,8,9)))
fduplicated(gv(mtcars, c(2,8,9)))
fduplicated(gv(mtcars, c(2,8,9)), all = TRUE)
any_duplicated(gv(mtcars, c(2,8,9)))
any_duplicated(mtcars)

fvar-fsd Fast (Grouped, Weighted) Variance and Standard Deviation for
Matrix-Like Objects

Description

fvar and fsd are generic functions that compute the (column-wise) variance and standard deviation
of x, (optionally) grouped by g and/or frequency-weighted by w. The TRA argument can further be
used to transform x using its (grouped, weighted) variance/sd.

Usage

fvar(x, ...)
fsd(x, ...)

Default S3 method:
fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, stable.algo = .op[["stable.algo"]], ...)
Default S3 method:
fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'matrix'
fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, stable.algo = .op[["stable.algo"]], ...)
S3 method for class 'matrix'
fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'data.frame'
fvar(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, stable.algo = .op[["stable.algo"]], ...)
S3 method for class 'data.frame'
fsd(x, g = NULL, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = TRUE, drop = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'grouped_df'

fvar-fsd 133

fvar(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],
use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE,
stub = .op[["stub"]], stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'grouped_df'
fsd(x, w = NULL, TRA = NULL, na.rm = .op[["na.rm"]],

use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE,
stub = .op[["stub"]], stable.algo = .op[["stable.algo"]], ...)

Arguments

x a numeric vector, matrix, data frame or grouped data frame (class ’grouped_df’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

w a numeric vector of (non-negative) weights, may contain missing values.

TRA an integer or quoted operator indicating the transformation to perform: 0 - "na"
| 1 - "fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 -
"%%" | 10 - "-%%". See TRA.

na.rm logical. Skip missing values in x. Defaults to TRUE and implemented at very
little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame method: Logical. TRUE drops dimensions and returns an
atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

keep.w grouped_df method: Logical. Retain summed weighting variable after compu-
tation (if contained in grouped_df).

stub character. If keep.w = TRUE and stub = TRUE (default), the summed weights
column is prefixed by "sum.". Users can specify a different prefix through this
argument, or set it to FALSE to avoid prefixing.

stable.algo logical. TRUE (default) use Welford’s numerically stable online algorithm. FALSE
implements a faster but numerically unstable one-pass method. See Details.

... arguments to be passed to or from other methods. If TRA is used, passing set =
TRUE will transform data by reference and return the result invisibly.

Details

Welford’s online algorithm used by default to compute the variance is well described here (the
section Weighted incremental algorithm also shows how the weighted variance is obtained by this
algorithm).

If stable.algo = FALSE, the variance is computed in one-pass as (sum(x^2)-n*mean(x)^2)/(n-1),
where sum(x^2) is the sum of squares from which the expected sum of squares n*mean(x)^2 is
subtracted, normalized by n-1 (Bessel’s correction). This is numerically unstable if sum(x^2)

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

134 fvar-fsd

and n*mean(x)^2 are large numbers very close together, which will be the case for large n, large
x-values and small variances (catastrophic cancellation occurs, leading to a loss of numeric preci-
sion). Numeric precision is however still maximized through the internal use of long doubles in
C++, and the fast algorithm can be up to 4-times faster compared to Welford’s method.

The weighted variance is computed with frequency weights as (sum(x^2*w)-sum(w)*weighted.mean(x,w)^2)/(sum(w)-1).
If na.rm = TRUE, missing values will be removed from both x and w i.e. utilizing only x[complete.cases(x,w)]
and w[complete.cases(x,w)].

For further computational detail see fsum.

Value

fvar returns the (w weighted) variance of x, grouped by g, or (if TRA is used) x transformed by its
(grouped, weighted) variance. fsd computes the standard deviation of x in like manor.

References

Welford, B. P. (1962). Note on a method for calculating corrected sums of squares and products.
Technometrics. 4 (3): 419-420. doi:10.2307/1266577.

See Also

Fast Statistical Functions, Collapse Overview

Examples

default vector method
fvar(mtcars$mpg) # Simple variance (all examples also hold for fvar!)
fsd(mtcars$mpg) # Simple standard deviation
fsd(mtcars$mpg, w = mtcars$hp) # Weighted sd: Weighted by hp
fsd(mtcars$mpg, TRA = "/") # Simple transformation: scaling (See also ?fscale)
fsd(mtcars$mpg, mtcars$cyl) # Grouped sd
fsd(mtcars$mpg, mtcars$cyl, mtcars$hp) # Grouped weighted sd
fsd(mtcars$mpg, mtcars$cyl, TRA = "/") # Scaling by group
fsd(mtcars$mpg, mtcars$cyl, mtcars$hp, "/") # Group-scaling using weighted group sds

data.frame method
fsd(iris) # This works, although 'Species' is a factor variable
fsd(mtcars, drop = FALSE) # This works, all columns are numeric variables
fsd(iris[-5], iris[5]) # By Species: iris[5] is still a list, and thus passed to GRP()
fsd(iris[-5], iris[[5]]) # Same thing much faster: fsd recognizes 'Species' is a factor
head(fsd(iris[-5], iris[[5]], TRA = "/")) # Data scaled by species (see also fscale)

matrix method
m <- qM(mtcars)
fsd(m)
fsd(m, mtcars$cyl) # etc..

method for grouped data frames - created with dplyr::group_by or fgroup_by
mtcars |> fgroup_by(cyl,vs,am) |> fsd()
mtcars |> fgroup_by(cyl,vs,am) |> fsd(keep.group_vars = FALSE) # Remove grouping columns
mtcars |> fgroup_by(cyl,vs,am) |> fsd(hp) # Weighted by hp

get_elem 135

mtcars |> fgroup_by(cyl,vs,am) |> fsd(hp, "/") # Weighted scaling transformation

get_elem Find and Extract / Subset List Elements

Description

A suite of functions to subset or extract from (potentially complex) lists and list-like structures.
Subsetting may occur according to certain data types, using identifier functions, element names or
regular expressions to search the list for certain objects.

• atomic_elem and list_elem are non-recursive functions to extract and replace the atomic
and sub-list elements at the top-level of the list tree.

• reg_elem is the recursive equivalent of atomic_elem and returns the ’regular’ part of the list
- with atomic elements in the final nodes. irreg_elem returns all the non-regular elements
(i.e. call and terms objects, formulas, etc. . .). See Examples.

• get_elem returns the part of the list responding to either an identifier function, regular ex-
pression, exact element names or indices applied to all final objects. has_elem checks for the
existence of an element and returns TRUE if a match is found. See Examples.

Usage

Non-recursive (top-level) subsetting and replacing
atomic_elem(l, return = "sublist", keep.class = FALSE)
atomic_elem(l) <- value
list_elem(l, return = "sublist", keep.class = FALSE)
list_elem(l) <- value

Recursive separation of regular (atomic) and irregular (non-atomic) parts
reg_elem(l, recursive = TRUE, keep.tree = FALSE, keep.class = FALSE)
irreg_elem(l, recursive = TRUE, keep.tree = FALSE, keep.class = FALSE)

Extract elements / subset list tree
get_elem(l, elem, recursive = TRUE, DF.as.list = FALSE, keep.tree = FALSE,

keep.class = FALSE, regex = FALSE, invert = FALSE, ...)

Check for the existence of elements
has_elem(l, elem, recursive = TRUE, DF.as.list = FALSE, regex = FALSE, ...)

Arguments

l a list.

value a list of the same length as the extracted subset of l.

elem a function returning TRUE or FALSE when applied to elements of l, or a character
vector of element names or regular expressions (if regex = TRUE). get_elem
also supports a vector or indices which will be used to subset all final objects.

136 get_elem

return an integer or string specifying what the selector function should return. The
options are:

Int. String Description
1 "sublist" subset of list (default)
2 "names" column names
3 "indices" column indices
4 "named_indices" named column indices
5 "logical" logical selection vector
6 "named_logical" named logical vector

Note: replacement functions only replace data, names are replaced together with
the data.

recursive logical. Should the list search be recursive (i.e. go though all the elements), or
just at the top-level?

DF.as.list logical. TRUE treats data frames like (sub-)lists; FALSE like atomic elements.

keep.tree logical. TRUE always returns the entire list tree leading up to all matched results,
while FALSE drops the top-level part of the tree if possible.

keep.class logical. For list-based objects: should the class be retained? This only works if
these objects have a [method that retains the class.

regex logical. Should regular expression search be used on the list names, or only
exact matches?

invert logical. Invert search i.e. exclude matched elements from the list?

... further arguments to grep (if regex = TRUE).

Details

For a lack of better terminology, collapse defines ’regular’ R objects as objects that are either atomic
or a list. reg_elem with recursive = TRUE extracts the subset of the list tree leading up to atomic el-
ements in the final nodes. This part of the list tree is unlistable - calling is_unlistable(reg_elem(l))
will be TRUE for all lists l. Conversely, all elements left behind by reg_elem will be picked up be
irreg_elem. Thus is_unlistable(irreg_elem(l)) is always FALSE for lists with irregular ele-
ments (otherwise irreg_elem returns an empty list).

If keep.tree = TRUE, reg_elem, irreg_elem and get_elem always return the entire list tree, but
cut off all of the branches not leading to the desired result. If keep.tree = FALSE, top-level parts
of the tree are omitted as far as possible. For example in a nested list with three levels and one
data-matrix in one of the final branches, get_elem(l, is.matrix, keep.tree = TRUE) will return
a list (lres) of depth 3, from which the matrix can be accessed as lres[[1]][[1]][[1]]. This
however does not make much sense. get_elem(l, is.matrix, keep.tree = FALSE) will there-
fore figgure out that it can drop the entire tree and return just the matrix. keep.tree = FALSE makes
additional optimizations if matching elements are at far-apart corners in a nested structure, by only
preserving the hierarchy if elements are above each other on the same branch. Thus for a list l
<- list(list(2,list("a",1)),list(1,list("b",2))) calling get_elem(l, is.character)
will just return list("a","b").

GGDC10S 137

See Also

List Processing, Collapse Overview

Examples

m <- qM(mtcars)
get_elem(list(list(list(m))), is.matrix)
get_elem(list(list(list(m))), is.matrix, keep.tree = TRUE)

l <- list(list(2,list("a",1)),list(1,list("b",2)))
has_elem(l, is.logical)
has_elem(l, is.numeric)
get_elem(l, is.character)
get_elem(l, is.character, keep.tree = TRUE)

l <- lm(mpg ~ cyl + vs, data = mtcars)
str(reg_elem(l))
str(irreg_elem(l))
get_elem(l, is.matrix)
get_elem(l, "residuals")
get_elem(l, "fit", regex = TRUE)
has_elem(l, "tol")
get_elem(l, "tol")

GGDC10S Groningen Growth and Development Centre 10-Sector Database

Description

The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral
productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are
annual series of value added (in local currency), and persons employed for 10 broad sectors.

Usage

data("GGDC10S")

Format

A data frame with 5027 observations on the following 16 variables.

Country char: Country (43 countries)

Regioncode char: ISO3 Region code

Region char: Region (6 World Regions)

Variable char: Variable (Value Added or Employment)

Year num: Year (67 Years, 1947-2013)

138 GGDC10S

AGR num: Agriculture

MIN num: Mining

MAN num: Manufacturing

PU num: Utilities

CON num: Construction

WRT num: Trade, restaurants and hotels

TRA num: Transport, storage and communication

FIRE num: Finance, insurance, real estate and business services

GOV num: Government services

OTH num: Community, social and personal services

SUM num: Summation of sector GDP

Source

https://www.rug.nl/ggdc/productivity/10-sector/

References

Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing
Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development.
(pp. 65-83). Routledge.

See Also

wlddev, Collapse Overview

Examples

namlab(GGDC10S, class = TRUE)
aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE))

library(ggplot2)

World Regions Structural Change Plot

GGDC10S |>
fmutate(across(AGR:OTH, `*`, 1 / SUM),

Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |>
collap(~ Variable + Region + Year, cols = 6:15) |> qDT() |>
pivot(1:3, names = list(variable = "Sector"), na.rm = TRUE) |>

ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) +
facet_grid(Variable ~ Region, scales = "free_x") +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+

https://www.rug.nl/ggdc/productivity/10-sector/

group 139

scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +

theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey30", fill = "grey30"))

A function to plot the structural change of an arbitrary country

plotGGDC <- function(ctry) {

GGDC10S |>
fsubset(Country == ctry, Variable, Year, AGR:SUM) |>
fmutate(across(AGR:OTH, `*`, 1 / SUM), SUM = NULL,

Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |> qDT() |>
pivot(1:2, names = list(variable = "Sector"), na.rm = TRUE) |>

ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_wrap(~ Variable) +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),

labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),

strip.background = element_rect(colour = "grey20", fill = "grey20"),
strip.text = element_text(face = "bold"))

}

plotGGDC("BWA")

group Fast Hash-Based Grouping

Description

group() scans the rows of a data frame (or atomic vector / list of atomic vectors), assigning to each
unique row an integer id - starting with 1 and proceeding in first-appearance order of the rows. The
function is written in C and optimized for R’s data structures. It is the workhorse behind functions
like GRP / fgroup_by, collap, qF, qG, finteraction and funique, when called with argument
sort = FALSE.

Usage

group(x, starts = FALSE, group.sizes = FALSE)

140 groupid

Arguments

x an atomic vector or data frame / list of equal-length atomic vectors.

starts logical. If TRUE, an additional attribute "starts" is attached giving a vector of
group starts (= index of first-occurrence of unique rows).

group.sizes logical. If TRUE, an additional attribute "group.sizes" is attached giving the
size of each group.

Details

A data frame is grouped on a column-by-column basis, starting from the leftmost column. For each
new column the grouping vector obtained after the previous column is also fed back into the hash
function so that unique values are determined on a running basis. The algorithm terminates as soon
as the number of unique rows reaches the size of the data frame. Missing values are also grouped
just like any other values. Invoking arguments starts and/or group.sizes requires an additional
pass through the final grouping vector.

Value

An object is of class ’qG’ see qG.

Author(s)

The Hash Function and inspiration was taken from the excellent kit package by Morgan Jacob, the
algorithm was developed by Sebastian Krantz.

See Also

GRPid, Fast Grouping and Ordering, Collapse Overview

Examples

Let's replicate what funique does
g <- group(wlddev, starts = TRUE)
if(attr(g, "N.groups") == fnrow(wlddev)) wlddev else

ss(wlddev, attr(g, "starts"))

groupid Generate Run-Length Type Group-Id

Description

groupid is an enhanced version of data.table::rleid for atomic vectors. It generates a run-
length type group-id where consecutive identical values are assigned the same integer. It is a gen-
eralization as it can be applied to unordered vectors, generate group id’s starting from an arbitrary
value, and skip missing values.

GRP 141

Usage

groupid(x, o = NULL, start = 1L, na.skip = FALSE, check.o = TRUE)

Arguments

x an atomic vector of any type. Attributes are not considered.

o an (optional) integer ordering vector specifying the order by which to pass
through x.

start integer. The starting value of the resulting group-id. Default is starting from 1.

na.skip logical. Skip missing values i.e. if TRUE something like groupid(c("a", NA,
"a")) gives c(1, NA, 1) whereas FALSE gives c(1, 2, 3).

check.o logical. Programmers option: FALSE prevents checking that each element of o
is in the range [1, length(x)], it only checks the length of o. This gives some
extra speed, but will terminate R if any element of o is too large or too small.

Value

An integer vector of class ’qG’. See qG.

See Also

seqid, timeid, qG, Fast Grouping and Ordering, Collapse Overview

Examples

groupid(airquality$Month)
groupid(airquality$Month, start = 0)
groupid(wlddev$country)[1:100]

Same thing since country is alphabetically ordered: (groupid is faster..)
all.equal(groupid(wlddev$country), qG(wlddev$country, na.exclude = FALSE))

When data is unordered, group-id can be generated through an ordering..
uo <- order(rnorm(fnrow(airquality)))
monthuo <- airquality$Month[uo]
o <- order(monthuo)
groupid(monthuo, o)
identical(groupid(monthuo, o)[o], unattrib(groupid(airquality$Month)))

GRP Fast Grouping / collapse Grouping Objects

142 GRP

Description

GRP performs fast, ordered and unordered, groupings of vectors and data frames (or lists of vectors)
using radixorderv or group. The output is a list-like object of class ’GRP’ which can be printed,
plotted and used as an efficient input to all of collapse’s fast statistical and transformation functions
and operators (see macros .FAST_FUN and .OPERATOR_FUN), as well as to collap, BY and TRA.

fgroup_by is similar to dplyr::group_by but faster and class-agnostic. It creates a grouped data
frame with a ’GRP’ object attached - for fast dplyr-like programming with collapse’s fast functions.

There are also several conversion methods to and from ’GRP’ objects. Notable among these is
GRP.grouped_df, which returns a ’GRP’ object from a grouped data frame created with dplyr::group_by
or fgroup_by, and the duo GRP.factor and as_factor_GRP.

gsplit efficiently splits a vector based on a ’GRP’ object, and greorder helps to recombine the
results. These are the workhorses behind functions like BY, and collap, fsummarise and fmutate
when evaluated with base R and user-defined functions.

Usage

GRP(X, ...)

Default S3 method:
GRP(X, by = NULL, sort = .op[["sort"]], decreasing = FALSE, na.last = TRUE,

return.groups = TRUE, return.order = sort, method = "auto",
call = TRUE, ...)

S3 method for class 'factor'
GRP(X, ..., group.sizes = TRUE, drop = FALSE, return.groups = TRUE,

call = TRUE)

S3 method for class 'qG'
GRP(X, ..., group.sizes = TRUE, return.groups = TRUE, call = TRUE)

S3 method for class 'pseries'
GRP(X, effect = 1L, ..., group.sizes = TRUE, return.groups = TRUE,

call = TRUE)

S3 method for class 'pdata.frame'
GRP(X, effect = 1L, ..., group.sizes = TRUE, return.groups = TRUE,

call = TRUE)

S3 method for class 'grouped_df'
GRP(X, ..., return.groups = TRUE, call = TRUE)

Identify 'GRP' objects
is_GRP(x)

S3 method for class 'GRP'
length(x) # Length of data being grouped
GRPN(x, expand = TRUE, ...) # Group sizes (default: expanded to match data length)

GRP 143

GRPid(x, sort = FALSE, ...) # Group id (data length, same as GRP(.)$group.id)
GRPnames(x, force.char = TRUE, sep = ".") # Group names

as_factor_GRP(x, ordered = FALSE, sep = ".") # 'GRP'-object to (ordered) factor conversion

Efficiently split a vector using a 'GRP' object
gsplit(x, g, use.g.names = FALSE, ...)

Efficiently reorder y = unlist(gsplit(x, g)) such that identical(greorder(y, g), x)
greorder(x, g, ...)

Fast, class-agnostic pendant to dplyr::group_by for use with fast functions, see details
fgroup_by(.X, ..., sort = .op[["sort"]], decreasing = FALSE, na.last = TRUE,

return.groups = TRUE, return.order = sort, method = "auto")
Standard-evaluation analogue (slim wrapper around GRP.default(), for programming)
group_by_vars(X, by = NULL, ...)
Shorthand for fgroup_by
gby(.X, ..., sort = .op[["sort"]], decreasing = FALSE, na.last = TRUE,

return.groups = TRUE, return.order = sort, method = "auto")

Get grouping columns from a grouped data frame created with dplyr::group_by or fgroup_by
fgroup_vars(X, return = "data")

Ungroup grouped data frame created with dplyr::group_by or fgroup_by
fungroup(X, ...)

S3 method for class 'GRP'
print(x, n = 6, ...)

S3 method for class 'GRP'
plot(x, breaks = "auto", type = "l", horizontal = FALSE, ...)

Arguments

X a vector, list of columns or data frame (default method), or a suitable object
(conversion / extractor methods).

.X a data frame or list.

x, g a ’GRP’ object. For gsplit/greorder, x can be a vector of any type, or NULL
to return the integer indices of the groups. gsplit/greorder/GRPN/GRPid also
support vectors or data frames to be passed to g/x.

by if X is a data frame or list, by can indicate columns to use for the grouping
(by default all columns are used). Columns must be passed using a vector of
column names, indices, a one-sided formula i.e. ~ col1 + col2, a logical vector
(converted to indices) or a selector function e.g. is_categorical.

sort logical. If FALSE, groups are not ordered but simply grouped in the order of first
appearance of unique elements / rows. This often provides a performance gain
if the data was not sorted beforehand. See also method.

144 GRP

ordered logical. TRUE adds a class ’ordered’ i.e. generates an ordered factor.

decreasing logical. Should the sort order be increasing or decreasing? Can be a vec-
tor of length equal to the number of arguments in X / by (argument passed to
radixorderv).

na.last logical. If missing values are encountered in grouping vector/columns, assign
them to the last group (argument passed to radixorderv).

return.groups logical. Include the unique groups in the created GRP object.

return.order logical. If sort = TRUE, include the output from radixorderv in the created
GRP object. This brings performance improvements in gsplit (and thus also
benefits grouped execution of base R functions).

method character. The algorithm to use for grouping: either "radix", "hash" or "auto".
"auto" will chose "radix" when sort = TRUE, yielding ordered grouping via
radixorderv, and "hash"-based grouping in first-appearance order via group
otherwise. It is possibly to put method = "radix" and sort = FALSE, which
will group character data in first appearance order but sort numeric data (a good
hybrid option). method = "hash" currently does not support any sorting, thus
putting sort = TRUE will simply be ignored.

group.sizes logical. TRUE tabulates factor levels using tabulate to create a vector of group
sizes; FALSE leaves that slot empty when converting from factors.

drop logical. TRUE efficiently drops unused factor levels beforehand using fdroplevels.

call logical. TRUE calls match.call and saves it in the final slot of the GRP object.

expand logical. TRUE returns a vector the same length as the data. FALSE returns the
group sizes (computed in first-appearance-order of groups if x is not already a
’GRP’ object).

force.char logical. Always output group names as character vector, even if a single numeric
vector was passed to GRP.default.

sep character. The separator passed to paste when creating group names from mul-
tiple grouping variables by pasting them together.

effect plm / indexed data methods: Select which panel identifier should be used as
grouping variable. 1L takes the first variable in the index, 2L the second etc.,
identifiers can also be passed as a character string. More than one variable can
be supplied.

return an integer or string specifying what fgroup_vars should return. The options
are:

Int. String Description
1 "data" full grouping columns (default)
2 "unique" unique rows of grouping columns
3 "names" names of grouping columns
4 "indices" integer indices of grouping columns
5 "named_indices" named integer indices of grouping columns
6 "logical" logical selection vector of grouping columns
7 "named_logical" named logical selection vector of grouping columns

GRP 145

use.g.names logical. TRUE returns a named list, like split. FALSE is slightly more efficient.

n integer. Number of groups to print out.

breaks integer. Number of breaks in the histogram of group-sizes.

type linetype for plot.

horizontal logical. TRUE arranges plots next to each other, instead of above each other.
Note that the size of each group is only plotted for objects with less than 10,000
groups.

... for fgroup_by: unquoted comma-separated column names, sequences of columns,
expressions involving columns, and column names, indices, logical vectors or
selector functions. See Examples. For group_by_vars, gsplit, greorder,
GRPN and GRPid: further arguments passed to GRP (if g/x is not already a ’GRP’
object). For example the by argument could be used if a data frame is passed.

Details

GRP is a central function in the collapse package because it provides, in the form of integer vectors,
some key pieces of information to efficiently perform grouped operations at the C/C++ level.

Most statistical function require information about (1) the number of groups (2) an integer group-id
indicating which values / rows belong to which group and (3) information about the size of each
group. Provided with these, collapse’s Fast Statistical Functions pre-allocate intermediate and result
vectors of the right sizes and (in most cases) perform grouped statistical computations in a single
pass through the data.

The sorting functionality of GRP.default lets groups receive different integer-id’s depending on
whether the groups are sorted sort = TRUE (FALSE gives first-appearance order), and in which order
(argument decreasing). This affects the order of values/rows in the output whenever an aggrega-
tion is performed.

Other elements in the object provide information about whether the data was sorted by the vari-
ables defining the grouping (6) and the ordering vector (7). These also feed into optimizations in
gsplit/greorder that benefit the execution of base R functions across groups.

Complimentary to GRP, the function fgroup_by is a significantly faster and class-agnostic alterna-
tive to dplyr::group_by for programming with collapse. It creates a grouped data frame with
a ’GRP’ object attached in a "groups" attribute. This data frame has classes ’GRP_df’, . . . ,
’grouped_df’ and ’data.frame’, where . . . stands for any other classes the input frame inherits such
as ’data.table’, ’sf’, ’tbl_df’, ’indexed_frame’ etc.. collapse functions with a ’grouped_df’ method
respond to ’grouped_df’ objects created with either fgroup_by or dplyr::group_by. The method
GRP.grouped_df takes the "groups" attribute from a ’grouped_df’ and converts it to a ’GRP’ ob-
ject if created with dplyr::group_by.

The ’GRP_df’ class in front responds to print.GRP_df which first calls print(fungroup(x),
...) and prints one line below the object indicating the grouping variables, followed, in square
brackets, by some statistics on the group sizes: [N | Mean (SD) Min-Max]. The mean is rounded
to a full number and the standard deviation (SD) to one digit. Minimum and maximum are only
displayed if the SD is non-zero. There also exist a method [.GRP_df which calls NextMethod but
makes sure that the grouping information is preserved or dropped depending on the dimensions of
the result (subsetting rows or aggregation with data.table drops the grouping object).

146 GRP

GRP.default supports vector and list input and will also return ’GRP’ objects if passed. There is
also a hidden method GRP.GRP which simply returns grouping objects (no re-grouping functionality
is offered).

Apart from GRP.grouped_df there are several further conversion methods:

The conversion of factors to ’GRP’ objects by GRP.factor involves obtaining the number of groups
calling ng <- fnlevels(f) and then computing the count of each level using tabulate(f, ng).
The integer group-id (2) is already given by the factor itself after removing the levels and class
attributes and replacing any missing values with ng + 1L. The levels are put in a list and moved
to position (4) in the ’GRP’ object, which is reserved for the unique groups. Finally, a sortedness
check !is.unsorted(id) is run on the group-id to check if the data represented by the factor
was sorted (6). GRP.qG works similarly (see also qG), and the ’pseries’ and ’pdata.frame’ methods
simply group one or more factors in the index (selected using the effect argument) .

Creating a factor from a ’GRP’ object using as_factor_GRP does not involve any computations,
but may involve interacting multiple grouping columns using the paste function to produce unique
factor levels.

Value

A list-like object of class ‘GRP’ containing information about the number of groups, the observa-
tions (rows) belonging to each group, the size of each group, the unique group names / definitions,
whether the groups are ordered and data grouped is sorted or not, the ordering vector used to per-
form the ordering and the group start positions. The object is structured as follows:

List-index Element-name Content type Content description

[[1]] N.groups integer(1) Number of Groups

[[2]] group.id integer(NROW(X)) An integer group-identifier

[[3]] group.sizes integer(N.groups) Vector of group sizes

[[4]] groups unique(X) or NULL Unique groups (same format as input, except for fgroup_by which uses a plain list, sorted if sort = TRUE), or NULL if return.groups = FALSE

[[5]] group.vars character The names of the grouping variables

[[6]] ordered logical(2) [1] Whether the groups are ordered: equal to the sort argument in the default method, or TRUE if converted objects inherit a class "ordered" and NA otherwise, [2] Whether the data (X) is already sorted: the result of !is.unsorted(group.id). If sort = FALSE (default method) the second entry is NA.

[[7]] order integer(NROW(X)) or NULL Ordering vector from radixorderv (with "starts" attribute), or NULL if return.order = FALSE

[[8]] group.starts integer(N.groups) or NULL The first-occurrence positions/rows of the groups. Useful e.g. with ffirst(x, g, na.rm = FALSE). NULL if return.groups = FALSE.

[[9]] call match.call() or NULL The GRP() call, obtained from match.call(), or NULL if call = FALSE

See Also

radixorder, group, qF, Fast Grouping and Ordering, Collapse Overview

GRP 147

Examples

default method
GRP(mtcars$cyl)
GRP(mtcars, ~ cyl + vs + am) # Or GRP(mtcars, c("cyl","vs","am")) or GRP(mtcars, c(2,8:9))
g <- GRP(mtcars, ~ cyl + vs + am) # Saving the object
print(g) # Printing it
plot(g) # Plotting it
GRPnames(g) # Retain group names
GRPid(g) # Retain group id (same as g$group.id), useful inside fmutate()
fsum(mtcars, g) # Compute the sum of mtcars, grouped by variables cyl, vs and am
gsplit(mtcars$mpg, g) # Use the object to split a vector
gsplit(NULL, g) # The indices of the groups
identical(mtcars$mpg, # greorder and unlist undo the effect of gsplit

greorder(unlist(gsplit(mtcars$mpg, g)), g))

Convert factor to GRP object and vice-versa
GRP(iris$Species)
as_factor_GRP(g)

dplyr integration
library(dplyr)
mtcars |> group_by(cyl,vs,am) |> GRP() # Get GRP object from a dplyr grouped tibble
mtcars |> group_by(cyl,vs,am) |> fmean() # Grouped mean using dplyr grouping
mtcars |> fgroup_by(cyl,vs,am) |> fmean() # Faster alternative with collapse grouping

mtcars |> fgroup_by(cyl,vs,am) # Print method for grouped data frame

Adding a column of group sizes.
mtcars |> fgroup_by(cyl,vs,am) |> fsummarise(Sizes = GRPN())
Note: can also set_collapse(mask = "n") to use n() instead, see help("collapse-options")
Other usage modes:
mtcars |> fgroup_by(cyl,vs,am) |> fmutate(Sizes = GRPN())
mtcars |> fmutate(Sizes = GRPN(list(cyl,vs,am))) # Same thing, slightly more efficient

Various options for programming and interactive use
fgroup_by(GGDC10S, Variable, Decade = floor(Year / 10) * 10) |> head(3)
fgroup_by(GGDC10S, 1:3, 5) |> head(3)
fgroup_by(GGDC10S, c("Variable", "Country")) |> head(3)
fgroup_by(GGDC10S, is.character) |> head(3)
fgroup_by(GGDC10S, Country:Variable, Year) |> head(3)
fgroup_by(GGDC10S, Country:Region, Var = Variable, Year) |> head(3)

Note that you can create a grouped data frame without materializing the unique grouping columns
fgroup_by(GGDC10S, Variable, Country, return.groups = FALSE) |> fmutate(across(AGR:SUM, fscale))
fgroup_by(GGDC10S, Variable, Country, return.groups = FALSE) |> fselect(AGR:SUM) |> fmean()

Note also that setting sort = FALSE on unsorted data can be much faster... if not required...
library(microbenchmark)
microbenchmark(gby(GGDC10S, Variable, Country), gby(GGDC10S, Variable, Country, sort = FALSE))

148 indexing

indexing Fast Indexed Time Series and Panels

Description

A fast and flexible indexed time series and panel data class that inherits from plm’s ’pseries’ and
’pdata.frame’, but is more rigorous, natively handles irregularity, can be superimposed on any
data.frame/list, matrix or vector, and supports ad-hoc computations inside data masking functions
and model formulas.

Usage

Create an 'indexed_frame' containing 'indexed_series'
findex_by(.X, ..., single = "auto", interact.ids = TRUE)
iby(.X, ..., single = "auto", interact.ids = TRUE) # Shorthand

Retrieve the index ('index_df') from an 'indexed_frame' or 'indexed_series'
findex(x)
ix(x) # Shorthand

Remove index from 'indexed_frame' or 'indexed_series' (i.e. get .X back)
unindex(x)

Reindex 'indexed_frame' or 'indexed_series' (or index vectors / matrices)
reindex(x, index = findex(x), single = "auto")

Check if 'indexed_frame', 'indexed_series', index or time vector is irregular
is_irregular(x, any_id = TRUE)

Convert 'indexed_frame'/'indexed_series' to normal 'pdata.frame'/'pseries'
to_plm(x, row.names = FALSE)

Subsetting & replacement methods: [(<-) methods call NextMethod().
Also methods for fsubset, funique and roworder(v), na_omit (internal).

S3 method for class 'indexed_series'
x[i, ..., drop.index.levels = "id"]

S3 method for class 'indexed_frame'
x[i, ..., drop.index.levels = "id"]

S3 replacement method for class 'indexed_frame'
x[i, j] <- value

S3 method for class 'indexed_frame'
x$name

indexing 149

S3 replacement method for class 'indexed_frame'
x$name <- value

S3 method for class 'indexed_frame'
x[[i, ...]]

S3 replacement method for class 'indexed_frame'
x[[i]] <- value

Index subsetting and printing: optimized using ss()

S3 method for class 'index_df'
x[i, j, drop = FALSE, drop.index.levels = "id"]

S3 method for class 'index_df'
print(x, topn = 5, ...)

Arguments

.X a data frame or list-like object of equal-length columns.
x an ’indexed_frame’ or ’indexed_series’. findex also works with ’pseries’ and

’pdata.frame’s created with plm. For is_irregular x can also be an index
(inherits ’pindex’) or a vector representing time.

... for findex_by: variables identifying the individual (id) and/or time dimen-
sions of the data. Passed either as unquoted comma-separated column names
or (tagged) expressions involving columns, or as a vector of column names, in-
dices, a logical vector or a selector function. The time variable must enter last.
See Examples. Otherwise: further arguments passed to NextMethod().

single character. If only one indexing variable is supplied, this can be declared as "id"
or "time" variable. "auto" chooses "id" if the variable has anyDuplicated
values.

interact.ids logical. If n > 2 indexing variables are passed, TRUE calls finteraction on the
first n-1 of them (n’th variable must be time). FALSE keeps all variables in the
index. The latter slows down computations of lags / differences etc. because
ad-hoc interactions need to be computed, but gives more flexibility for scaling /
centering / summarising over different data dimensions.

index and index (inherits ’pindex’), or an atomic vector or list of factors matching the
data dimensions. Atomic vectors or lists with 1 factor will must be declared, see
single. Atomic vectors will additionally be grouped / turned into time-factors.
See Details.

drop.index.levels

character. Subset methods also subset the index (= a data.frame of factors), and
this argument regulates which factor levels should be dropped: either "all",
"id", "time" or "none". The default "id" only drops levels from id’s. "all"
or "time" should be used with caution because time-factors may contain levels
for missing time periods (gaps in irregular sequences, or periods within a se-
quence removed through subsetting), and dropping those levels would create a

150 indexing

variable that is ordinal but no longer represents time. The benefit of dropping
levels is that it can speed-up subsequent computations by reducing the size of
intermediate vectors created in C++.

any_id logical. For panel series: FALSE returns the irregularity check performed for
each id, TRUE calls any on those checks.

row.names logical. TRUE creates descriptive row-names (or names for pseries) as in plm.
This can be expensive and is usually not required for plm models to work.

topn integer. The number of first and last rows to print.
i, j, name, drop, value

Arguments passed to NextMethod, or as in the data.frame methods. Note that
for index subsetting to work, i needs to be integer or logical (or an expression
evaluation to integer or logical if x is a data.table).

Details

The first thing to note about these new ’indexed_frame’, ’indexed_series’ and ’index_df’ classes
is that they inherit plm’s ’pdata.frame’, ’pseries’ and ’pindex’ classes, respectively. They add, im-
prove, and, in some cases, remove functionality offered by plm, with the aim of striking an optimal
balance of flexibility and performance. The inheritance means that all ’pseries’ and ’pdata.frame’
methods in collapse, and also some methods in plm, apply to them. Where compatibility or perfor-
mance considerations allow for it, collapse will continue to create methods for plm’s classes instead
of the new classes.

The use of these classes does not require much knowledge of plm, but as a basic background: A
’pdata.frame’ is a data.frame with an index attribute: a data.frame of 2 factors identifying the in-
dividual and time-dimension of the data. When pulling a variable out of the pdata.frame using a
method like $.pdata.frame or [[.pdata.frame (defined in plm), a ’pseries’ is created by trans-
ferring the index attribute to the vector. Methods defined for functions like lag / flag etc. use the
index for correct computations on this panel data, also inside plm’s estimation commands.

Main Features and Enhancements
The ’indexed_frame’ and ’indexed_series’ classes extend and enhance ’pdata.frame’ and ’pseries’
in a number of critical dimensions. Most notably they:

• Support both time series and panel data, by allowing indexation of data with one, two or
more variables.

• Are class-agnostic: any data.frame/list (such as data.table, tibble, tsibble, sf etc.) can be-
come an ’indexed_frame’ and continue to function as usual for most use cases. Similarly, any
vector or matrix (such as ts, mts, xts) can become an ’indexed_series’. This also allows for
transient workflows e.g. some_df |> findex_by(...) |> 'do something using collapse
functions' |> unindex() |> 'continue working with some_df'.

• Have a comprehensive and efficient set of methods for subsetting and manipulation, includ-
ing methods for fsubset, funique, roworder(v) (internal) and na_omit (internal, na.omit
also works but is slower). It is also possible to group indexed data with fgroup_by for trans-
formations e.g. using fmutate, but aggregation requires unindex()ing.

• Natively handle irregularity: time objects (such as ’Date’, ’POSIXct’ etc.) are passed
to timeid, which efficiently determines the temporal structure by finding the greatest com-
mon divisor (GCD), and creates a time-factor with levels corresponding to a complete time-
sequence. The latter is also done with plain numeric vectors, which are assumed to represent

indexing 151

unit time steps (GDC = 1) and coerced to integer (but can also be passed through timeid if
non-unitary). Character time variables are converted to factor, which might also capture irreg-
ular gaps in panel series. Using this time-factor in the index, collapse’s functions efficiently
perform correct computations on irregular sequences and panels without the need to ’expand’
the data / fill gaps. is_irregular can be used to check for irregularity in the entire sequence
/ panel or separately for each individual in panel data.

• Support computations inside data-masking functions and formulas, by virtue of "deep in-
dexation": Each variable inside an ’indexed_frame’ is an ’indexed_series’ which contains in
its ’index_df’ attribute an external pointer to the ’index_df’ attribute of the frame. Functions
operating on ’indexed_series’ stored inside the frame (such as with(data, flag(column)))
can fetch the index from this pointer. This allows worry-free application inside arbitrary data
masking environments (with, %$%, attach, etc..) and estimation commands (glm, feols,
lmrob etc..) without duplication of the index in memory. A limitation is that external pointers
are only valid during the present R session, thus when saving an ’indexed_frame’ and loading
it again, you need to call data = reindex(data) before computing on it.

Indexed series also have simple Math and Ops methods, which apply the operation to the unin-
dexed series and shallow copy the attributes of the original object to the result, unless the result
it is a logical vector (from operations like !, == etc.). For Ops methods, if the LHS object is an
’indexed_series’ its attributes are taken, otherwise the attributes of the RHS object are taken.

Limits to plm Compatibility

In contrast to ’pseries’ and ’pdata.frame’s, ’indexed_series’ and ’indexed_frames’ do not have de-
scriptive "names" or "row.names" attributes attached to them, mainly for efficiency reasons.

Furthermore, the index is stored in an attribute named ’index_df’ (same as the class name), not
’index’ as in plm, mainly to make these classes work with data.table, tsibble and xts, which also
utilize ’index’ attributes. This for the most part poses no problem to plm compatibility because
plm source code fetches the index using attr(x, "index"), and attr by default performs partial
matching.

A much greater obstacle in working with plm is that some internal plm code is hinged on there being
no [.pseries method, and the existence of [.indexed_series limits the use of these classes in
most plm estimation commands. Therefore the to_plm function is provided to efficiently coerce the
classes to ordinary plm objects before estimation. See Examples.

Overall these classes don’t really benefit plm, especially given that collapse’s plm methods also sup-
port native plm objects. However, they work very well inside other models and software, including
stats models, fixest / lfe, and a whole bunch of time series and ML models. See Examples.

Performance Considerations

When indexing long time-series or panels with a single variable, setting single = "id" or "time"
avoids a potentially expensive call to anyDuplicated. Note also that when panel-data are regular
and sorted, omitting the time variable in the index can bring >= 2x performance improvements in
operations like lagging and differencing (alternatively use shift = "row" argument to flag, fdiff
etc.) .

When dealing with long Date or POSIXct time sequences, it may also be that the internal pro-
cessing by timeid is slow simply because calling strftime on these sequences to create fac-
tor levels is slow. In this case you may choose to generate an index factor with integer lev-
els by passing timeid(t) to findex_by or reindex (which by default generates a ’qG’ object

152 indexing

which is internally converted to factor using as_factor_qG. The lazy evaluation of expressions like
as.character(seq_len(nlev)) in modern R makes this extremely efficient).

With multiple id variables e.g. findex_by(data, id1, id2, id3, time), the default call to finteraction()
can be expensive because of pasting the levels together. In this case, users may gain performance
by manually invoking finteraction() (or its shorthand itn()) with argument factor = FALSE
e.g. findex_by(data, ids = itn(id1, id2, id3, factor = FALSE), time). This will generate a
factor with integer levels instead.

Print Method
The print methods for ’indexed_frame’ and ’indexed_series’ first call print(unindex(x), ...),
followed by the index variables with the number of categories (index factor levels) in square brack-
ets. If the time factor contains unused levels (= irregularity in the sequence), the square brackets
indicate the number of used levels (periods), followed by the total number of levels (periods in the
sequence) in parentheses.

See Also

timeid, Time Series and Panel Series, Collapse Overview

Examples

oldopts <- options(max.print = 70)
Indexing panel data --

wldi <- findex_by(wlddev, iso3c, year)
wldi
wldi[1:100,1] # Works like a data frame
POP <- wldi$POP # indexed_series
qsu(POP) # Summary statistics
G(POP) # Population growth
STD(G(POP, c(1, 10))) # Within-standardized 1 and 10-year growth rates
psmat(POP) # Panel-Series Matrix
plot(psmat(log10(POP)))

POP[30:5000] # Subsetting indexed_series
Dlog(POP[30:5000]) # Log-difference of subset
psacf(identity(POP[30:5000])) # ACF of subset
L(Dlog(POP[30:5000], c(1, 10)), -1:1) # Multiple computations on subset

Fast Statistical Functions don't have dedicated methods
Thus for aggregation we need to unindex beforehand ...
fmean(unindex(POP))
wldi |> unindex() |>

fgroup_by(iso3c) |> num_vars() |> fmean()

library(magrittr)
... or unindex after taking group identifiers from the index
fmean(unindex(fgrowth(POP)), ix(POP)$iso3c)
wldi |> num_vars() %>%

fgroup_by(iso3c = ix(.)$iso3c) |>
unindex() |> fmean()

indexing 153

With matrix methods it is easier as most attributes are dropped upon aggregation.
G(POP, c(1, 10)) %>% fmean(ix(.)$iso3c)

Example of index with multiple ids
GGDC10S |> findex_by(Variable, Country, Year) |> head() # default is interact.ids = TRUE
GGDCi <- GGDC10S |> findex_by(Variable, Country, Year, interact.ids = FALSE)
head(GGDCi)
findex(GGDCi)
The benefit is increased flexibility for summary statistics and data transformation
qsu(GGDCi, effect = "Country")
STD(GGDCi$SUM, effect = "Variable") # Standardizing by variable
STD(GGDCi$SUM, effect = c("Variable", "Year")) # ... by variable and year
But time-based operations are a bit more expensive because of the necessary interactions
D(GGDCi$SUM)

Panel-Data modelling ---

Linear model of 5-year annualized growth rates of GDP on Life Expactancy + 5y lag
lm(G(PCGDP, 5, p = 1/5) ~ L(G(LIFEEX, 5, p = 1/5), c(0, 5)), wldi) # p abbreviates "power"

Same, adding time fixed effects via plm package: need to utilize to_plm function
plm::plm(G(PCGDP, 5, p = 1/5) ~ L(G(LIFEEX, 5, p = 1/5), c(0, 5)), to_plm(wldi), effect = "time")

With country and time fixed effects via fixest
fixest::feols(G(PCGDP, 5, p=1/5) ~ L(G(LIFEEX, 5, p=1/5), c(0, 5)), wldi, fixef = .c(iso3c, year))
Not run:
Running a robust MM regression without fixed effects
robustbase::lmrob(G(PCGDP, 5, p = 1/5) ~ L(G(LIFEEX, 5, p = 1/5), c(0, 5)), wldi)

Running a robust MM regression with country and time fixed effects
wldi |> fselect(PCGDP, LIFEEX) |>

fgrowth(5, power = 1/5) |> ftransform(LIFEEX_L5 = L(LIFEEX, 5)) |>
drop abbreviates drop.index.levels (not strictly needed here but more consistent)
na_omit(drop = "all") |> fhdwithin(na.rm = FALSE) |> # For TFE use fwithin(effect = "year")
unindex() |> robustbase::lmrob(formula = PCGDP ~.) # using lm() gives same result as fixest

Using a random forest model without fixed effects
ranger does not support these kinds of formulas, thus we need some preprocessing...
wldi |> fselect(PCGDP, LIFEEX) |>

fgrowth(5, power = 1/5) |> ftransform(LIFEEX_L5 = L(LIFEEX, 5)) |>
unindex() |> na_omit() |> ranger::ranger(formula = PCGDP ~.)

End(Not run)

Indexing other data frame based classes --------------------------------------

library(tibble)
wlditbl <- qTBL(wlddev) |> findex_by(iso3c, year)
wlditbl[,2] # Works like a tibble...
wlditbl[[2]]
wlditbl[1:1000, 10]
head(wlditbl)

154 indexing

library(data.table)
wldidt <- qDT(wlddev) |> findex_by(iso3c, year)
wldidt[1:1000] # Works like a data.table...
wldidt[year > 2000]
wldidt[, .(sum_PCGDP = sum(PCGDP, na.rm = TRUE)), by = country] # Aggregation unindexes the result
wldidt[, lapply(.SD, sum, na.rm = TRUE), by = country, .SDcols = .c(PCGDP, LIFEEX)]
This also works but is a bit inefficient since the index is subset and then dropped
-> better unindex beforehand
wldidt[year > 2000, .(sum_PCGDP = sum(PCGDP, na.rm = TRUE)), by = country]
wldidt[, PCGDP_gr_5Y := G(PCGDP, 5, power = 1/5)] # Can add Variables by reference
Note that .SD is a data.table of indexed_series, not an indexed_frame, so this is WRONG!
wldidt[, .c(PCGDP_gr_5Y, LIFEEX_gr_5Y) := G(slt(.SD, PCGDP, LIFEEX), 5, power = 1/5)]
This gives the correct outcome
wldidt[, .c(PCGDP_gr_5Y, LIFEEX_gr_5Y) := lapply(slt(.SD, PCGDP, LIFEEX), G, 5, power = 1/5)]
Not run:
library(sf)
nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
nci <- findex_by(nc, SID74)
nci[1:10, "AREA"]
st_centroid(nci) # The geometry column is never indexed, thus sf computations work normally
st_coordinates(nci)
fmean(st_area(nci))

library(tsibble)
pedi <- findex_by(pedestrian, Sensor, Date_Time)
pedi[1:5,]
findex(pedi) # Time factor with 17k levels from POSIXct
Now here is a case where integer levels in the index can really speed things up
ix(iby(pedestrian, Sensor, timeid(Date_Time)))
library(microbenchmark)
microbenchmark(descriptive_levels = findex_by(pedestrian, Sensor, Date_Time),

integer_levels = findex_by(pedestrian, Sensor, timeid(Date_Time)))
Data has irregularity
is_irregular(pedi)
is_irregular(pedi, any_id = FALSE) # irregularity in all sequences
Manipulation such as lagging with tsibble/dplyr requires expanding rows and grouping
Collapse can just compute correct lag on indexed series or frames
library(dplyr)
microbenchmark(

dplyr = fill_gaps(pedestrian) |> group_by_key() |> mutate(Lag_Count = lag(Count)),
collapse = fmutate(pedi, Lag_Count = flag(Count)), times = 10)

End(Not run)
Indexing Atomic objects ---

ts
print(AirPassengers)
AirPassengers[-(20:30)] # Ts class does not support irregularity, subsetting drops class
G(AirPassengers[-(20:30)], 12) # Annual Growth Rate: Wrong!
Now indexing AirPassengers (identity() is a trick so that the index is named time(AirPassengers))
iAP <- reindex(AirPassengers, identity(time(AirPassengers)))
iAP
findex(iAP) # See the index

is_unlistable 155

iAP[-(20:30)] # Subsetting
G(iAP[-(20:30)], 12) # Annual Growth Rate: Correct!
L(G(iAP[-(20:30)], c(0,1,12)), 0:1) # Lagged level, period and annual growth rates...

xts
library(xts)
library(zoo) # Needed for as.yearmon() and index() functions
X <- wlddev |> fsubset(iso3c == "DEU", date, PCGDP:POP) %>% {

xts(num_vars(.), order.by = as.yearmon(.$date))
} |> ss(-(30:40)) %>% reindex(identity(index(.))) # Introducing a gap

plot(G(unindex(X)))
diff(unindex(X)) # diff.xts gixes wrong result
fdiff(X) # fdiff gives right result

But xts range-based subsets do not work...
Not run:
X["1980/"]

End(Not run)
Thus a better way is not to index and perform ad-hoc omputations on the xts index
X <- unindex(X)
X["1980/"] %>% fdiff(t = index(.)) # xts index is internally processed by timeid()

Of course you can also index plain vectors / matrices...
options(oldopts)

is_unlistable Unlistable Lists

Description

A (nested) list with atomic objects in all final nodes of the list-tree is unlistable - checked with
is_unlistable.

Usage

is_unlistable(l, DF.as.list = FALSE)

Arguments

l a list.

DF.as.list logical. TRUE treats data frames like (sub-)lists; FALSE like atomic elements.

Details

is_unlistable with DF.as.list = TRUE is defined as all(rapply(l, is.atomic)), whereas
DF.as.list = FALSE yields checking using all(unlist(rapply2d(l, function(x) is.atomic(x)
|| is.list(x)), use.names = FALSE)), assuming that data frames are lists composed of atomic
elements. If l contains data frames, the latter can be a lot faster than applying is.atomic to every
data frame column.

156 join

Value

logical(1) - TRUE or FALSE.

See Also

ldepth, has_elem, List Processing, Collapse Overview

Examples

l <- list(1, 2, list(3, 4, "b", FALSE))
is_unlistable(l)
l <- list(1, 2, list(3, 4, "b", FALSE, e ~ b))
is_unlistable(l)

join Fast Table Joins

Description

Join two data frame like objects x and y on columns. Inspired by polars and by default uses a
vectorized hash join algorithm (workhorse function fmatch).

Usage

join(x, y,
on = NULL,
how = "left",
suffix = NULL,
validate = "m:m",
multiple = FALSE,
sort = FALSE,
keep.col.order = TRUE,
drop.dup.cols = FALSE,
verbose = .op[["verbose"]],
column = NULL,
attr = NULL,
...

)

Arguments

x a data frame-like object. The result will inherit the attributes of this object.

y a data frame-like object to join with x.

on character. vector of columns to join on. NULL uses intersect(names(x),
names(y)). Use a named vector to match columns named differently in x and
y, e.g. c("x_id" = "y_id").

join 157

how character. Join type: "left", "right", "inner", "full", "semi" or "anti".
The first letter suffices.

suffix character(1 or 2). Suffix to add to duplicate column names. NULL renames dupli-
cate y columns as paste(col, y_name, sep = "_"), where y_name = as.character(substitute(y))
i.e. the name of the data frame as passed into the function. In general, passing
suffix length 1 will only rename y, whereas a length 2 suffix will rename both
x and y, respectively. If verbose > 0 a message will be printed.

validate character. (Optional) check if join is of specified type. One of "1:1", "1:m",
"m:1" or "m:m". The default "m:m" does not perform any checks. Checks are
done before the actual join step and failure results in an error. Note that this
argument does not affect the result, it only triggers a check.

multiple logical. Handling of rows in x with multiple matches in y. The default FALSE
takes the first match in y. TRUE returns every match in y (a full cartesian product),
increasing the size of the joined table.

sort logical. TRUE implements a sort-merge-join: a completely separate join algo-
rithm that sorts both datasets on the join columns using radixorder and then
matches the rows without hashing. Note that in this case the result will be sorted
by the join columns, whereas sort = FALSE preserves the order of rows in x.

keep.col.order logical. Keep order of columns in x? FALSE places the on columns in front.
drop.dup.cols instead of renaming duplicate columns in x and y using suffix, this option

simply drops them: TRUE or "y" drops them from y, "x" from x.
verbose integer. Prints information about the join. One of 0 (off), 1 (default, see Details)

or 2 (additionally prints the classes of the on columns). Note: verbose > 0 or
validate != "m:m" invoke the count argument to fmatch, so verbose = 0 is
slightly more efficient.

column (optional) name for an extra column to generate in the output indicating which
dataset a record came from. TRUE calls this column ".join" (inspired by STATA’s
’_merge’ column). By default this column is generated as the last column, but,
if keep.col.order = FALSE, it is placed after the ’on’ columns. The column is
a factor variable with levels corresponding to the dataset names (inferred from
the input) or "matched" for matched records. Alternatively, it is possible to
specify a list of 2, where the first element is the column name, and the sec-
ond a length 3 (!) vector of levels e.g. column = list("joined", c("x", "y",
"x_y")), where "x_y" replaces "matched". The column has an additional at-
tribute "on.cols" giving the join columns corresponding to the factor levels.
See Examples.

attr (optional) name for attribute providing information about the join performed (in-
cluding the output of fmatch) to the result. TRUE calls this attribute "join.match".
Note: this also invokes the count argument to fmatch.

... further arguments to fmatch (if sort = FALSE). Notably, overid can bet set to
0 or 2 (default 1) to control the matching process if the join condition more than
identifies the records.

Details

If verbose > 0, join prints a compact summary of the join operation using cat. If the names of
x and y can be extracted (if as.character(substitute(x)) yields a single string) they will be

158 join

displayed (otherwise ’x’ and ’y’ are used) followed by the respective join keys in brackets. This is
followed by a summary of the records used from each table. If multiple = FALSE, only the first
matches from y are used and counted here (or the first matches of x if how = "right"). Note that if
how = "full" any further matches are simply appended to the results table, thus it may make more
sense to use multiple = TRUE with the full join when suspecting multiple matches.

If multiple = TRUE, join performs a full cartesian product matching every key in x to every match-
ing key in y. This can considerably increase the size of the resulting table. No memory checks are
performed (your system will simply run out of memory; usually this should not terminate R).

In both cases, join will also determine the average order of the join as the number of records used
from each table divided by the number of unique matches and display it between the two tables at
up to 2 digits. For example "<4:1.5>" means that on average 4 records from x match 1.5 records
from y, implying on average 4*1.5 = 6 records generated per unique match. If multiple = FALSE
"1st" will be displayed for the using table (y unless how = "right"), indicating that there could
be multiple matches but only the first is retained. Note that an order of ’1’ on either table must not
imply that the key is unique as this value is generated from round(v, 2). To be sure about a keys
uniqueness employ the validate argument.

Value

A data frame-like object of the same type and attributes as x. "row.names" of x are only preserved
in left-join operations.

See Also

fmatch, Data Frame Manipulation, Fast Grouping and Ordering, Collapse Overview

Examples

df1 <- data.frame(
id1 = c(1, 1, 2, 3),
id2 = c("a", "b", "b", "c"),
name = c("John", "Jane", "Bob", "Carl"),
age = c(35, 28, 42, 50)

)
df2 <- data.frame(

id1 = c(1, 2, 3, 3),
id2 = c("a", "b", "c", "e"),
salary = c(60000, 55000, 70000, 80000),
dept = c("IT", "Marketing", "Sales", "IT")

)

Different types of joins
for(i in c("l","i","r","f","s","a"))

join(df1, df2, how = i) |> print()

With multiple matches
for(i in c("l","i","r","f","s","a"))

join(df1, df2, on = "id2", how = i, multiple = TRUE) |> print()

Adding join column: useful esp. for full join

ldepth 159

join(df1, df2, how = "f", column = TRUE)
Custom column + rearranging
join(df1, df2, how = "f", column = list("join", c("x", "y", "x_y")), keep = FALSE)

Attaching match attribute
str(join(df1, df2, attr = TRUE))

ldepth Determine the Depth / Level of Nesting of a List

Description

ldepth provides the depth of a list or list-like structure.

Usage

ldepth(l, DF.as.list = FALSE)

Arguments

l a list.
DF.as.list logical. TRUE treats data frames like (sub-)lists; FALSE like atomic elements.

Details

The depth or level or nesting of a list or list-like structure (e.g. a model object) is found by recursing
down to the bottom of the list and adding an integer count of 1 for each level passed. For example
the depth of a data frame is 1. If a data frame has list-columns, the depth is 2. However for reasons
of efficiency, if l is not a data frame and DF.as.list = FALSE, data frames found inside l will not
be checked for list column’s but assumed to have a depth of 1.

Value

A single integer indicating the depth of the list.

See Also

is_unlistable, has_elem, List Processing, Collapse Overview

Examples

l <- list(1, 2)
ldepth(l)
l <- list(1, 2, mtcars)
ldepth(l)
ldepth(l, DF.as.list = FALSE)
l <- list(1, 2, list(4, 5, list(6, mtcars)))
ldepth(l)
ldepth(l, DF.as.list = FALSE)

160 list-processing

list-processing List Processing

Description

collapse provides the following set of functions to efficiently work with lists of R objects:

• Search and Identification
– is_unlistable checks whether a (nested) list is composed of atomic objects in all final

nodes, and thus unlistable to an atomic vector using unlist.
– ldepth determines the level of nesting of the list (i.e. the maximum number of nodes of

the list-tree).
– has_elem searches elements in a list using element names, regular expressions applied

to element names, or a function applied to the elements, and returns TRUE if any matches
were found.

• Subsetting
– atomic_elem examines the top-level of a list and returns a sublist with the atomic ele-

ments. Conversely list_elem returns the sublist of elements which are themselves lists
or list-like objects.

– reg_elem and irreg_elem are recursive versions of the former. reg_elem extracts
the ’regular’ part of the list-tree leading to atomic elements in the final nodes, while
irreg_elem extracts the ’irregular’ part of the list tree leading to non-atomic elements
in the final nodes. (Tip: try calling both on an lm object). Naturally for all lists l,
is_unlistable(reg_elem(l)) evaluates to TRUE.

– get_elem extracts elements from a list using element names, regular expressions applied
to element names, a function applied to the elements, or element-indices used to subset
the lowest-level sub-lists. by default the result is presented as a simplified list containing
all matching elements. With the keep.tree option however get_elem can also be used
to subset lists i.e. maintain the full tree but cut off non-matching branches.

• Splitting and Transposition
– rsplit recursively splits a vector or data frame into subsets according to combinations

of (multiple) vectors / factors - by default returning a (nested) list. If flatten = TRUE,
the list is flattened yielding the same result as split. rsplit is also faster than split,
particularly for data frames.

– t_list efficiently transposes nested lists of lists, such as those obtained from splitting a
data frame by multiple variables using rsplit.

• Apply Functions
– rapply2d is a recursive version of lapply with two key differences to rapply to apply a

function to nested lists of data frames or other list-based objects.

• Unlisting / Row-Binding
– unlist2d efficiently unlists unlistable lists in 2-dimensions and creates a data frame (or

data.table) representation of the list. This is done by recursively flattening and row-
binding R objects in the list while creating identifier columns for each level of the list-tree

pad 161

and (optionally) saving the row-names of the objects in a separate column. unlist2d can
thus also be understood as a recursive generalization of do.call(rbind, l), for lists of
vectors, data frames, arrays or heterogeneous objects. A simpler version for non-recursive
row-binding lists of lists / data.frames, is also available by rowbind.

Table of Functions

Function Description
is_unlistable Checks if list is unlistable
ldepth Level of nesting / maximum depth of list-tree
has_elem Checks if list contains a certain element
get_elem Subset list / extract certain elements
atomic_elem Top-level subset atomic elements
list_elem Top-level subset list/list-like elements
reg_elem Recursive version of atomic_elem: Subset / extract ’regular’ part of list
irreg_elem Subset / extract non-regular part of list
rsplit Recursively split vectors or data frames / lists
t_list Transpose lists of lists
rapply2d Recursively apply functions to lists of data objects
unlist2d Recursively unlist/row-bind lists of data objects in 2D, to data frame or data.table
rowbind Non-recursive binding of lists of lists / data.frames.

See Also

Collapse Overview

pad Pad Matrix-Like Objects with a Value

Description

The pad function inserts elements / rows filled with value into a vector matrix or data frame X at
positions given by i. It is particularly useful to expand objects returned by statistical procedures
which remove missing values to the original data dimensions.

Usage

pad(X, i, value = NA, method = c("auto", "xpos", "vpos"))

162 pad

Arguments

X a vector, matrix, data frame or list of equal-length columns.

i either an integer (positive or negative) or logical vector giving positions / rows of
X into which value’s should be inserted, or, alternatively, a positive integer vec-
tor with length(i) == NROW(X), but with some gaps in the indices into which
value’s can be inserted, or a logical vector with sum(i) == NROW(X) such that
value’s can be inserted for FALSE values in the logical vector. See also method
and Examples.

value a scalar value to be replicated and inserted into X at positions / rows given by i.
Default is NA.

method an integer or string specifying the use of i. The options are:

Int. String Description
1 "auto" automatic method selection: If i is positive integer and length(i) == NROW(X) or if i is logical and sum(i) == NROW(X), choose method "xpos", else choose "vpos".

1 "xpos" i is a vector of positive integers or a logical vector giving the positions of the the elements / rows of X. values’s are inserted where there are gaps / FALSE values in i.

2 "vpos" i is a vector of positive / negative integers or a logical vector giving the positions at which values’s / rows should be inserted into X.

Value

X with elements / rows filled with value inserted at positions given by i.

See Also

append, Recode and Replace Values, Small (Helper) Functions, Collapse Overview

Examples

v <- 1:3

pad(v, 1:2) # Automatic selection of method "vpos"
pad(v, -(1:2)) # Same thing
pad(v, c(TRUE, TRUE, FALSE, FALSE, FALSE)) # Same thing

pad(v, c(1, 3:4)) # Automatic selection of method "xpos"
pad(v, c(TRUE, FALSE, TRUE, TRUE, FALSE)) # Same thing

head(pad(wlddev, 1:3)) # Insert 3 missing rows at the beginning of the data
head(pad(wlddev, 2:4)) # ... at rows positions 2-4

pad() is mostly useful for statistical models which only use the complete cases:
mod <- lm(LIFEEX ~ PCGDP, wlddev)
Generating a residual column in the original data (automatic selection of method "vpos")
settfm(wlddev, resid = pad(resid(mod), mod$na.action))
Another way to do it:
r <- resid(mod)

pivot 163

i <- as.integer(names(r))
resid2 <- pad(r, i) # automatic selection of method "xpos"
here we need to add some elements as flast(i) < nrow(wlddev)
resid2 <- c(resid2, rep(NA, nrow(wlddev)-length(resid2)))
See that these are identical:
identical(unattrib(wlddev$resid), resid2)

Can also easily get a model matrix at the dimensions of the original data
mm <- pad(model.matrix(mod), mod$na.action)

pivot Fast and Easy Data Reshaping

Description

pivot() is collapse’s data reshaping command. It combines longer-, wider-, and recast-pivoting
functionality in a single parsimonious API. Notably, it can also accommodate variable labels.

Usage

pivot(data, # Summary of Documentation:
ids = NULL, # identifier cols to preserve
values = NULL, # cols containing the data
names = NULL, # name(s) of new col(s) | col(s) containing names
labels = NULL, # name of new labels col | col(s) containing labels
how = "longer", # method: "longer"/"l", "wider"/"w" or "recast"/"r"
na.rm = FALSE, # remove rows missing 'values' in reshaped data

factor = c("names", "labels"), # create new id col(s) as factor variable(s)?
check.dups = FALSE, # detect duplicate 'ids'+'names' combinations

Only apply if how = "wider" or "recast"
FUN = "last", # aggregation function (internal or external)
FUN.args = NULL, # list of arguments passed to aggregation function
nthreads = .op[["nthreads"]], # minor gains as grouping remains serial
fill = NULL, # value to insert for unbalanced data (default NA/NULL)
drop = TRUE, # drop unused levels (=columns) if 'names' is factor
sort = FALSE, # "ids": sort 'ids' and/or "names": alphabetic casting

Only applies if how = "wider" with multiple long columns ('values')
transpose = FALSE # "columns": applies t_list() before flattening, and/or

) # "names": sets names nami_colj. default: colj_nami

Arguments

data data frame-like object (list of equal-length columns).

ids identifier columns to keep. Specified using column names, indices, a logical
vector or an identifier function e.g. is_categorical.

164 pivot

values columns containing the data to be reshaped. Specified like ids.

names names of columns to generate, or retrieve variable names from:

how Description

"longer" list of names for the variable and value column in the long format, respectively. If NULL, list("variable", "value") will be chosen. Alternatively, a named list length 1 or 2 can be provided using "variable"/"value" as keys e.g. list(value = "data_col").

"wider" column(s) containing names of the new variables. Specified using a vector of column names, indices, a logical vector or selector function e.g. is.character. Multiple columns will be combined using finteraction with "_" as separator.

"recast" (named) list with the following elements: [[1]]/[["from"]] - column(s) containing names of the new variables, specified as in "wider"; [[2]]/[["to"]] - name of the variable to generate containing old column names. If NULL, list("variable", "variable") will be chosen.

labels names of columns to generate, or retrieve variable labels from:

how Description

"longer" A string specifying the name of the column to store labels - retrieved from the data using vlabels(values). TRUE will create a column named "label". Alternatively, a (named) list with two elements: [[1]]/[["name"]] - the name of the labels column; [[2]]/[["new"]] - a (named) character vector of new labels for the ’variable’, ’label’ and ’value’ columns in the long-format frame. See Examples.

"wider" column(s) containing labels of the new variables. Specified using a vector of column names, indices, a logical vector or selector function e.g. is.character. Multiple columns will be combined using finteraction with " - " as separator.

"recast" (named) list with the following elements: [[1]]/[["from"]] - column(s) containing labels for the new variables, specified as in "wider"; [[2]]/[["to"]] - name of the variable to generate containing old labels; [[3]]/[["new"]] - a (named) character vector of new labels for the generated ’variable’ and ’label’ columns. If [[1]]/[["from"]] is not supplied, this can also include labels for new variables. Omitting one of the elements via a named list or setting it to NULL in a list of 3 will omit the corresponding operation i.e. either not saving existing labels or not assigning new ones.

how character. The pivoting method: one of "longer", "wider" or "recast". These
can be abbreviated by the first letter i.e. "l"/"w"/"r".

na.rm logical. TRUE will remove missing values such that in the reshaped data there is
no row missing all data columns - selected through ’values’. For wide/recast piv-
ots using internal FUN’s "first"/"last"/"count", this also toggles skipping
of missing values.

factor character. Whether to generate new ’names’ and/or ’labels’ columns as factor
variables. This is generally recommended as factors are more memory efficient
than character vectors and also faster in subsequent filtering and grouping. In-
ternally, this argument is evaluated as factor <- c("names", "labels") %in%
factor, so passing anything other than "names" and/or "labels" will disable
it.

check.dups logical. TRUE checks for duplicate ’ids’+’names’ combinations, and, if ’labels’
are specified, also for duplicate ’names’+’labels’ combinations. The default
FALSE implies that the algorithm just runs through the data, leading effectively
to the FUN option to be executed (default last value). See Details.

FUN function to aggregate values. At present, only a single function is allowed. Fast
Statistical Functions receive vectorized execution. For maximum efficiency, a
small set of internal functions is provided: "first", "last", "count", "sum",
"mean", "min", or "max". In options "first"/"last"/"count" setting na.rm
= TRUE skips missing values. In options "sum"/"mean"/"min"/"max" missing
values are always skipped (see Details why). The fill argument is ignored
in "count"/"sum"/"mean"/"min"/"max" ("count"/"sum" force fill = 0 else
NA is used).

pivot 165

FUN.args (optional) list of arguments passed to FUN (if using an external function). Data-
length arguments such as weight vectors are supported.

nthreads integer. if how = "wider"|"recast": number of threads to use with OpenMP
(default get_collapse("nthreads"), initialized to 1). Only the distribution of
values to columns with how = "wider"|"recast" is multithreaded here. Since
grouping id columns on a long data frame is expensive and serial, the gains are
minor. With how = "long", multithreading does not make much sense as the
most expensive operation is allocating the long results vectors. The rest is a
couple of memset()’s in C to copy the values.

fill if how = "wider"|"recast": value to insert for ’ids’-’names’ combinations not
present in the long format. NULL uses NA for atomic vectors and NULL for lists.

drop logical. if how = "wider"|"recast" and ’names’ is a single factor variable:
TRUE will check for and drop unused levels in that factor, avoiding the generation
of empty columns.

sort if how = "wider"|"recast": specifying "ids" applies ordered grouping on the
id-columns, returning data sorted by ids. Specifying "names" sorts the names
before casting (unless ’names’ is a factor), yielding columns cast in alphabetic
order. Both options can be passed as a character vector, or, alternatively, TRUE
can be used to enable both.

transpose if how = "wider"|"recast" and multiple columns are selected through ’values’:
specifying "columns" applies t_list to the result before flattening, resulting
in a different column order. Specifying "names" generates names of the form
nami_colj, instead of colj_nami. Both options can be passed as a character
vector, or, alternatively, TRUE can be used to enable both.

Details

Pivot wider essentially works as follows: compute g_rows = group(ids) and also g_cols = group(names)
(using group if sort = FALSE). g_rows gives the row-numbers of the wider data frame and g_cols
the column numbers.

Then, a C function generates a wide data frame and runs through each long column (’values’),
assigning each value to the corresponding row and column in the wide frame. In this process FUN
is always applied. The default, "last", does nothing at all, i.e., if there are duplicates, some values
are overwritten. "first" works similarly just that the C-loop is executed the other way around.
The other hard-coded options count, sum, average, or compare observations on the fly. Missing
values are internally skipped for statistical functions as there is no way to distinguish an incoming
NA from an initial NA - apart from counting occurrences using an internal structure of the same size
as the result data frame which is costly and thus not implemented.

When passing an R-function to FUN, the data is grouped using g_full = group(list(g_rows,
g_cols)), aggregated by groups, and expanded again to full length using TRA before entering the
reshaping algorithm. Thus, this is significantly more expensive than the optimized internal func-
tions. With Fast Statistical Functions the aggregation is vectorized across groups, other functions
are applied using BY - by far the slowest option.

If check.dups = TRUE, a check of the form fnunique(list(g_rows, g_cols)) < fnrow(data) is
run, and an informative warning is issued if duplicates are found.

Recast pivoting works similarly. In long pivots FUN is ignored and the check simply amounts to
fnunique(ids) < fnrow(data).

166 pivot

Value

A reshaped data frame with the same class and attributes (except for ’names’/’row-names’) as the
input frame.

Note

Leaving either ’ids’ or ’values’ empty will assign all other columns (except for "variable" if
how = "wider"|"recast") to the non-specified argument. It is also possible to leave both empty,
e.g. for complete melting if how = "wider" or data transposition if how = "recast" (similar to
data.table::transpose but supporting multiple names columns and variable labels). See Exam-
ples.

pivot currently does not support concurrently melting/pivoting longer to multiple columns. See
data.table::melt or pivot_longer from tidyr or tidytable for an efficient alternative with this
feature. It is also possible to achieve this with just a little bit of programming. An example is
provided below.

See Also

collap, vec, rowbind, unlist2d, Data Frame Manipulation, Collapse Overview

Examples

-------------------------------- PIVOT LONGER ---------------------------------
Simple Melting (Reshaping Long)
pivot(mtcars) |> head()
pivot(iris, "Species") |> head()
pivot(iris, values = 1:4) |> head() # Same thing

Using collapse's datasets
head(wlddev)
pivot(wlddev, 1:8, na.rm = TRUE) |> head()
pivot(wlddev, c("iso3c", "year"), c("PCGDP", "LIFEEX"), na.rm = TRUE) |> head()
head(GGDC10S)
pivot(GGDC10S, 1:5, names = list("Sectorcode", "Value"), na.rm = TRUE) |> head()
Can also set by name: variable and/or value. Note that 'value' here remains lowercase
pivot(GGDC10S, 1:5, names = list(variable = "Sectorcode"), na.rm = TRUE) |> head()

Melting including saving labels
pivot(GGDC10S, 1:5, na.rm = TRUE, labels = TRUE) |> head()
pivot(GGDC10S, 1:5, na.rm = TRUE, labels = "description") |> head()

Also assigning new labels
pivot(GGDC10S, 1:5, na.rm = TRUE, labels = list("description",

c("Sector Code", "Sector Description", "Value"))) |> namlab()

Can leave out value column by providing named vector of labels
pivot(GGDC10S, 1:5, na.rm = TRUE, labels = list("description",

c(variable = "Sector Code", description = "Sector Description"))) |> namlab()

Now here is a nice example that is explicit and respects the dataset naming conventions
pivot(GGDC10S, ids = 1:5, na.rm = TRUE,

pivot 167

names = list(variable = "Sectorcode",
value = "Value"),

labels = list(name = "Sector",
new = c(Sectorcode = "GGDC10S Sector Code",

Sector = "Long Sector Description",
Value = "Employment or Value Added"))) |>

namlab(N = TRUE, Nd = TRUE, class = TRUE)

Note that pivot() currently does not support melting to multiple columns
But you can tackle the issue with a bit of programming:
wide <- pivot(GGDC10S, c("Country", "Year"), c("AGR", "MAN", "SUM"), "Variable",

how = "wider", na.rm = TRUE)
head(wide)
library(magrittr)
wide %>% {av(pivot(., 1:2, grep("_VA", names(.))), pivot(gvr(., "_EMP")))} |> head()
wide %>% {av(av(gv(., 1:2), rm_stub(gvr(., "_VA"), "_VA", pre = FALSE)) |>

pivot(1:2, names = list("Sectorcode", "VA"), labels = "Sector"),
EMP = vec(gvr(., "_EMP")))} |> head()

rm(wide)

-------------------------------- PIVOT WIDER ---------------------------------
iris_long <- pivot(iris, "Species") # Getting a long frame
head(iris_long)
If 'names'/'values' not supplied, searches for 'variable' and 'value' columns
pivot(iris_long, how = "wider")
But here the records are not identified by 'Species': thus aggregation with last value:
pivot(iris_long, how = "wider", check = TRUE) # issues a warning
rm(iris_long)

This works better, these two are inverse operations
wlddev |> pivot(1:8) |> pivot(how = "w") |> head()
...but not perfect, we loose labels
namlab(wlddev)
wlddev |> pivot(1:8) |> pivot(how = "w") |> namlab()
But pivot() supports labels: these are perfect inverse operations
wlddev |> pivot(1:8, labels = "label") |> print(max = 50) |> # Notice the "label" column

pivot(how = "w", labels = "label") |> namlab()

If the data does not have 'variable'/'value' cols: need to specify 'names'/'values'
Using a single column:
pivot(GGDC10S, c("Country", "Year"), "SUM", "Variable", how = "w") |> head()
SUM_wide <- pivot(GGDC10S, c("Country", "Year"), "SUM", "Variable", how = "w", na.rm = TRUE)
head(SUM_wide) # na.rm = TRUE here removes all new rows completely missing data
tail(SUM_wide) # But there may still be NA's, notice the NA in the final row
We could use fill to set another value
pivot(GGDC10S, c("Country", "Year"), "SUM", "Variable", how = "w",

na.rm = TRUE, fill = -9999) |> tail()
This will keep the label of "SUM", unless we supply a column with new labels
namlab(SUM_wide)
Such a column is not available here, but we could use "Variable" twice
pivot(GGDC10S, c("Country", "Year"), "SUM", "Variable", "Variable", how = "w",

na.rm = TRUE) |> namlab()
Alternatively, can of course relabel ex-post

168 pivot

SUM_wide |> relabel(VA = "Value Added", EMP = "Employment") |> namlab()
rm(SUM_wide)

Multiple-column pivots
pivot(GGDC10S, c("Country", "Year"), c("AGR", "MAN", "SUM"), "Variable", how = "w",

na.rm = TRUE) |> head()
Here we may prefer a transposed column order
pivot(GGDC10S, c("Country", "Year"), c("AGR", "MAN", "SUM"), "Variable", how = "w",

na.rm = TRUE, transpose = "columns") |> head()
Can also flip the order of names (independently of columns)
pivot(GGDC10S, c("Country", "Year"), c("AGR", "MAN", "SUM"), "Variable", how = "w",

na.rm = TRUE, transpose = "names") |> head()
Can also enable both (complete transposition)
pivot(GGDC10S, c("Country", "Year"), c("AGR", "MAN", "SUM"), "Variable", how = "w",

na.rm = TRUE, transpose = TRUE) |> head() # or tranpose = c("columns", "names")

Finally, here is a nice, simple way to reshape the entire dataset.
pivot(GGDC10S, values = 6:16, names = "Variable", na.rm = TRUE, how = "w") |>

namlab(N = TRUE, Nd = TRUE, class = TRUE)

-------------------------------- PIVOT RECAST ---------------------------------
Look at the data again
head(GGDC10S)
Let's stack the sectors and instead create variable columns
pivot(GGDC10S, .c(Country, Regioncode, Region, Year),

names = list("Variable", "Sectorcode"), how = "r") |> head()
Same thing (a bit easier)
pivot(GGDC10S, values = 6:16, names = list("Variable", "Sectorcode"), how = "r") |> head()
Removing missing values
pivot(GGDC10S, values = 6:16, names = list("Variable", "Sectorcode"), how = "r",

na.rm = TRUE) |> head()
Saving Labels
pivot(GGDC10S, values = 6:16, names = list("Variable", "Sectorcode"),

labels = list(to = "Sector"), how = "r", na.rm = TRUE) |> head()

Supplying new labels for generated columns: as complete as it gets
pivot(GGDC10S, values = 6:16, names = list("Variable", "Sectorcode"),

labels = list(to = "Sector",
new = c(Sectorcode = "GGDC10S Sector Code",

Sector = "Long Sector Description",
VA = "Value Added",
EMP = "Employment")), how = "r", na.rm = TRUE) |>

namlab(N = TRUE, Nd = TRUE, class = TRUE)

Now another (slightly unconventional) use case here is data transposition
Let's get the data for Botswana
BWA <- GGDC10S |> fsubset(Country == "BWA", Variable, Year, AGR:SUM)
head(BWA)
By supplying no ids or values, we are simply requesting a transpose operation
pivot(BWA, names = list(from = c("Variable", "Year"), to = "Sectorcode"), how = "r")
Same with labels
pivot(BWA, names = list(from = c("Variable", "Year"), to = "Sectorcode"),

labels = list(to = "Sector"), how = "r")

psacf 169

For simple cases, data.table::transpose() will be more efficient, but with multiple
columns to generate names and/or variable labels to be saved/assigned, pivot() is handy
rm(BWA)

psacf Auto- and Cross- Covariance and Correlation Function Estimation for
Panel Series

Description

psacf, pspacf and psccf compute (and by default plot) estimates of the auto-, partial auto- and
cross- correlation or covariance functions for panel series. They are analogues to acf, pacf and
ccf.

Usage

psacf(x, ...)
pspacf(x, ...)
psccf(x, y, ...)

Default S3 method:
psacf(x, g, t = NULL, lag.max = NULL, type = c("correlation", "covariance","partial"),

plot = TRUE, gscale = TRUE, ...)
Default S3 method:
pspacf(x, g, t = NULL, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)
Default S3 method:
psccf(x, y, g, t = NULL, lag.max = NULL, type = c("correlation", "covariance"),

plot = TRUE, gscale = TRUE, ...)

S3 method for class 'data.frame'
psacf(x, by, t = NULL, cols = is.numeric, lag.max = NULL,

type = c("correlation", "covariance","partial"), plot = TRUE, gscale = TRUE, ...)
S3 method for class 'data.frame'
pspacf(x, by, t = NULL, cols = is.numeric, lag.max = NULL,

plot = TRUE, gscale = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
psacf(x, lag.max = NULL, type = c("correlation", "covariance","partial"),

plot = TRUE, gscale = TRUE, ...)
S3 method for class 'pseries'
pspacf(x, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)
S3 method for class 'pseries'
psccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),

plot = TRUE, gscale = TRUE, ...)

170 psacf

S3 method for class 'pdata.frame'
psacf(x, cols = is.numeric, lag.max = NULL,

type = c("correlation", "covariance","partial"), plot = TRUE, gscale = TRUE, ...)
S3 method for class 'pdata.frame'
pspacf(x, cols = is.numeric, lag.max = NULL, plot = TRUE, gscale = TRUE, ...)

Arguments

x, y a numeric vector, ’indexed_series’ (’pseries’), data frame or ’indexed_frame’
(’pdata.frame’).

g a factor, GRP object, or atomic vector / list of vectors (internally grouped with
group) used to group x.

by data.frame method: Same input as g, but also allows one- or two-sided formulas
using the variables in x, i.e. ~ idvar or var1 + var2 ~ idvar1 + idvar2.

t a time vector or list of vectors. See flag.

cols data.frame method: Select columns using a function, column names, indices or
a logical vector. Note: cols is ignored if a two-sided formula is passed to by.

lag.max integer. Maximum lag at which to calculate the acf. Default is 2*sqrt(length(x)/ng)
where ng is the number of groups in the panel series / supplied to g.

type character. String giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (default) the acf is plotted.

gscale logical. Do a groupwise scaling / standardization of x, y (using fscale and the
groups supplied to g) before computing panel-autocovariances / correlations.
See Details.

... further arguments to be passed to plot.acf.

Details

If gscale = TRUE data are standardized within each group (using fscale) such that the group-mean
is 0 and the group-standard deviation is 1. This is strongly recommended for most panels to get rid
of individual-specific heterogeneity which would corrupt the ACF computations.

After scaling, psacf, pspacf and psccf compute the ACF/CCF by creating a matrix of panel-lags
of the series using flag and then computing the covariance of this matrix with the series (x, y)
using cov and pairwise-complete observations, and dividing by the variance (of x, y). Creating the
lag matrix may require a lot of memory on large data, but passing a sequence of lags to flag and
thus calling flag and cov one time is generally much faster than calling them lag.max times. The
partial ACF is computed from the ACF using a Yule-Walker decomposition, in the same way as in
pacf.

Value

An object of class ’acf’, see acf. The result is returned invisibly if plot = TRUE.

See Also

Time Series and Panel Series, Collapse Overview

psmat 171

Examples

World Development Panel Data
head(wlddev) # See also help(wlddev)
psacf(wlddev$PCGDP, wlddev$country, wlddev$year) # ACF of GDP per Capita
psacf(wlddev, PCGDP ~ country, ~year) # Same using data.frame method
psacf(wlddev$PCGDP, wlddev$country) # The Data is sorted, can omit t
pspacf(wlddev$PCGDP, wlddev$country) # Partial ACF
psccf(wlddev$PCGDP, wlddev$LIFEEX, wlddev$country) # CCF with Life-Expectancy at Birth

psacf(wlddev, PCGDP + LIFEEX + ODA ~ country, ~year) # ACF and CCF of GDP, LIFEEX and ODA
psacf(wlddev, ~ country, ~year, c(9:10,12)) # Same, using cols argument
pspacf(wlddev, ~ country, ~year, c(9:10,12)) # Partial ACF

Using indexed data:
wldi <- findex_by(wlddev, iso3c, year) # Creating a indexed frame
PCGDP <- wldi$PCGDP # Indexed Series of GDP per Capita
LIFEEX <- wldi$LIFEEX # Indexed Series of Life Expectancy
psacf(PCGDP) # Same as above, more parsimonious
pspacf(PCGDP)
psccf(PCGDP, LIFEEX)
psacf(wldi[c(9:10,12)])
pspacf(wldi[c(9:10,12)])

psmat Matrix / Array from Panel Series

Description

psmat efficiently expands a panel-vector or ’indexed_series’ (’pseries’) into a matrix. If a data
frame or ’indexed_frame’ (’pdata.frame’) is passed, psmat returns a 3D array or a list of matrices.

Usage

psmat(x, ...)

Default S3 method:
psmat(x, g, t = NULL, transpose = FALSE, ...)

S3 method for class 'data.frame'
psmat(x, by, t = NULL, cols = NULL, transpose = FALSE, array = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
psmat(x, transpose = FALSE, drop.index.levels = "none", ...)

S3 method for class 'pdata.frame'

172 psmat

psmat(x, cols = NULL, transpose = FALSE, array = TRUE, drop.index.levels = "none", ...)

S3 method for class 'psmat'
plot(x, legend = FALSE, colours = legend, labs = NULL, grid = FALSE, ...)

Arguments

x a vector, indexed series ’indexed_series’ (’pseries’), data frame or ’indexed_frame’
(’pdata.frame’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of vec-
tors / factors (internally converted to a GRP object) used to group x. If the panel
is balanced an integer indicating the number of groups can also be supplied. See
Examples.

by data.frame method: Same input as g, but also allows one- or two-sided formulas
using the variables in x, i.e. ~ idvar or var1 + var2 ~ idvar1 + idvar2.

t same inputs as g/by, to indicate the time-variable(s) or second identifier(s). g
and t together should fully identify the panel. If t = NULL, the data is assumed
sorted and seq_col is used to generate rownames for the output matrix.

cols data.frame method: Select columns using a function, column names, indices or
a logical vector. Note: cols is ignored if a two-sided formula is passed to by.

transpose logical. TRUE generates the matrix such that g/by -> columns, t -> rows. De-
fault is g/by -> rows, t -> columns.

array data.frame / pdata.frame methods: logical. TRUE returns a 3D array (if just one
column is selected a matrix is returned). FALSE returns a list of matrices.

drop.index.levels

character. Either "id", "time", "all" or "none". See indexing.
... arguments to be passed to or from other methods, or for the plot method addi-

tional arguments passed to ts.plot.
legend logical. Automatically create a legend of panel-groups.
colours either TRUE to automatically colour by panel-groups using rainbow or a charac-

ter vector of colours matching the number of panel-groups (series).
labs character. Provide a character-vector of variable labels / series titles when plot-

ting an array.
grid logical. Calls grid to draw gridlines on the plot.

Details

If n > 2 index variables are attached to an indexed series or frame, the first n-1 variables in the index
are interacted.

Value

A matrix or 3D array containing the data in x, where by default the rows constitute the groups-ids
(g/by) and the columns the time variable or individual ids (t). 3D arrays contain the variables in the
3rd dimension. The objects have a class ’psmat’, and also a ’transpose’ attribute indicating whether
transpose = TRUE.

pwcor-pwcov-pwnobs 173

Note

The pdata.frame method only works for properly subsetted objects of class ’pdata.frame’. A list
of ’pseries’ won’t work. There also exist simple aperm and [(subset) methods for ’psmat’ objects.
These differ from the default methods only by keeping the class and the ’transpose’ attribute.

See Also

Time Series and Panel Series, Collapse Overview

Examples

World Development Panel Data
head(wlddev) # View data
qsu(wlddev, pid = ~ iso3c, cols = 9:12, vlabels = TRUE) # Sumarizing data
str(psmat(wlddev$PCGDP, wlddev$iso3c, wlddev$year)) # Generating matrix of GDP
r <- psmat(wlddev, PCGDP ~ iso3c, ~ year) # Same thing using data.frame method
plot(r, main = vlabels(wlddev)[9], xlab = "Year") # Plot the matrix
str(r) # See srructure
str(psmat(wlddev$PCGDP, wlddev$iso3c)) # The Data is sorted, could omit t
str(psmat(wlddev$PCGDP, 216)) # This panel is also balanced, so
..indicating the number of groups would be sufficient to obtain a matrix

ar <- psmat(wlddev, ~ iso3c, ~ year, 9:12) # Get array of transposed matrices
str(ar)
plot(ar)
plot(ar, legend = TRUE)
plot(psmat(collap(wlddev, ~region+year, cols = 9:12), # More legible and fancy plot

~region, ~year), legend = TRUE,
labs = vlabels(wlddev)[9:12])

psml <- psmat(wlddev, ~ iso3c, ~ year, 9:12, array = FALSE) # This gives list of ps-matrices
head(unlist2d(psml, "Variable", "Country", id.factor = TRUE),2) # Using unlist2d, can generate DF

Indexing simplifies things
wldi <- findex_by(wlddev, iso3c, year) # Creating an indexed frame
PCGDP <- wldi$PCGDP # An indexed_series of GDP per Capita
head(psmat(PCGDP), 2) # Same as above, more parsimonious
plot(psmat(PCGDP))
plot(psmat(wldi[9:12]))
plot(psmat(G(wldi[9:12]))) # Here plotting panel-growth rates

pwcor-pwcov-pwnobs (Pairwise, Weighted) Correlations, Covariances and Observation
Counts

174 pwcor-pwcov-pwnobs

Description

Computes (pairwise, weighted) Pearson’s correlations, covariances and observation counts. Pair-
wise correlations and covariances can be computed together with observation counts and p-values,
and output as 3D array (default) or list of matrices. pwcor and pwcov offer an elaborate print
method.

Usage

pwcor(X, ..., w = NULL, N = FALSE, P = FALSE, array = TRUE, use = "pairwise.complete.obs")

pwcov(X, ..., w = NULL, N = FALSE, P = FALSE, array = TRUE, use = "pairwise.complete.obs")

pwnobs(X)

S3 method for class 'pwcor'
print(x, digits = .op[["digits"]], sig.level = 0.05,

show = c("all","lower.tri","upper.tri"), spacing = 1L, return = FALSE, ...)

S3 method for class 'pwcov'
print(x, digits = .op[["digits"]], sig.level = 0.05,

show = c("all","lower.tri","upper.tri"), spacing = 1L, return = FALSE, ...)

Arguments

X a matrix or data.frame, for pwcor and pwcov all columns must be numeric. All
functions are faster on matrices, so converting is advised for large data (see qM).

x an object of class ’pwcor’ / ’pwcov’.

w numeric. A vector of (frequency) weights.

N logical. TRUE also computes pairwise observation counts.

P logical. TRUE also computes pairwise p-values (same as cor.test and Hmisc::rcorr).

array logical. If N = TRUE or P = TRUE, TRUE (default) returns output as 3D array
whereas FALSE returns a list of matrices.

use argument passed to cor / cov. If use != "pairwise.complete.obs", sum(complete.cases(X))
is used for N, and p-values are computed accordingly.

digits integer. The number of digits to round to in print.

sig.level numeric. P-value threshold below which a '*' is displayed above significant
coefficients if P = TRUE.

show character. The part of the correlation / covariance matrix to display.

spacing integer. Controls the spacing between different reported quantities in the print-
out of the matrix: 0 - compressed, 1 - single space, 2 - double space.

return logical. TRUE returns the formatted object from the print method for exporting.
The default is to return x invisibly.

... other arguments passed to cor or cov. Only sensible if P = FALSE.

qF-qG-finteraction 175

Value

a numeric matrix, 3D array or list of matrices with the computed statistics. For pwcor and pwcov
the object has a class ’pwcor’ and ’pwcov’, respectively.

Note

weights::wtd.cors is imported for weighted pairwise correlations (written in C for speed). For
weighted correlations with bootstrap SE’s see weights::wtd.cor (bootstrap can be slow). Weighted
correlations for complex surveys are implemented in jtools::svycor. An equivalent and faster
implementation of pwcor (without weights) is provided in Hmisc::rcorr (written in Fortran).

See Also

qsu, Summary Statistics, Collapse Overview

Examples

mna <- na_insert(mtcars)
pwcor(mna)
pwcov(mna)
pwnobs(mna)
pwcor(mna, N = TRUE)
pwcor(mna, P = TRUE)
pwcor(mna, N = TRUE, P = TRUE)
aperm(pwcor(mna, N = TRUE, P = TRUE))
print(pwcor(mna, N = TRUE, P = TRUE), digits = 3, sig.level = 0.01, show = "lower.tri")
pwcor(mna, N = TRUE, P = TRUE, array = FALSE)
print(pwcor(mna, N = TRUE, P = TRUE, array = FALSE), show = "lower.tri")

qF-qG-finteraction Fast Factor Generation, Interactions and Vector Grouping

Description

qF, shorthand for ’quick-factor’ implements very fast factor generation from atomic vectors using
either radix ordering or index hashing followed by sorting.

qG, shorthand for ’quick-group’, generates a kind of factor-light without the levels attribute but
instead an attribute providing the number of levels. Optionally the levels / groups can be attached,
but without converting them to character (which can have large performance implications). Objects
have a class ’qG’.

finteraction generates a factor or ’qG’ object by interacting multiple vectors or factors. In that
process missing values are always replaced with a level and unused levels/combinations are always
dropped.

collapse internally makes optimal use of factors and ’qG’ objects when passed as grouping vectors
to statistical functions (g/by, or t arguments) i.e. typically no further grouping or ordering is
performed and objects are used directly by statistical C/C++ code.

176 qF-qG-finteraction

Usage

qF(x, ordered = FALSE, na.exclude = TRUE, sort = .op[["sort"]], drop = FALSE,
keep.attr = TRUE, method = "auto")

qG(x, ordered = FALSE, na.exclude = TRUE, sort = .op[["sort"]],
return.groups = FALSE, method = "auto")

is_qG(x)

as_factor_qG(x, ordered = FALSE, na.exclude = TRUE)

finteraction(..., factor = TRUE, ordered = FALSE, sort = factor && .op[["sort"]],
method = "auto", sep = ".")

itn(...) # Shorthand for finteraction

Arguments

x a atomic vector, factor or quick-group.

ordered logical. Adds a class ’ordered’.

na.exclude logical. TRUE preserves missing values (i.e. no level is generated for NA). FALSE
attaches an additional class "na.included" which is used to skip missing value
checks performed before sending objects to C/C++. See Details.

sort logical. TRUE sorts the levels in ascending order (like factor); FALSE provides
the levels in order of first appearance, which can be significantly faster. Note that
if a factor is passed as input, only sort = FALSE takes effect and unused levels
will be dropped (as factors usually have sorted levels and checking sortedness
can be expensive).

drop logical. If x is a factor, TRUE efficiently drops unused factor levels beforehand
using fdroplevels.

keep.attr logical. If TRUE and x has additional attributes apart from ’levels’ and ’class’,
these are preserved in the conversion to factor.

method an integer or character string specifying the method of computation:

Int. String Description
1 "auto" automatic selection: if(is.double(x) && sort) "radix" else if(sort && length(x) < 1e5) "rcpp_hash" else "hash".
2 "radix" use radix ordering to generate factors. Supports sort = FALSE only for character vectors. See Details.
3 "hash" use hashing to generate factors. Since v1.8.3 this is a fast hybrid implementation using group and radix ordering applied to the unique elements. See Details.
4 "rcpp_hash" the previous "hash" algorithm prior to v1.8.3: uses Rcpp::sugar::sort_unique and Rcpp::sugar::match. Only supports sort = TRUE.

Note that for finteraction, method = "hash" is always unsorted and method
= "rcpp_hash" is not available.

return.groups logical. TRUE returns the unique elements / groups / levels of x in an attribute
called "groups". Unlike qF, they are not converted to character.

factor logical. TRUE returns an factor, FALSE returns a ’qG’ object.

qF-qG-finteraction 177

sep character. The separator passed to paste when creating factor levels from mul-
tiple grouping variables.

... multiple atomic vectors or factors, or a single list of equal-length vectors or
factors. See Details.

Details

Whenever a vector is passed to a Fast Statistical Function such as fmean(mtcars, mtcars$cyl), is
is grouped using qF, or qG if use.g.names = FALSE.

qF is a combination of as.factor and factor. Applying it to a vector i.e. qF(x) gives the same
result as as.factor(x). qF(x, ordered = TRUE) generates an ordered factor (same as factor(x,
ordered = TRUE)), and qF(x, na.exclude = FALSE) generates a level for missing values (same
as factor(x, exclude = NULL)). An important addition is that qF(x, na.exclude = FALSE) also
adds a class ’na.included’. This prevents collapse functions from checking missing values in the
factor, and is thus computationally more efficient. Therefore factors used in grouped operations
should preferably be generated using qF(x, na.exclude = FALSE). Setting sort = FALSE gathers
the levels in first-appearance order (unless method = "radix" and x is numeric, in which case the
levels are always sorted). This often gives a noticeable speed improvement.

There are 3 internal methods of computation: radix ordering, hashing, and Rcpp sugar hashing.
Radix ordering is done by combining the functions radixorder and groupid. It is generally faster
than hashing for large numeric data and pre-sorted data (although there are exceptions). Hashing
uses group, followed by radixorder on the unique elements if sort = TRUE. It is generally fastest
for character data. Rcpp hashing uses Rcpp::sugar::sort_unique and Rcpp::sugar::match.
This is often less efficient than the former on large data, but the sorting properties (relying on
std::sort) may be superior in borderline cases where radixorder fails to deliver exact lexico-
graphic ordering of factor levels.

Regarding speed: In general qF is around 5x faster than as.factor on character data and about 30x
faster on numeric data. Automatic method dispatch typically does a good job delivering optimal
performance.

qG is in the first place a programmers function. It generates a factor-’light’ class ’qG’ consisting of
only an integer grouping vector and an attribute providing the number of groups. It is slightly faster
and more memory efficient than GRP for grouping atomic vectors, and also convenient as it can be
stored in a data frame column, which are the main reasons for its existence.

finteraction is simply a wrapper around as_factor_GRP(GRP.default(X)), where X is re-
placed by the arguments in ’. . . ’ combined in a list (so its not really an interaction function but
just a multivariate grouping converted to factor, see GRP for computational details). In general: All
vectors, factors, or lists of vectors / factors passed can be interacted. Interactions always create a
level for missing values and always drop unused levels.

Value

qF returns an (ordered) factor. qG returns an object of class ’qG’: an integer grouping vector with an
attribute "N.groups" indicating the number of groups, and, if return.groups = TRUE, an attribute
"groups" containing the vector of unique groups / elements in x corresponding to the integer-id.
finteraction can return either.

178 qsu

Note

An efficient alternative for character vectors with multithreading support is provided by kit::charToFact.

qG(x, sort = FALSE, na.exclude = FALSE, method = "hash") internally calls group(x) which
can also be used directly and also supports multivariate groupings where x can be a list of vec-
tors.

Neither qF nor qG reorder groups / factor levels. An exception was added in v1.7, when calling
qF(f, sort = FALSE) on a factor f, the levels are recast in first appearance order. These objects
can however be converted into one another using qF/qG or the direct method as_factor_qG (called
inside qF). It is also possible to add a class ’ordered’ (ordered = TRUE) and to create am extra level
/ integer for missing values (na.exclude = FALSE) if factors or ’qG’ objects are passed to qF or qG.

See Also

group, groupid, GRP, Fast Grouping and Ordering, Collapse Overview

Examples

cylF <- qF(mtcars$cyl) # Factor from atomic vector
cylG <- qG(mtcars$cyl) # Quick-group from atomic vector
cylG # See the simple structure of this object

cf <- qF(wlddev$country) # Bigger data
cf2 <- qF(wlddev$country, na.exclude = FALSE) # With na.included class
dat <- num_vars(wlddev)

cf2 is faster in grouped operations because no missing value check is performed
library(microbenchmark)
microbenchmark(fmax(dat, cf), fmax(dat, cf2))

finteraction(mtcars$cyl, mtcars$vs) # Interacting two variables (can be factors)
head(finteraction(mtcars)) # A more crude example..

finteraction(mtcars$cyl, mtcars$vs, factor = FALSE) # Returns 'qG', by default unsorted
group(mtcars[c("cyl", "vs")]) # Same thing. Use whatever syntax is more convenient

qsu Fast (Grouped, Weighted) Summary Statistics for Cross-Sectional and
Panel Data

Description

qsu, shorthand for quick-summary, is an extremely fast summary command inspired by the (xt)summarize
command in the STATA statistical software.

It computes a set of 7 statistics (nobs, mean, sd, min, max, skewness and kurtosis) using a numer-
ically stable one-pass method generalized from Welford’s Algorithm. Statistics can be computed
weighted, by groups, and also within-and between entities (for panel data, see Details).

qsu 179

Usage

qsu(x, ...)

Default S3 method:
qsu(x, g = NULL, pid = NULL, w = NULL, higher = FALSE,

array = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'matrix'
qsu(x, g = NULL, pid = NULL, w = NULL, higher = FALSE,

array = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'data.frame'
qsu(x, by = NULL, pid = NULL, w = NULL, cols = NULL, higher = FALSE,

array = TRUE, labels = FALSE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'grouped_df'
qsu(x, pid = NULL, w = NULL, higher = FALSE,

array = TRUE, labels = FALSE, stable.algo = .op[["stable.algo"]], ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
qsu(x, g = NULL, w = NULL, effect = 1L, higher = FALSE,

array = TRUE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'pdata.frame'
qsu(x, by = NULL, w = NULL, cols = NULL, effect = 1L, higher = FALSE,

array = TRUE, labels = FALSE, stable.algo = .op[["stable.algo"]], ...)

Methods for compatibility with sf:

S3 method for class 'sf'
qsu(x, by = NULL, pid = NULL, w = NULL, cols = NULL, higher = FALSE,

array = TRUE, labels = FALSE, stable.algo = .op[["stable.algo"]], ...)

S3 method for class 'qsu'
as.data.frame(x, ..., gid = "Group", stringsAsFactors = TRUE)

S3 method for class 'qsu'
print(x, digits = .op[["digits"]] + 2L, nonsci.digits = 9, na.print = "-",

return = FALSE, print.gap = 2, ...)

Arguments

x a vector, matrix, data frame, ’indexed_series’ (’pseries’) or ’indexed_frame’
(’pdata.frame’).

g a factor, GRP object, atomic vector (internally converted to factor) or a list of

180 qsu

vectors / factors (internally converted to a GRP object) used to group x.

by (p)data.frame method: Same as g, but also allows one- or two-sided formulas
i.e. ~ group1 + group2 or var1 + var2 ~ group1 + group2. See Examples.

pid same input as g/by: Specify a panel-identifier to also compute statistics on
between- and within- transformed data. Data frame method also supports one-
or two-sided formulas, grouped_df method supports expressions evaluated in
the data environment. Transformations are taken independently from grouping
with g/by (grouped statistics are computed on the transformed data if g/by is
also used). However, passing any LHS variables to pid will overwrite any LHS
variables passed to by.

w a vector of (non-negative) weights. Adding weights will compute the weighted
mean, sd, skewness and kurtosis, and transform the data using weighted indi-
vidual means if pid is used. Data frame method supports formula, grouped_df
method supports expression.

cols select columns to summarize using column names, indices, a logical vector or a
function (e.g. is.numeric). Two-sided formulas passed to by or pid overwrite
cols.

higher logical. Add higher moments (skewness and kurtosis).

array logical. If computations have more than 2 dimensions (up to a maximum of
4D: variables, statistics, groups and panel-decomposition) TRUE returns an array,
while FALSE returns a (nested) list of matrices.

stable.algo logical. FALSE uses a faster but less stable method to calculate the standard
deviation (see Details of fsd). Only available if w = NULL and higher = FALSE.

labels logical TRUE or a function: to display variable labels in the summary. See De-
tails.

effect plm methods: Select which panel identifier should be used for between and
within transformations of the data. 1L takes the first variable in the index, 2L
the second etc.. Index variables can also be called by name using a character
string. More than one variable can be supplied.

... arguments to be passed to or from other methods.

gid character. Name assigned to the group-id column, when summarising variables
by groups.

stringsAsFactors

logical. Make factors from dimension names of ’qsu’ array. Same as option to
as.data.frame.table.

digits the number of digits to print after the comma/dot.

nonsci.digits the number of digits to print before resorting to scientific notation (default is to
print out numbers with up to 9 digits and print larger numbers scientifically).

na.print character string to substitute for missing values.

return logical. Don’t print but instead return the formatted object.

print.gap integer. Spacing between printed columns. Passed to print.default.

qsu 181

Details

The algorithm used to compute statistics is well described here [see sections Welford’s online al-
gorithm, Weighted incremental algorithm and Higher-order statistics. Skewness and kurtosis are
calculated as described in Higher-order statistics and are mathematically identical to those imple-
mented in the moments package. Just note that qsu computes the kurtosis (like momens::kurtosis),
not the excess-kurtosis (= kurtosis - 3) defined in Higher-order statistics. The Weighted incremental
algorithm described can easily be generalized to higher-order statistics].

Grouped computations specified with g/by are carried out extremely efficiently as in fsum (in a
single pass, without splitting the data).

If pid is used, qsu performs a panel-decomposition of each variable and computes 3 sets of statis-
tics: Statistics computed on the ’Overall’ (raw) data, statistics computed on the ’Between’ - trans-
formed (pid - averaged) data, and statistics computed on the ’Within’ - transformed (pid - demeaned)
data.

More formally, let x (bold) be a panel vector of data for N individuals indexed by i, recorded for
T periods, indexed by t. xit then denotes a single data-point belonging to individual i in time-
period t (t/T must not represent time). Then xi. denotes the average of all values for individual i
(averaged over t), and by extension xN. is the vector (length N) of such averages for all individuals.
If no groups are supplied to g/by, the ’Between’ statistics are computed on xN., the vector of
individual averages. (This means that for a non-balanced panel or in the presence of missing values,
the ’Overall’ mean computed on x can be slightly different than the ’Between’ mean computed on
xN., and the variance decomposition is not exact). If groups are supplied to g/by, xN. is expanded
to the vector xi. (length N x T) by replacing each value xit in x with xi., while preserving missing
values in x. Grouped Between-statistics are then computed on xi., with the only difference that
the number of observations (’Between-N’) reported for each group is the number of distinct non-
missing values of xi. in each group (not the total number of non-missing values of xi. in each
group, which is already reported in ’Overall-N’). See Examples.

’Within’ statistics are always computed on the vector x - xi. + x.., where x.. is simply the ’Over-
all’ mean computed from x, which is added back to preserve the level of the data. The ’Within’
mean computed on this data will always be identical to the ’Overall’ mean. In the summary output,
qsu reports not ’N’, which would be identical to the ’Overall-N’, but ’T’, the average number of
time-periods of data available for each individual obtained as ’T’ = ’Overall-N / ’Between-N’. See
Examples.

Apart from ’N/T’ and the extrema, the standard-deviations (’SD’) computed on between- and
within- transformed data are extremely valuable because they indicate how much of the variation in
a panel-variable is between-individuals and how much of the variation is within-individuals (over
time). At the extremes, variables that have common values across individuals (such as the time-
variable(s) ’t’ in a balanced panel), can readily be identified as individual-invariant because the
’Between-SD’ on this variable is 0 and the ’Within-SD’ is equal to the ’Overall-SD’. Analogous,
time-invariant individual characteristics (such as the individual-id ’i’) have a 0 ’Within-SD’ and a
’Between-SD’ equal to the ’Overall-SD’. See Examples.

For data frame methods, if labels = TRUE, qsu uses function(x) paste(names(x), setv(vlabels(x),
NA, ""), sep = ": ") to combine variable names and labels for display. Alternatively, the user can
pass a custom function which will be applied to the data frame, e.g. using labels = vlabels just
displays the labels. See also vlabels.

qsu comes with its own print method which by default writes out up to 9 digits at 4 decimal places.
Larger numbers are printed in scientific format. for numbers between 7 and 9 digits, an apostrophe

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

182 qsu

(’) is placed after the 6th digit to designate the millions. Missing values are printed using ’-’.

The sf method simply ignores the geometry column.

Value

A vector, matrix, array or list of matrices of summary statistics. All matrices and arrays have a class
’qsu’ and a class ’table’ attached.

Note

In weighted summaries, observations with missing or zero weights are skipped, and thus do not
affect any of the calculated statistics, including the observation count. This also implies that a
logical vector passed to w can be used to efficiently summarize a subset of the data.

Note

If weights w are used together with pid, transformed data is computed using weighted individual
means i.e. weighted xi. and weighted x... Weighted statistics are subsequently computed on this
weighted-transformed data.

References

Welford, B. P. (1962). Note on a method for calculating corrected sums of squares and products.
Technometrics. 4 (3): 419-420. doi:10.2307/1266577.

See Also

descr, Summary Statistics, Fast Statistical Functions, Collapse Overview

Examples

World Development Panel Data
Simple Summaries -------------------------
qsu(wlddev) # Simple summary
qsu(wlddev, labels = TRUE) # Display variable labels
qsu(wlddev, higher = TRUE) # Add skewness and kurtosis

Grouped Summaries ------------------------
qsu(wlddev, ~ region, labels = TRUE) # Statistics by World Bank Region
qsu(wlddev, PCGDP + LIFEEX ~ income) # Summarize GDP per Capita and Life Expectancy by
stats <- qsu(wlddev, ~ region + income, # World Bank Income Level

cols = 9:10, higher = TRUE) # Same variables, by both region and income
aperm(stats) # A different perspective on the same stats

Grouped summary
wlddev |> fgroup_by(region) |> fselect(PCGDP, LIFEEX) |> qsu()

Panel Data Summaries ---------------------
qsu(wlddev, pid = ~ iso3c, labels = TRUE) # Adding between and within countries statistics
-> They show amongst other things that year and decade are individual-invariant,
that we have GINI-data on only 161 countries, with only 8.42 observations per country on average,

qsu 183

and that GDP, LIFEEX and GINI vary more between-countries, but ODA received varies more within
countries over time.

Let's do this manually for PCGDP:
x <- wlddev$PCGDP
g <- wlddev$iso3c

This is the exact variance decomposion
all.equal(fvar(x), fvar(B(x, g)) + fvar(W(x, g)))

What qsu does is calculate
r <- rbind(Overall = qsu(x),

Between = qsu(fmean(x, g)), # Aggregation instead of between-transform
Within = qsu(fwithin(x, g, mean = "overall.mean"))) # Same as qsu(W(x, g) + fmean(x))

r[3, 1] <- r[1, 1] / r[2, 1]
print.qsu(r)
Proof:
qsu(x, pid = g)

Using indexed data:
wldi <- findex_by(wlddev, iso3c, year) # Creating a Indexed Data Frame frame from this data
qsu(wldi) # Summary for pdata.frame -> qsu(wlddev, pid = ~ iso3c)
qsu(wldi$PCGDP) # Default summary for Panel Series
qsu(G(wldi$PCGDP)) # Summarizing GDP growth, see also ?G

Grouped Panel Data Summaries -------------
qsu(wlddev, ~ region, ~ iso3c, cols = 9:12) # Panel-Statistics by region
psr <- qsu(wldi, ~ region, cols = 9:12) # Same on indexed data
psr # -> Gives a 4D array
psr[,"N/T",,] # Checking out the number of observations:
In North america we only have 3 countries, for the GINI we only have 3.91 observations on average
for 45 Sub-Saharan-African countries, etc..
psr[,"SD",,] # Considering only standard deviations
-> In all regions variations in inequality (GINI) between countries are greater than variations
in inequality within countries. The opposite is true for Life-Expectancy in all regions apart
from Europe, etc..

Again let's do this manually for PDGCP:
d <- cbind(Overall = x,

Between = fbetween(x, g),
Within = fwithin(x, g, mean = "overall.mean"))

r <- qsu(d, g = wlddev$region)
r[,"N","Between"] <- fndistinct(g[!is.na(x)], wlddev$region[!is.na(x)])
r[,"N","Within"] <- r[,"N","Overall"] / r[,"N","Between"]
r

Proof:
qsu(wlddev, PCGDP ~ region, ~ iso3c)

Weighted Summaries -----------------------
n <- nrow(wlddev)
weights <- abs(rnorm(n)) # Generate random weights

184 qtab

qsu(wlddev, w = weights, higher = TRUE) # Computed weighted mean, SD, skewness and kurtosis
weightsNA <- weights # Weights may contain missing values.. inserting 1000
weightsNA[sample.int(n, 1000)] <- NA
qsu(wlddev, w = weightsNA, higher = TRUE) # But now these values are removed from all variables

Grouped and panel-summaries can also be weighted in the same manner

Alternative Output Formats ---------------
Simple case
as.data.frame(qsu(mtcars))
For matrices can also use qDF/qDT/qTBL to assign custom name and get a character-id
qDF(qsu(mtcars), "car")
DF from 3D array: do not combine with aperm(), might introduce wrong column labels
as.data.frame(stats, gid = "Region_Income")
DF from 4D array: also no aperm()
as.data.frame(qsu(wlddev, ~ income, ~ iso3c, cols = 9:10), gid = "Region")

Output as nested list
psrl <- qsu(wlddev, ~ income, ~ iso3c, cols = 9:10, array = FALSE)
psrl

We can now use unlist2d to create a tidy data frame
unlist2d(psrl, c("Variable", "Trans"), row.names = "Income")

qtab Fast (Weighted) Cross Tabulation

Description

A versatile and computationally more efficient replacement for table. Notably, it also supports
tabulations with frequency weights, and computation of a statistic over combinations of variables.

Usage

qtab(..., w = NULL, wFUN = NULL, wFUN.args = NULL,
dnn = "auto", sort = .op[["sort"]], na.exclude = TRUE,
drop = FALSE, method = "auto")

qtable(...) # Long-form. Use set_collapse(mask = "table") to replace table()

Arguments

... atomic vectors or factors spanning the table dimensions, (optionally) with tags
for the dimension names, or a data frame / list of these. See Examples.

w a single vector to aggregate over the table dimensions e.g. a vector of frequency
weights.

wFUN a function used to aggregate w over the table dimensions. The default NULL com-
putes the sum of the non-missing weights via an optimized internal algorithm.
Fast Statistical Functions also receive vectorized execution.

qtab 185

wFUN.args a list of (optional) further arguments passed to wFUN. See Examples.

dnn the names of the table dimensions. Either passed directly as a character vector
or list (internally unlist’ed), a function applied to the ... list (e.g. names, or
vlabels), or one of the following options:

• "auto" constructs names based on the ... arguments, or calls names if a
single list is passed as input.

• "namlab" does the same as "auto", but also calls vlabels on the list and
appends the names by the variable labels.

dnn = NULL will return a table without dimension names.
sort, na.exclude, drop, method

arguments passed down to qF:

• sort = FALSE orders table dimensions in first-appearance order of items in
the data (can be more efficient if vectors are not factors already). Note that
for factors this option will both recast levels in first-appearance order and
drop unused levels.

• na.exclude = FALSE includes NA’s in the table (equivalent to table’s useNA
= "ifany").

• drop = TRUE removes any unused factor levels (= zero frequency rows or
columns).

• method %in% c("radix", "hash") provides additional control over the al-
gorithm used to convert atomic vectors to factors.

Value

An array of class ’qtab’ that inherits from ’table’. Thus all ’table’ methods apply to it.

See Also

descr, Summary Statistics, Fast Statistical Functions, Collapse Overview

Examples

Basic use
qtab(iris$Species)
with(mtcars, qtab(vs, am))
qtab(mtcars[.c(vs, am)])

library(magrittr)
iris %$% qtab(Sepal.Length > mean(Sepal.Length), Species)
iris %$% qtab(AMSL = Sepal.Length > mean(Sepal.Length), Species)

World after 2015
wlda15 <- wlddev |> fsubset(year >= 2015) |> collap(~ iso3c)

Regions and income levels (country frequency)
wlda15 %$% qtab(region, income)
wlda15 %$% qtab(region, income, dnn = vlabels)
wlda15 %$% qtab(region, income, dnn = "namlab")

186 quick-conversion

Population (millions)
wlda15 %$% qtab(region, income, w = POP) |> divide_by(1e6)

Life expectancy (years)
wlda15 %$% qtab(region, income, w = LIFEEX, wFUN = fmean)

Life expectancy (years), weighted by population
wlda15 %$% qtab(region, income, w = LIFEEX, wFUN = fmean,

wFUN.args = list(w = POP))

GDP per capita (constant 2010 US$): median
wlda15 %$% qtab(region, income, w = PCGDP, wFUN = fmedian,

wFUN.args = list(na.rm = TRUE))

GDP per capita (constant 2010 US$): median, weighted by population
wlda15 %$% qtab(region, income, w = PCGDP, wFUN = fmedian,

wFUN.args = list(w = POP))

Including OECD membership
tab <- wlda15 %$% qtab(region, income, OECD)
tab

Various 'table' methods
tab |> addmargins()
tab |> marginSums(margin = c("region", "income"))
tab |> proportions()
tab |> proportions(margin = "income")
as.data.frame(tab) |> head(10)
ftable(tab, row.vars = c("region", "OECD"))

Other options
tab |> fsum(TRA = "%") # Percentage table (on a matrix use fsum.default)
tab %/=% (sum(tab)/100) # Another way (division by reference, preserves integers)
tab

rm(tab, wlda15)

quick-conversion Quick Data Conversion

Description

Fast, flexible and precise conversion of common data objects, without method dispatch and exten-
sive checks:

• qDF, qDT and qTBL convert vectors, matrices, higher-dimensional arrays and suitable lists to
data frame, data.table and tibble, respectively.

• qM converts vectors, higher-dimensional arrays, data frames and suitable lists to matrix.

• mctl and mrtl column- or row-wise convert a matrix to list, data frame or data.table. They
are used internally by qDF/qDT/qTBL, dapply, BY, etc. . .

quick-conversion 187

• qF converts atomic vectors to factor (documented on a separate page).

• as_numeric_factor, as_integer_factor, and as_character_factor convert factors, or
all factor columns in a data frame / list, to character or numeric (by converting the levels).

Usage

Converting between matrices, data frames / tables / tibbles

qDF(X, row.names.col = FALSE, keep.attr = FALSE, class = "data.frame")
qDT(X, row.names.col = FALSE, keep.attr = FALSE, class = c("data.table", "data.frame"))
qTBL(X, row.names.col = FALSE, keep.attr = FALSE, class = c("tbl_df","tbl","data.frame"))
qM(X, row.names.col = NULL , keep.attr = FALSE, class = NULL, sep = ".")

Programmer functions: matrix rows or columns to list / DF / DT - fully in C++

mctl(X, names = FALSE, return = "list")
mrtl(X, names = FALSE, return = "list")

Converting factors or factor columns

as_numeric_factor(X, keep.attr = TRUE)
as_integer_factor(X, keep.attr = TRUE)

as_character_factor(X, keep.attr = TRUE)

Arguments

X a vector, factor, matrix, higher-dimensional array, data frame or list. mctl
and mrtl only accept matrices, as_numeric_factor, as_integer_factor and
as_character_factor only accept factors, data frames or lists.

row.names.col can be used to add an column saving names or row.names when converting ob-
jects to data frame using qDF/qDT/qTBL. TRUE will add a column "row.names",
or you can supply a name e.g. row.names.col = "variable". With qM, the ar-
gument has the opposite meaning, and can be used to select one or more columns
in a data frame/list which will be used to create the rownames of the matrix
e.g. qM(iris, row.names.col = "Species"). In this case the column(s) can
be specified using names, indices, a logical vector or a selector function. See
Examples.

keep.attr logical. FALSE (default) yields a hard / thorough object conversion: All unnec-
essary attributes are removed from the object yielding a plain matrix / data.frame
/ data.table. FALSE yields a soft / minimal object conversion: Only the attributes
’names’, ’row.names’, ’dim’, ’dimnames’ and ’levels’ are modified in the con-
version. Other attributes are preserved. See also class.

class if a vector of classes is passed here, the converted object will be assigned these
classes. If NULL is passed, the default classes are assigned: qM assigns no class,
qDF a class "data.frame", and qDT a class c("data.table", "data.frame").

188 quick-conversion

If keep.attr = TRUE and class = NULL and the object already inherits the de-
fault classes, further inherited classes are preserved. See Details and the Exam-
ple.

sep character. Separator used for interacting multiple variables selected through
row.names.col.

names logical. Should the list be named using row/column names from the matrix?

return an integer or string specifying what to return. The options are:

Int. String Description
1 "list" returns a plain list
2 "data.frame" returns a plain data.frame
3 "data.table" returns a plain data.table

Details

Object conversions using these functions are maximally efficient and involve 3 consecutive steps:
(1) Converting the storage mode / dimensions / data of the object, (2) converting / modifying the
attributes and (3) modifying the class of the object:

(1) is determined by the choice of function and the optional row.names.col argument. Higher-
dimensional arrays are converted by expanding the second dimension (adding columns, same as
as.matrix, as.data.frame, as.data.table).

(2) is determined by the keep.attr argument: keep.attr = TRUE seeks to preserve the attributes
of the object. Its effect is like copying attributes(converted) <- attributes(original), and
then modifying the "dim", "dimnames", "names", "row.names" and "levels" attributes as ne-
cessitated by the conversion task. keep.attr = FALSE only converts / assigns / removes these at-
tributes and drops all others.

(3) is determined by the class argument: Setting class = "myclass" will yield a converted object
of class "myclass", with any other / prior classes being removed by this replacement. Setting class
= NULL does NOT mean that a class NULL is assigned (which would remove the class attribute), but
rather that the default classes are assigned: qM assigns no class, qDF a class "data.frame", and qDT
a class c("data.table", "data.frame"). At this point there is an interaction with keep.attr:
If keep.attr = TRUE and class = NULL and the object converted already inherits the respective
default classes, then any other inherited classes will also be preserved (with qM(x, keep.attr =
TRUE, class = NULL) any class will be preserved if is.matrix(x) evaluates to TRUE.)

The default keep.attr = FALSE ensures hard conversions so that all unnecessary attributes are
dropped. Furthermore in qDF/qDT/qTBL the default classes were explicitly assigned. This is to
ensure that the default methods apply, even if the user chooses to preserve further attributes. For
qM a more lenient default setup was chosen to enable the full preservation of time series matrices
with keep.attr = TRUE. If the user wants to keep attributes attached to a matrix but make sure that
all default methods work properly, either one of qM(x, keep.attr = TRUE, class = "matrix") or
unclass(qM(x, keep.attr = TRUE)) should be employed.

Value

qDF - returns a data.frame
qDT - returns a data.table

radixorder 189

qTBL - returns a tibble
qM - returns a matrix
mctl, mrtl - return a list, data frame or data.table
qF - returns a factor
as_numeric_factor - returns X with factors converted to numeric (double) variables
as_integer_factor - returns X with factors converted to integer variables
as_character_factor - returns X with factors converted to character variables

See Also

qF, Collapse Overview

Examples

Basic Examples
mtcarsM <- qM(mtcars) # Matrix from data.frame
mtcarsDT <- qDT(mtcarsM) # data.table from matrix columns
mtcarsTBL <- qTBL(mtcarsM) # tibble from matrix columns
head(mrtl(mtcarsM, TRUE, "data.frame")) # data.frame from matrix rows, etc..
head(qDF(mtcarsM, "cars")) # Adding a row.names column when converting from matrix
head(qDT(mtcars, "cars")) # Saving row.names when converting data frame to data.table
head(qM(iris, "Species")) # Examples converting data to matrix, saving information
head(qM(GGDC10S, is.character)) # as rownames
head(qM(gv(GGDC10S, -(2:3)), 1:3, sep = "-")) # plm-style rownames

mrtl() and mctl() are very useful for iteration over matrices
Think of a coordninates matrix e.g. from sf::st_coordinates()
coord <- matrix(rnorm(10), ncol = 2, dimnames = list(NULL, c("X", "Y")))
Then we can
for (d in mrtl(coord)) {

cat("lon =", d[1], ", lat =", d[2], fill = TRUE)
do something complicated ...

}
rm(coord)

Factors
cylF <- qF(mtcars$cyl) # Factor from atomic vector
cylF

Factor to numeric conversions
identical(mtcars, as_numeric_factor(dapply(mtcars, qF)))

radixorder Fast Radix-Based Ordering

Description

A slight modification of order(..., method = "radix") that is more programmer friendly and,
importantly, provides features for ordered grouping of data (similar to data.table:::forderv
which has more or less the same source code). radixorderv is a programmers version directly
supporting vector and list input.

190 radixorder

Usage

radixorder(..., na.last = TRUE, decreasing = FALSE, starts = FALSE,
group.sizes = FALSE, sort = TRUE)

radixorderv(x, na.last = TRUE, decreasing = FALSE, starts = FALSE,
group.sizes = FALSE, sort = TRUE)

Arguments

... comma-separated atomic vectors to order.

x an atomic vector or list of atomic vectors such as a data frame.

na.last logical. for controlling the treatment of NA’s. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.

decreasing logical. Should the sort order be increasing or decreasing? Can be a vector of
length equal to the number of arguments in ... / x.

starts logical. TRUE returns an attribute ’starts’ containing the first element of each new
group i.e. the row denoting the start of each new group if the data were sorted
using the computed ordering vector. See Examples.

group.sizes logical. TRUE returns an attribute ’group.sizes’ containing sizes of each group
in the same order as groups are encountered if the data were sorted using the
computed ordering vector. See Examples.

sort logical. This argument only affects character vectors / columns passed. If FALSE,
these are not ordered but simply grouped in the order of first appearance of
unique elements. This provides a slight performance gain if only grouping but
not alphabetic ordering is required. See also group.

Value

An integer ordering vector with attributes: Unless na.last = NA an attribute "sorted" indicating
whether the input data was already sorted is attached. If starts = TRUE, "starts" giving a vector
of group starts in the ordered data, and if group.sizes = TRUE, "group.sizes" giving the vector
of group sizes are attached. In either case an attribute "maxgrpn" providing the size of the largest
group is also attached.

Author(s)

The C code was taken - with slight modifications - from base R source code, and is originally due
to data.table authors Matt Dowle and Arun Srinivasan.

See Also

Fast Grouping and Ordering, Collapse Overview

https://github.com/wch/r-source/blob/79298c499218846d14500255efd622b5021c10ec/src/main/radixsort.c

rapply2d 191

Examples

radixorder(mtcars$mpg)
head(mtcars[radixorder(mtcars$mpg),])
radixorder(mtcars$cyl, mtcars$vs)

o <- radixorder(mtcars$cyl, mtcars$vs, starts = TRUE)
st <- attr(o, "starts")
head(mtcars[o,])
mtcars[o[st], c("cyl", "vs")] # Unique groups

Note that if attr(o, "sorted") == TRUE, then all(o[st] == st)
radixorder(rep(1:3, each = 3), starts = TRUE)

Group sizes
radixorder(mtcars$cyl, mtcars$vs, group.sizes = TRUE)

Both
radixorder(mtcars$cyl, mtcars$vs, starts = TRUE, group.sizes = TRUE)

rapply2d Recursively Apply a Function to a List of Data Objects

Description

rapply2d is a recursive version of lapply with three differences to rapply:

1. data frames (or other list-based objects specified in classes) are considered as atomic, not as
(sub-)lists

2. FUN is applied to all ’atomic’ objects in the nested list

3. the result is not simplified / unlisted.

Usage

rapply2d(l, FUN, ..., classes = "data.frame")

Arguments

l a list.

FUN a function that can be applied to all ’atomic’ elements in l.

... additional elements passed to FUN.

classes character. Classes of list-based objects inside l that should be considered as
atomic.

Value

A list of the same structure as l, where FUN was applied to all atomic elements and list-based objects
of a class included in classes.

192 recode-replace

Note

The main reason rapply2d exists is to have a recursive function that out-of-the-box applies a func-
tion to a nested list of data frames.

For most other purposes rapply, or by extension the excellent rrapply function / package, provide
more advanced functionality and greater performance.

See Also

rsplit, unlist2d, List Processing, Collapse Overview

Examples

l <- list(mtcars, list(mtcars, as.matrix(mtcars)))
rapply2d(l, fmean)
unlist2d(rapply2d(l, fmean))

recode-replace Recode and Replace Values in Matrix-Like Objects

Description

A small suite of functions to efficiently perform common recoding and replacing tasks in matrix-like
objects.

Usage

recode_num(X, ..., default = NULL, missing = NULL, set = FALSE)

recode_char(X, ..., default = NULL, missing = NULL, regex = FALSE,
ignore.case = FALSE, fixed = FALSE, set = FALSE)

replace_na(X, value = 0, cols = NULL, set = FALSE, type = "const")

replace_inf(X, value = NA, replace.nan = FALSE, set = FALSE)

replace_outliers(X, limits, value = NA,
single.limit = c("sd", "mad", "min", "max"),
ignore.groups = FALSE, set = FALSE)

Arguments

X a vector, matrix, array, data frame or list of atomic objects. replace_outliers
has internal methods for grouped and indexed data.

... comma-separated recode arguments of the form: value = replacement, `2`
= 0, Secondary = "SEC" etc. recode_char with regex = TRUE also supports
regular expressions i.e. `^S|D$` = "STD" etc.

https://cran.r-project.org/package=rrapply

recode-replace 193

default optional argument to specify a scalar value to replace non-matched elements
with.

missing optional argument to specify a scalar value to replace missing elements with.
Note that to increase efficiency this is done before the rest of the recoding i.e.
the recoding is performed on data where missing values are filled!

set logical. TRUE does replacements by reference (i.e. in-place modification of the
data) and returns the result invisibly.

type character. One of "const", "locf" (last non-missing observation carried for-
ward) or "focb" (first non-missing observation carried back). The latter two
ignore value.

regex logical. If TRUE, all recode-argument names are (sequentially) passed to grepl
as a pattern to search X. All matches are replaced. Note that NA’s are also matched
as strings by grepl.

value a single (scalar) value to replace matching elements with. In replace_outliers
setting value = "clip" will replace outliers with the corresponding threshold
values. See Examples.

cols select columns to replace missing values in using a function, column names,
indices or a logical vector.

replace.nan logical. TRUE replaces NaN/Inf/-Inf. FALSE (default) replaces only Inf/-Inf.

limits either a vector of two-numeric values c(minval, maxval) constituting a two-
sided outlier threshold, or a single numeric value:

single.limit character, controls the behavior if length(limits) == 1:

• "sd"/"mad": limits will be interpreted as a (two-sided) outlier threshold
in terms of (column) standard deviations/median absolute deviations. For
the standard deviation this is equivalent to X[abs(fscale(X)) > limits]
<- value. Since fscale is S3 generic with methods for ’grouped_df’,
’pseries’ and ’pdata.frame’, the standardizing will be grouped if such ob-
jects are passed (i.e. the outlier threshold is then measured in within-group
standard deviations) unless ignore.groups = TRUE. The same holds for
median absolute deviations.

• "min"/"max": limits will be interpreted as a (one-sided) minimum/maximum
threshold. The underlying code is equivalent to X[X </> limits] <- value.

ignore.groups logical. If length(limits) == 1 and single.limit %in% c("sd", "mad") and
X is a ’grouped_df’, ’pseries’ or ’pdata.frame’, TRUE will ignore the grouped na-
ture of the data and calculate outlier thresholds on the entire dataset rather than
within each group.

ignore.case, fixed
logical. Passed to grepl and only applicable if regex = TRUE.

Details

• recode_num and recode_char can be used to efficiently recode multiple numeric or charac-
ter values, respectively. The syntax is inspired by dplyr::recode, but the functionality is
enhanced in the following respects: (1) when passed a data frame / list, all appropriately typed
columns will be recoded. (2) They preserve the attributes of the data object and of columns

194 recode-replace

in a data frame / list, and (3) recode_char also supports regular expression matching using
grepl.

• replace_na efficiently replaces NA/NaN with a value (default is 0). data can be multi-typed, in
which case appropriate columns can be selected through the cols argument. For numeric data
a more versatile alternative is provided by data.table::nafill and data.table::setnafill.

• replace_inf replaces Inf/-Inf (or optionally NaN/Inf/-Inf) with a value (default is NA).
It skips non-numeric columns in a data frame.

• replace_outliers replaces values falling outside a 1- or 2-sided numeric threshold or out-
side a certain number of standard deviations or median absolute deviation with a value (default
is NA). It skips non-numeric columns in a data frame.

Note

These functions are not generic and do not offer support for factors or date(-time) objects. see
dplyr::recode_factor, forcats and other appropriate packages for dealing with these classes.

Simple replacing tasks on a vector can also effectively be handled by, setv / copyv. Fast vec-
torized switches are offered by package kit (functions iif, nif, vswitch, nswitch) as well as
data.table::fcase and data.table::fifelse. Using switches is more efficient than recode_*,
as recode_* creates an internal copy of the object to enable cross-replacing.

Function TRA, and the associated TRA (’transform’) argument to Fast Statistical Functions also has
option "replace_na", to replace missing values with a statistic computed on the non-missing ob-
servations, e.g. fmedian(airquality, TRA = "replace_na") does median imputation.

See Also

pad, Efficient Programming, Collapse Overview

Examples

recode_char(c("a","b","c"), a = "b", b = "c")
recode_char(month.name, ber = NA, regex = TRUE)
mtcr <- recode_num(mtcars, `0` = 2, `4` = Inf, `1` = NaN)
replace_inf(mtcr)
replace_inf(mtcr, replace.nan = TRUE)
replace_outliers(mtcars, c(2, 100)) # Replace all values below 2 and above 100 w. NA
replace_outliers(mtcars, c(2, 100), value = "clip") # Clipping outliers to the thresholds
replace_outliers(mtcars, 2, single.limit = "min") # Replace all value smaller than 2 with NA
replace_outliers(mtcars, 100, single.limit = "max") # Replace all value larger than 100 with NA
replace_outliers(mtcars, 2) # Replace all values above or below 2 column-

standard-deviations from the column-mean w. NA
replace_outliers(fgroup_by(iris, Species), 2) # Passing a grouped_df, pseries or pdata.frame

allows to remove outliers according to
in-group standard-deviation. see ?fscale

rowbind 195

rowbind Row-Bind Lists / Data Frame-Like Objects

Description

collapse’s version of data.table::rbindlist and rbind.data.frame. The core code is copied
from data.table, which deserves all credit for the implementation. rowbind only binds lists/data.frame’s.
For a more flexible recursive version see unlist2d. To combine lists column-wise see add_vars
or ftransform (with replacement).

Usage

rowbind(..., idcol = NULL, row.names = FALSE,
use.names = TRUE, fill = FALSE, id.factor = "auto",
return = c("as.first", "data.frame", "data.table", "tibble", "list"))

Arguments

... a single list of list-like objects (data.frames) or comma separated objects (inter-
nally assembled using list(...)). Names can be supplied if !is.null(idcol).

idcol character. The name of an id-column to be generated identifying the source of
rows in the final object. Using idcol = TRUE will set the name to ".id". If the
input list has names, these will form the content of the id column, otherwise
integers are used. To save memory, it is advised to keep id.factor = TRUE.

row.names TRUE extracts row names from all the objects in l and adds them to the output in
a column named "row.names". Alternatively, a column name i.e. row.names =
"variable" can be supplied.

use.names logical. TRUE binds by matching column name, FALSE by position.

fill logical. TRUE fills missing columns with NAs. When TRUE, use.names is set to
TRUE.

id.factor if TRUE and !isFALSE(idcols), create id column as factor instead of character
or integer vector. It is also possible to specify "ordered" to generate an ordered
factor id. "auto" uses TRUE if !is.null(names(l)) where l is the input list
(because factors are much more memory efficient than character vectors).

return an integer or string specifying what to return. 1 - "as.first" preserves the at-
tributes of the first element of the list, 2/3/4 - "data.frame"/"data.table"/"tibble"
coerces to specific objects, and 5 - "list" returns a (named) list.

Value

a long list or data frame-like object formed by combining the rows / elements of the input objects.
The return argument controls the exact format of the output.

See Also

unlist2d, add_vars, ftransform, Data Frame Manipulation, Collapse Overview

196 roworder

Examples

These are the same
rowbind(mtcars, mtcars)
rowbind(list(mtcars, mtcars))

With id column
rowbind(mtcars, mtcars, idcol = "id")
rowbind(a = mtcars, b = mtcars, idcol = "id")

With saving row-names
rowbind(mtcars, mtcars, row.names = "cars")
rowbind(a = mtcars, b = mtcars, idcol = "id", row.names = "cars")

Filling up columns
rowbind(mtcars, mtcars[2:8], fill = TRUE)

roworder Fast Reordering of Data Frame Rows

Description

A fast substitute for dplyr::arrange, based on radixorder(v) and inspired by data.table::setorder(v).
It returns a sorted copy of the data frame, unless the data is already sorted in which case no copy
is made. In addition, rows can be manually re-ordered. roworderv is a programmers version that
takes vectors/variables as input.

Use data.table::setorder(v) to sort a data frame without creating a copy.

Usage

roworder(X, ..., na.last = TRUE, verbose = .op[["verbose"]])

roworderv(X, cols = NULL, neworder = NULL, decreasing = FALSE,
na.last = TRUE, pos = "front", verbose = .op[["verbose"]])

Arguments

X a data frame or list of equal-length columns.

... comma-separated columns of X to sort by e.g. var1, var2. Negatives i.e.
-var1, var2 can be used to sort in decreasing order of var1. Internally all ex-
pressions are turned into strings and startsWith(expr, "-") is used to detect
this, thus it does not negate the actual values (which may as well be strings), and
you cannot apply any other functions to columns inside roworder() to induce
different sorting behavior.

cols select columns to sort by using a function, column names, indices or a logical
vector. The default NULL sorts by all columns in order of occurrence (from left
to right).

roworder 197

na.last logical. If TRUE, missing values in the sorting columns are placed last; if FALSE,
they are placed first; if NA they are removed (argument passed to radixorderv).

decreasing logical. Should the sort order be increasing or decreasing? Can also be a vec-
tor of length equal to the number of arguments in cols (argument passed to
radixorderv).

neworder an ordering vector, can be < nrow(X). if pos = "front" or pos = "end", a logi-
cal vector can also be supplied. This argument overwrites cols.

pos integer or character. Different arrangement options if !is.null(neworder) &&
length(neworder) < nrow(X).

Int. String Description
1 "front" move rows in neworder to the front (top) of X (the default).
2 "end" move rows in neworder to the end (bottom) of X.
3 "exchange" just exchange the order of rows in neworder, other rows remain in the same position.
4 "after" place all further selected rows behind the first selected row.

verbose logical. 1L (default) prints a message when ordering a grouped or indexed frame,
indicating that this is not efficient and encouraging reordering the data prior to
the grouping/indexing step. Users can also set verbose = 2L to also toggle a
message if x is already sorted, implying that no copy was made and the call to
roworder(v) is redundant.

Value

A copy of X with rows reordered. If X is already sorted, X is simply returned.

Note

If you don’t require a copy of the data, use data.table::setorder (you can also use it in a piped
call as it invisibly returns the data).

roworder(v) has internal facilities to deal with grouped and indexed data. This is however ineffi-
cient (since in most cases data could be reordered before grouping/indexing), and therefore issues a
message if verbose > 0L.

See Also

colorder, Data Frame Manipulation, Fast Grouping and Ordering, Collapse Overview

Examples

head(roworder(airquality, Month, -Ozone))
head(roworder(airquality, Month, -Ozone, na.last = NA)) # Removes the missing values in Ozone

Same in standard evaluation
head(roworderv(airquality, c("Month", "Ozone"), decreasing = c(FALSE, TRUE)))
head(roworderv(airquality, c("Month", "Ozone"), decreasing = c(FALSE, TRUE), na.last = NA))

Custom reordering

198 rsplit

head(roworderv(mtcars, neworder = 3:4)) # Bring rows 3 and 4 to the front
head(roworderv(mtcars, neworder = 3:4, pos = "end")) # Bring them to the end
head(roworderv(mtcars, neworder = mtcars$vs == 1)) # Bring rows with vs == 1 to the top

rsplit Fast (Recursive) Splitting

Description

rsplit (recursively) splits a vector, matrix or data frame into subsets according to combinations of
(multiple) vectors / factors and returns a (nested) list. If flatten = TRUE, the list is flattened yielding
the same result as split. rsplit is implemented as a wrapper around gsplit, and significantly
faster than split.

Usage

rsplit(x, ...)

Default S3 method:
rsplit(x, fl, drop = TRUE, flatten = FALSE, use.names = TRUE, ...)

S3 method for class 'matrix'
rsplit(x, fl, drop = TRUE, flatten = FALSE, use.names = TRUE,

drop.dim = FALSE, ...)

S3 method for class 'data.frame'
rsplit(x, by, drop = TRUE, flatten = FALSE, cols = NULL,

keep.by = FALSE, simplify = TRUE, use.names = TRUE, ...)

Arguments

x a vector, matrix, data.frame or list like object.

fl a GRP object, or a (list of) vector(s) / factor(s) (internally converted to a GRP
object(s)) used to split x.

by data.frame method: Same as fl, but also allows one- or two-sided formulas i.e.
~ group1 or var1 + var2 ~ group1 + group2. See Examples.

drop logical. TRUE removes unused levels or combinations of levels from factors
before splitting; FALSE retains those combinations yielding empty list elements
in the output.

flatten logical. If fl is a list of vectors / factors, TRUE calls GRP on the list, creating a
single grouping used for splitting; FALSE yields recursive splitting.

use.names logical. TRUE returns a named list (like split); FALSE returns a plain list.

drop.dim logical. TRUE returns atomic vectors for matrix-splits consisting of one row.

cols data.frame method: Select columns to split using a function, column names,
indices or a logical vector. Note: cols is ignored if a two-sided formula is
passed to by.

rsplit 199

keep.by logical. If a formula is passed to by, then TRUE preserves the splitting (right-
hand-side) variables in the data frame.

simplify data.frame method: Logical. TRUE calls rsplit.default if a single column is
split e.g. rsplit(data, col1 ~ group1) becomes the same as rsplit(data$col1,
data$group1).

... further arguments passed to GRP. Sensible choices would be sort = FALSE, decreasing
= TRUE or na.last = FALSE. Note that these options only apply if fl is not al-
ready a (list of) factor(s).

Value

a (nested) list containing the subsets of x.

See Also

gsplit, rapply2d, unlist2d, List Processing, Collapse Overview

Examples

rsplit(mtcars$mpg, mtcars$cyl)
rsplit(mtcars, mtcars$cyl)

rsplit(mtcars, mtcars[.c(cyl, vs, am)])
rsplit(mtcars, ~ cyl + vs + am, keep.by = TRUE) # Same thing
rsplit(mtcars, ~ cyl + vs + am)

rsplit(mtcars, ~ cyl + vs + am, flatten = TRUE)

rsplit(mtcars, mpg ~ cyl)
rsplit(mtcars, mpg ~ cyl, simplify = FALSE)
rsplit(mtcars, mpg + hp ~ cyl + vs + am)
rsplit(mtcars, mpg + hp ~ cyl + vs + am, keep.by = TRUE)

Split this sectoral data, first by Variable (Emloyment and Value Added), then by Country
GGDCspl <- rsplit(GGDC10S, ~ Variable + Country, cols = 6:16)
str(GGDCspl)

The nested list can be reassembled using unlist2d()
head(unlist2d(GGDCspl, idcols = .c(Variable, Country)))
rm(GGDCspl)

Another example with mtcars (not as clean because of row.names)
nl <- rsplit(mtcars, mpg + hp ~ cyl + vs + am)
str(nl)
unlist2d(nl, idcols = .c(cyl, vs, am), row.names = "car")
rm(nl)

200 seqid

seqid Generate Group-Id from Integer Sequences

Description

seqid can be used to group sequences of integers in a vector, e.g. seqid(c(1:3, 5:7)) becomes
c(rep(1,3), rep(2,3)). It also supports increments > 1, unordered sequences, and missing values
in the sequence.

Some applications are to facilitate identification of, and grouped operations on, (irregular) time
series and panels.

Usage

seqid(x, o = NULL, del = 1L, start = 1L, na.skip = FALSE,
skip.seq = FALSE, check.o = TRUE)

Arguments

x a factor or integer vector. Numeric vectors will be converted to integer i.e.
rounded downwards.

o an (optional) integer ordering vector specifying the order by which to pass
through x.

del integer. The integer deliminating two consecutive points in a sequence. del = 1
lets seqid track sequences of the form c(1,2,3,..), del = 2 tracks sequences
c(1,3,5,..) etc.

start integer. The starting value of the resulting sequence id. Default is starting from
1.

na.skip logical. TRUE skips missing values in the sequence. The default behavior is
skipping such that seqid(c(1, NA, 2)) is regarded as one sequence and coded
as c(1, NA, 1).

skip.seq logical. If na.skip = TRUE, this changes the behavior such that missing values
are viewed as part of the sequence, i.e. seqid(c(1, NA, 3)) is regarded as one
sequence and coded as c(1, NA, 1).

check.o logical. Programmers option: FALSE prevents checking that each element of o
is in the range [1, length(x)], it only checks the length of o. This gives some
extra speed, but will terminate R if any element of o is too large or too small.

Details

seqid was created primarily as a workaround to deal with problems of computing lagged values,
differences and growth rates on irregularly spaced time series and panels before collapse version
1.5.0 (#26). Now flag, fdiff and fgrowth natively support irregular data so this workaround is
superfluous, except for iterated differencing which is not yet supported with irregular data.

https://github.com/SebKrantz/collapse/issues/26

seqid 201

The theory of the workaround was to express an irregular time series or panel series as a regular
panel series with a group-id created such that the time-periods within each group are consecu-
tive. seqid makes this very easy: For an irregular panel with some gaps or repeated values in
the time variable, an appropriate id variable can be generated using settransform(data, newid =
seqid(time, radixorder(id, time))). Lags can then be computed using L(data, 1, ~newid,
~time) etc.

In general, for any regularly spaced panel the identity given by identical(groupid(id, order(id,
time)), seqid(time, order(id, time))) should hold.

For the opposite operation of creating a new time-variable that is consecutive in each group, see
data.table::rowid.

Value

An integer vector of class ’qG’. See qG.

See Also

timeid, groupid, qG, Fast Grouping and Ordering, Collapse Overview

Examples

This creates an irregularly spaced panel, with a gap in time for id = 2
data <- data.frame(id = rep(1:3, each = 4),

time = c(1:4, 1:2, 4:5, 1:4),
value = rnorm(12))

data

This gave a gaps in time error previous to collapse 1.5.0
L(data, 1, value ~ id, ~time)

Generating new id variable (here seqid(time) would suffice as data is sorted)
settransform(data, newid = seqid(time, order(id, time)))
data

Lag the panel this way
L(data, 1, value ~ newid, ~time)

A different possibility: Creating a consecutive time variable
settransform(data, newtime = data.table::rowid(id))
data
L(data, 1, value ~ id, ~newtime)

With sorted data, the time variable can also just be omitted..
L(data, 1, value ~ id)

202 small-helpers

small-helpers Small (Helper) Functions

Description

Convenience functions in the collapse package that help to deal with object attributes such as vari-
able names and labels, object checking, metaprogramming, and that improve the workflow.

Usage

.c(...) # Non-standard concatenation i.e. .c(a, b) == c("a", "b")
nam %=% values # Multiple-assignment e.g. .c(x, y) %=% c(1, 2),
massign(nam, values, # can also assign to different environment.

envir = parent.frame())
vlabels(X, attrn = "label", # Get labels of variables in X, in attr(X[[i]], attrn)

use.names = TRUE)
vlabels(X, attrn = "label") <- value # Set labels of variables in X (by reference)
setLabels(X, value = NULL, # Set labels of variables in X (by reference) and return X

attrn = "label", cols = NULL)
vclasses(X, use.names = TRUE) # Get classes of variables in X
namlab(X, class = FALSE, # Return data frame of names and labels,
attrn = "label", N = FALSE, # and (optionally) classes, number of observations
Ndistinct = FALSE) # and number of non-missing distinct values

add_stub(X, stub, pre = TRUE, # Add a stub (i.e. prefix or postfix) to column names
cols = NULL)

rm_stub(X, stub, pre = TRUE, # Remove stub from column names, also supports general
regex = FALSE, # regex matching and removing of characters
cols = NULL, ...)

all_identical(...) # Check exact equality of multiple objects or list-elements
all_obj_equal(...) # Check near equality of multiple objects or list-elements
all_funs(expr) # Find all functions called in an R language expression
setRownames(object, # Set rownames of object and return object

nm = if(is.atomic(object)) seq_row(object) else NULL)
setColnames(object, nm) # Set colnames of object and return object
setDimnames(object, dn, # Set dimension names of object and return object

which = NULL)
unattrib(object) # Remove all attributes from object
setAttrib(object, a) # Replace all attributes with list of attributes 'a'
setattrib(object, a) # Same thing by reference, returning object invisibly
copyAttrib(to, from) # Copy all attributes from object 'from' to object 'to'
copyMostAttrib(to, from) # Copy most attributes from object 'from' to object 'to'
is_categorical(x) # The opposite of is.numeric
is_date(x) # Check if object is of class "Date", "POSIXlt" or "POSIXct"

small-helpers 203

Arguments

X a matrix or data frame (some functions also support vectors and arrays although
that is less common).

x a (atomic) vector.

expr an expression of type "language" e.g. quote(x / sum(x)).

object, to, from a suitable R object.

a a suitable list of attributes.

attrn character. Name of attribute to store labels or retrieve labels from.

N, Ndistinct logical. Options to display the number of observations or number of distinct
non-missing values.

value for whichv and alloc: a single value of any vector type. For vlabels<- and
setLabels: a matching character vector or list of variable labels.

use.names logical. Preserve names if X is a list.

cols integer. (optional) indices of columns to apply the operation to. Note that for
these small functions this needs to be integer, whereas for other functions in the
package this argument is more flexible.

class logical. Also show the classes of variables in X in a column?

stub a single character stub, i.e. "log.", which by default will be pre-applied to all
variables or column names in X.

pre logical. FALSE will post-apply stub.

regex logical. Match pattern anywhere in names using a regular expression and re-
move it with gsub.

nm a suitable vector of row- or column-names.

dn a suitable vector or list of names for dimension(s).

which integer. If NULL, dn has to be a list fully specifying the dimension names of
the object. Alternatively, a vector or list of names for dimensions which can be
supplied. See Examples.

nam character. A vector of object names.

values a matching atomic vector or list of objects.

envir the environment to assign into.

... for .c: Comma-separated expressions. For all_identical / all_obj_equal:
Either multiple comma-separated objects or a single list of objects in which all
elements will be checked for exact / numeric equality. For rm_stub: further
arguments passed to gsub.

Details

all_funs is the opposite of all.vars, to return the functions called rather than the variables in an
expression. See Examples.

copyAttrib and copyMostAttrib take a shallow copy of the attribute list, i.e. they don’t duplicate
in memory the attributes themselves. They also, along with setAttrib, take a shallow copy of lists
passed to the to argument, so that lists are not modified by reference. Atomic to arguments are

204 small-helpers

however modified by reference. The function setattrib, added in v1.8.9, modifies the object by
reference i.e. no shallow copies are taken.

copyMostAttrib copies all attributes except for "names", "dim" and "dimnames" (like the cor-
responding C-API function), and further only copies the "row.names" attribute of data frames if
known to be valid. Thus it is a suitable choice if objects should be of the same type but are not of
equal dimensions.

See Also

Efficient Programming, Collapse Overview

Examples

Non-standard concatenation
.c(a, b, "c d", e == f)

Multiple assignment
.c(a, b) %=% list(1, 2)
.c(T, N) %=% dim(EuStockMarkets)
names(iris) %=% iris
list2env(iris) # Same thing
rm(list = c("a", "b", "T", "N", names(iris)))

Variable labels
namlab(wlddev)
namlab(wlddev, class = TRUE, N = TRUE, Ndistinct = TRUE)
vlabels(wlddev)
vlabels(wlddev) <- vlabels(wlddev)

Stub-renaming
log_mtc <- add_stub(log(mtcars), "log.")
head(log_mtc)
head(rm_stub(log_mtc, "log."))
rm(log_mtc)

Setting dimension names of an object
head(setRownames(mtcars))
ar <- array(1:9, c(3,3,3))
setRownames(ar)
setColnames(ar, c("a","b","c"))
setDimnames(ar, c("a","b","c"), which = 3)
setDimnames(ar, list(c("d","e","f"), c("a","b","c")), which = 2:3)
setDimnames(ar, list(c("g","h","i"), c("d","e","f"), c("a","b","c")))

Checking exact equality of multiple objects
all_identical(iris, iris, iris, iris)
l <- replicate(100, fmean(num_vars(iris), iris$Species), simplify = FALSE)
all_identical(l)
rm(l)

Function names from expressions
ex = quote(sum(x) + mean(y) / z)

summary-statistics 205

all.names(ex)
all.vars(ex)
all_funs(ex)
rm(ex)

summary-statistics Summary Statistics

Description

collapse provides the following functions to efficiently summarize and examine data:

• qsu, shorthand for quick-summary, is an extremely fast summary command inspired by the
(xt)summarize command in the STATA statistical software. It computes a set of 7 statis-
tics (nobs, mean, sd, min, max, skewness and kurtosis) using a numerically stable one-pass
method. Statistics can be computed weighted, by groups, and also within-and between entities
(for multilevel / panel data).

• qtab, shorthand for quick-table, is a faster and more versatile alternative to table. Notably,
it also supports tabulations with frequency weights, as well as computing a statistic over com-
binations of variables. ’qtab’s inherit the ’table’ class, allowing for seamless application of
’table’ methods.

• descr computes a concise and detailed description of a data frame, including (sorted) fre-
quency tables for categorical variables and various statistics and quantiles for numeric vari-
ables. It is inspired by Hmisc::describe, but about 10x faster.

• pwcor, pwcov and pwnobs compute (weighted) pairwise correlations, covariances and ob-
servation counts on matrices and data frames. Pairwise correlations and covariances can be
computed together with observation counts and p-values. The elaborate print method displays
all of these statistics in a single correlation table.

• varying very efficiently checks for the presence of any variation in data (optionally) within
groups (such as panel-identifiers). A variable is variant if it has at least 2 distinct non-missing
data points.

Table of Functions

Function / S3 Generic Methods Description
qsu default, matrix, data.frame, grouped_df, pseries, pdata.frame, sf Fast (grouped, weighted, panel-decomposed) summary statistics
qtab No methods, for data frames or vectors Fast (weighted) cross tabulation
descr default, grouped_df (default method handles most objects) Detailed statistical description of data frame
pwcor No methods, for matrices or data frames Pairwise (weighted) correlations
pwcov No methods, for matrices or data frames Pairwise (weighted) covariances
pwnobs No methods, for matrices or data frames Pairwise observation counts
varying default, matrix, data.frame, pseries, pdata.frame, grouped_df Fast variation check

206 time-series-panel-series

See Also

Collapse Overview, Fast Statistical Functions

time-series-panel-series

Time Series and Panel Series

Description

collapse provides a flexible and powerful set of functions and classes to work with time-dependent
data:

• findex_by/iby creates an ’indexed_frame’: a flexible structure that can be imposed upon any
data-frame like object and facilitates indexed (time-aware) computations on time series and
panel data. Indexed frames are composed of ’indexed_series’, which can also be created from
vector and matrix-based objects using the reindex function. Further functions findex/ix,
unindex, is_irregular and to_plm help operate these classes, check for irregularity, and
ensure plm compatibility. Methods are defined for various time series, data transformation
and data manipulation functions in collapse.

• timeid efficiently converts numeric time sequences, such as ’Date’ or ’POSIXct’ vectors, to
a time-factor / integer id, where a unit-step represents the greatest common divisor of the
underlying sequence.

• flag, and the lag- and lead- operators L and F are S3 generics to efficiently compute sequences
of lags and leads on regular or irregular / unbalanced time series and panel data.

• Similarly, fdiff, fgrowth, and the operators D, Dlog and G are S3 generics to efficiently
compute sequences of suitably lagged / leaded and iterated differences, log-differences and
growth rates. fdiff/D/Dlog can also compute quasi-differences of the form xt − ρxt−1.

• fcumsum is an S3 generic to efficiently compute cumulative sums on time series and panel
data. In contrast to cumsum, it can handle missing values and supports both grouped and
indexed / ordered computations.

• psmat is an S3 generic to efficiently convert panel-vectors / ’indexed_series’ and data frames
/ ’indexed_frame’s to panel series matrices and 3D arrays, respectively (where time, indi-
viduals and variables receive different dimensions, allowing for fast indexation, visualization,
and computations).

• psacf, pspacf and psccf are S3 generics to compute estimates of the auto-, partial auto-
and cross- correlation or covariance functions for panel-vectors / ’indexed_series’, and
multivariate versions for data frames / ’indexed_frame’s.

Table of Functions

S3 Generic Methods Description
findex_by/iby, findex/ix, reindex, unindex, is_irregular, to_plm For vectors, matrices and data frames / lists. Fast and flexible time series and panel data classes ’indexed_series’ and ’indexed_frame’.
timeid For time sequences represented by integer or double vectors / objects. Generate integer time-id/factor
flag/L/F default, matrix, data.frame, pseries, pdata.frame, grouped_df Compute (sequences of) lags and leads

timeid 207

fdiff/D/Dlog default, matrix, data.frame, pseries, pdata.frame, grouped_df Compute (sequences of lagged / leaded and iterated) (quasi-)differences or log-differences
fgrowth/G default, matrix, data.frame, pseries, pdata.frame, grouped_df Compute (sequences of lagged / leaded and iterated) growth rates (exact, via log-differencing, or compounded)
fcumsum default, matrix, data.frame, pseries, pdata.frame, grouped_df Compute cumulative sums
psmat default, pseries, data.frame, pdata.frame Convert panel data to matrix / array
psacf default, pseries, data.frame, pdata.frame Compute ACF on panel data
pspacf default, pseries, data.frame, pdata.frame Compute PACF on panel data
psccf default, pseries, data.frame, pdata.frame Compute CCF on panel data

See Also

Collapse Overview, Data Transformations

timeid Generate Integer-Id From Time/Date Sequences

Description

timeid groups time vectors in a way that preserves the temporal structure. It generate an integer id
where unit steps represent the greatest common divisor in the original sequence e.g c(4, 6, 10) ->
c(1, 2, 4) or c(0.25, 0.75, 1) -> c(1, 3, 4).

Usage

timeid(x, factor = FALSE, ordered = factor, extra = FALSE)

Arguments

x a numeric time object such as a Date, POSIXct or other integer or double vector
representing time.

factor logical. TRUE returns an (ordered) factor with levels corresponding to the full
sequence (without irregular gaps) of time. This is useful for inclusion in the
index but might be computationally expensive for long sequences, see Details.
FALSE returns a simpler object of class ’qG’.

ordered logical. TRUE adds a class ’ordered’.

extra logical. TRUE attaches a set of 4 diagnostic items as attributes to the result:

• "unique_ints": unique(unattrib(timeid(x))) - the unique integer time
steps in first-appearance order. This can be useful to check the size of gaps
in the sequence.

• "sort_unique_x": sort(unique(x)).
• "range_x": range(x).
• "step_x": vgcd(sort(unique(diff(sort(unique(x)))))) - the great-

est common divisor.

Note that returning these attributes does not incur additional computations.

208 TRA

Details

Let range_x and step_x be the like-named attributes returned when extra = TRUE, then, if factor
= TRUE, a complete sequence of levels is generated as seq(range_x[1], range_x[2], by = step_x)
|> copyMostAttrib(x) |> as.character(). If factor = FALSE, the number of timesteps recorded
in the "N.groups" attribute is computed as (range_x[2]-range_x[1])/step_x + 1, which is
equal to the number of factor levels. In both cases the underlying integer id is the same and preserves
gaps in time. Large gaps (strong irregularity) can result in many unused factor levels, the generation
of which can become expensive. Using factor = FALSE (the default) is thus more efficient.

Value

A factor or ’qG’ object, optionally with additional attributes attached.

See Also

seqid, Indexing, Time Series and Panel Series, Collapse Overview

Examples

oldopts <- options(max.print = 30)

A normal use case
timeid(wlddev$decade)
timeid(wlddev$decade, factor = TRUE)
timeid(wlddev$decade, extra = TRUE)

Here a large number of levels is generated, which is expensive
timeid(wlddev$date, factor = TRUE)
tid <- timeid(wlddev$date, extra = TRUE) # Much faster
str(tid)

The reason for step = 1 are leap years with 366 days every 4 years
diff(attr(tid, "unique"))

So in this case simple factor generation gives a better result
qF(wlddev$date, ordered = TRUE, na.exclude = FALSE)

The best way to deal with this data would be to convert it
to zoo::yearmon and then use timeid:
timeid(zoo::as.yearmon(wlddev$date), factor = TRUE, extra = TRUE)

options(oldopts)
rm(oldopts, tid)

TRA Transform Data by (Grouped) Replacing or Sweeping out Statistics

TRA 209

Description

TRA is an S3 generic that efficiently transforms data by either (column-wise) replacing data values
with supplied statistics or sweeping the statistics out of the data. TRA supports grouped operations
and data transformation by reference, and is thus a generalization of sweep.

Usage

TRA(x, STATS, FUN = "-", ...)
setTRA(x, STATS, FUN = "-", ...) # Shorthand for invisible(TRA(..., set = TRUE))

Default S3 method:
TRA(x, STATS, FUN = "-", g = NULL, set = FALSE, ...)

S3 method for class 'matrix'
TRA(x, STATS, FUN = "-", g = NULL, set = FALSE, ...)

S3 method for class 'data.frame'
TRA(x, STATS, FUN = "-", g = NULL, set = FALSE, ...)

S3 method for class 'grouped_df'
TRA(x, STATS, FUN = "-", keep.group_vars = TRUE, set = FALSE, ...)

Arguments

x a atomic vector, matrix, data frame or grouped data frame (class ’grouped_df’).

STATS a matching set of summary statistics. See Details and Examples.

FUN an integer or character string indicating the operation to perform. There are 11
supported operations:

Int. String Description
0 "na" or "replace_na" replace missing values in x
1 "fill" or "replace_fill" replace data and missing values in x
2 "replace" replace data but preserve missing values in x
3 "-" subtract (i.e. center)
4 "-+" subtract group-statistics but add group-frequency weighted average of group statistics (i.e. center on overall average statistic)
5 "/" divide (i.e. scale. For mean-preserving scaling see also fscale)
6 "%" compute percentages (i.e. divide and multiply by 100)
7 "+" add
8 "*" multiply
9 "%%" modulus (i.e. remainder from division by STATS)
10 "-%%" subtract modulus (i.e. make data divisible by STATS)

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x. Number
of groups must match rows of STATS. See Details.

set logical. TRUE transforms data by reference i.e. performs in-place modification
of the data without creating a copy.

210 TRA

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion. See Details and Examples.

... arguments to be passed to or from other methods.

Details

Without groups (g = NULL), TRA is little more than a column based version of sweep, albeit many
times more efficient. In this case all methods support an atomic vector of statistics of length NCOL(x)
passed to STATS. The matrix and data frame methods also support a 1-row matrix or 1-row data
frame / list, respectively. TRA always preserves all attributes of x.

With groups passed to g, STATS needs to be of the same type as x and of appropriate dimensions
[such that NCOL(x) == NCOL(STATS) and NROW(STATS) equals the number of groups (i.e. the num-
ber of levels if g is a factor)]. If this condition is satisfied, TRA will assume that the first row of
STATS is the set of statistics computed on the first group/level of g, the second row on the second
group/level etc. and do groupwise replacing or sweeping out accordingly.

For example Let x = c(1.2, 4.6, 2.5, 9.1, 8.7, 3.3), g is an integer vector in 3 groups g =
c(1,3,3,2,1,2) and STATS = fmean(x,g) = c(4.95, 6.20, 3.55). Then out = TRA(x,STATS,"-",g)
= c(-3.75, 1.05, -1.05, 2.90, 3.75, -2.90) [same as fmean(x, g, TRA = "-")] does the equiv-
alent of the following for-loop: for(i in 1:6) out[i] = x[i] - STATS[g[i]].

Correct computation requires that g as used in fmean and g passed to TRA are exactly the same
vector. Using g = c(1,3,3,2,1,2) for fmean and g = c(3,1,1,2,3,2) for TRA will not give the
right result. The safest way of programming with TRA is thus to repeatedly employ the same factor
or GRP object for all grouped computations. Atomic vectors passed to g will be converted to factors
(see qF) and lists will be converted to GRP objects. This is also done by all Fast Statistical Functions
and BY, thus together with these functions, TRA can also safely be used with atomic- or list-groups
(as long as all functions apply sorted grouping, which is the default in collapse).

If x is a grouped data frame (’grouped_df’), TRA matches the columns of x and STATS and also
checks for grouping columns in x and STATS. TRA.grouped_df will then only transform those
columns in x for which matching counterparts were found in STATS (exempting grouping columns)
and return x again (with columns in the same order). If keep.group_vars = FALSE, the grouping
columns are dropped after computation, however the "groups" attribute is not dropped (it can be
removed using fungroup() or dplyr::ungroup()).

Value

x with columns replaced or swept out using STATS, (optionally) grouped by g.

Note

In most cases there is no need to call the TRA() function, because of the TRA-argument to all Fast
Statistical Functions (ensuring that the exact same grouping vector is used for computing statis-
tics and subsequent transformation). In addition the functions fbetween/B and fwithin/W and
fscale/STD provide optimized solutions for frequent scaling, centering and averaging tasks.

See Also

sweep, Fast Statistical Functions, Data Transformations, Collapse Overview

t_list 211

Examples

v <- iris$Sepal.Length # A numeric vector
f <- iris$Species # A factor
dat <- num_vars(iris) # Numeric columns
m <- qM(dat) # Matrix of numeric data

head(TRA(v, fmean(v))) # Simple centering [same as fmean(v, TRA = "-") or W(v)]
head(TRA(m, fmean(m))) # [same as sweep(m, 2, fmean(m)), fmean(m, TRA = "-") or W(m)]
head(TRA(dat, fmean(dat))) # [same as fmean(dat, TRA = "-") or W(dat)]
head(TRA(v, fmean(v), "replace")) # Simple replacing [same as fmean(v, TRA = "replace") or B(v)]
head(TRA(m, fmean(m), "replace")) # [same as sweep(m, 2, fmean(m)), fmean(m, TRA = 1L) or B(m)]
head(TRA(dat, fmean(dat), "replace")) # [same as fmean(dat, TRA = "replace") or B(dat)]
head(TRA(m, fsd(m), "/")) # Simple scaling... [same as fsd(m, TRA = "/")]...

Note: All grouped examples also apply for v and dat...
head(TRA(m, fmean(m, f), "-", f)) # Centering [same as fmean(m, f, TRA = "-") or W(m, f)]
head(TRA(m, fmean(m, f), "replace", f)) # Replacing [same fmean(m, f, TRA = "replace") or B(m, f)]
head(TRA(m, fsd(m, f), "/", f)) # Scaling [same as fsd(m, f, TRA = "/")]

head(TRA(m, fmean(m, f), "-+", f)) # Centering on the overall mean ...
[same as fmean(m, f, TRA = "-+") or
W(m, f, mean = "overall.mean")]

head(TRA(TRA(m, fmean(m, f), "-", f), # Also the same thing done manually !!
fmean(m), "+"))

Grouped data method
library(magrittr)
iris %>% fgroup_by(Species) %>% TRA(fmean(.))
iris %>% fgroup_by(Species) %>% fmean(TRA = "-") # Same thing
iris %>% fgroup_by(Species) %>% TRA(fmean(.)[c(2,4)]) # Only transforming 2 columns
iris %>% fgroup_by(Species) %>% TRA(fmean(.)[c(2,4)], # Dropping species column

keep.group_vars = FALSE)

t_list Efficient List Transpose

Description

t_list turns a list of lists inside-out. The performance is quite efficient regardless of the size of the
list.

Usage

t_list(l)

Arguments

l a list of lists. Elements inside the sublists can be heterogeneous, including fur-
ther lists.

212 unlist2d

Value

l transposed such that the second layer of the list becomes the top layer and the top layer the second
layer. See Examples.

Note

To transpose a data frame / list of atomic vectors see data.table::transpose().

See Also

rsplit, List Processing, Collapse Overview

Examples

Homogenous list of lists
l <- list(a = list(c = 1, d = 2), b = list(c = 3, d = 4))
str(l)
str(t_list(l))

Heterogenous case
l2 <- list(a = list(c = 1, d = letters), b = list(c = 3:10, d = list(4, e = 5)))
attr(l2, "bla") <- "abc" # Attributes other than names are preserved
str(l2)
str(t_list(l2))

rm(l, l2)

unlist2d Recursive Row-Binding / Unlisting in 2D - to Data Frame

Description

unlist2d efficiently unlists lists of regular R objects (objects built up from atomic elements) and
creates a data frame representation of the list through recursive flattening and intelligent row-
binding operations. It is a full 2-dimensional generalization of unlist, and best understood as
a recursive generalization of do.call(rbind, ...).

It is a powerful tool to create a tidy data frame representation from (nested) lists of vectors, data
frames, matrices, arrays or heterogeneous objects. For simple row-wise combining lists/data.frame’s
use the non-recursive rowbind function.

Usage

unlist2d(l, idcols = ".id", row.names = FALSE, recursive = TRUE,
id.factor = FALSE, DT = FALSE)

unlist2d 213

Arguments

l a unlistable list (with atomic elements in all final nodes, see is_unlistable).

idcols a character stub or a vector of names for id-columns automatically added - one
for each level of nesting in l. By default the stub is ".id", so columns will
be of the form ".id.1", ".id.2", etc... . if idcols = TRUE, the stub is also
set to ".id". If idcols = FALSE, id-columns are omitted. The content of the id
columns are the list names, or (if missing) integers for the list elements. Missing
elements in asymmetric nested structures are filled up with NA. See Examples.

row.names TRUE extracts row names from all the objects in l (where available) and adds
them to the output in a column named "row.names". Alternatively, a column
name i.e. row.names = "variable" can be supplied. For plain matrices in l,
integer row names are generated.

recursive logical. if FALSE, only process the lowest (deepest) level of l. See Details.

id.factor if TRUE and !isFALSE(idcols), create id columns as factors instead of char-
acter or integer vectors. Alternatively it is possible to specify id.factor =
"ordered" to generate ordered factor id’s. This is strongly recommended
when binding lists of larger data frames, as factors are much more memory ef-
ficient than character vectors and also speed up subsequent grouping operations
on these columns.

DT logical. TRUE returns a data.table, not a data.frame.

Details

The data frame representation created by unlist2d is built as follows:

• Recurse down to the lowest level of the list-tree, data frames are exempted and treated as a
final (atomic) elements.

• Identify the objects, if they are vectors, matrices or arrays convert them to data frame (in the
case of atomic vectors each element becomes a column).

• Row-bind these data frames using data.table’s rbindlist function. Columns are matched by
name. If the number of columns differ, fill empty spaces with NA’s. If !isFALSE(idcols),
create id-columns on the left, filled with the object names or indices (if the (sub-)list is un-
named). If !isFALSE(row.names), store rownames of the objects (if available) in a separate
column.

• Move up to the next higher level of the list-tree and repeat: Convert atomic objects to data
frame and row-bind while matching all columns and filling unmatched ones with NA’s. Create
another id-column for each level of nesting passed through. If the list-tree is asymmetric, fill
empty spaces in lower-level id columns with NA’s.

The result of this iterative procedure is a single data frame containing on the left side id-columns for
each level of nesting (from higher to lower level), followed by a column containing all the rownames
of the objects (if !isFALSE(row.names)), followed by the data columns, matched at each level of
recursion. Optimal results are obtained with symmetric lists of arrays, matrices or data frames,
which unlist2d efficiently binds into a beautiful data frame ready for plotting or further analysis.
See examples below.

214 unlist2d

Value

A data frame or (if DT = TRUE) a data.table.

Note

For lists of data frames unlist2d works just like data.table::rbindlist(l, use.names = TRUE,
fill = TRUE, idcol = ".id") however for lists of lists unlist2d does not produce the same output
as data.table::rbindlist because unlist2d is a recursive function. You can use rowbind as a
faithful alternative to data.table::rbindlist.

The function rrapply::rrapply(l, how = "melt"|"bind") is a fast alternative (written fully in
C) for nested lists of atomic elements.

See Also

rowbind, rsplit, rapply2d, List Processing, Collapse Overview

Examples

Basic Examples:
l <- list(mtcars, list(mtcars, mtcars))
tail(unlist2d(l))
unlist2d(rapply2d(l, fmean))
l = list(a = qM(mtcars[1:8]),

b = list(c = mtcars[4:11], d = list(e = mtcars[2:10], f = mtcars)))
tail(unlist2d(l, row.names = TRUE))
unlist2d(rapply2d(l, fmean))
unlist2d(rapply2d(l, fmean), recursive = FALSE)

Groningen Growth and Development Center 10-Sector Database
head(GGDC10S) # See ?GGDC10S
namlab(GGDC10S, class = TRUE)

Panel-Summarize this data by Variable (Emloyment and Value Added)
l <- qsu(GGDC10S, by = ~ Variable, # Output as list (instead of 4D array)

pid = ~ Variable + Country,
cols = 6:16, array = FALSE)

str(l, give.attr = FALSE) # A list of 2-levels with matrices of statistics
head(unlist2d(l)) # Default output, missing the variables (row-names)
head(unlist2d(l, row.names = TRUE)) # Here we go, but this is still not very nice
head(unlist2d(l, idcols = c("Sector","Trans"), # Now this is looking pretty good

row.names = "Variable"))

dat <- unlist2d(l, c("Sector","Trans"), # Id-columns can also be generated as factors
"Variable", id.factor = TRUE)

str(dat)

Split this sectoral data, first by Variable (Emloyment and Value Added), then by Country
sdat <- rsplit(GGDC10S, ~ Variable + Country, cols = 6:16)

Compute pairwise correlations between sectors and recombine:
dat <- unlist2d(rapply2d(sdat, pwcor),

varying 215

idcols = c("Variable","Country"),
row.names = "Sector")

head(dat)
plot(hclust(as.dist(1-pwcor(dat[-(1:3)])))) # Using corrs. as distance metric to cluster sectors

List of panel-series matrices
psml <- psmat(fsubset(GGDC10S, Variable == "VA"), ~Country, ~Year, cols = 6:16, array = FALSE)

Recombining with unlist2d() (effectively like reshapig the data)
head(unlist2d(psml, idcols = "Sector", row.names = "Country"))

rm(l, dat, sdat, psml)

varying Fast Check of Variation in Data

Description

varying is a generic function that (column-wise) checks for variation in the values of x, (optionally)
within the groups g (e.g. a panel-identifier).

Usage

varying(x, ...)

Default S3 method:
varying(x, g = NULL, any_group = TRUE, use.g.names = TRUE, ...)

S3 method for class 'matrix'
varying(x, g = NULL, any_group = TRUE, use.g.names = TRUE, drop = TRUE, ...)

S3 method for class 'data.frame'
varying(x, by = NULL, cols = NULL, any_group = TRUE, use.g.names = TRUE, drop = TRUE, ...)

Methods for indexed data / compatibility with plm:

S3 method for class 'pseries'
varying(x, effect = 1L, any_group = TRUE, use.g.names = TRUE, ...)

S3 method for class 'pdata.frame'
varying(x, effect = 1L, cols = NULL, any_group = TRUE, use.g.names = TRUE,

drop = TRUE, ...)

Methods for grouped data frame / compatibility with dplyr:

S3 method for class 'grouped_df'
varying(x, any_group = TRUE, use.g.names = FALSE, drop = TRUE,

keep.group_vars = TRUE, ...)

216 varying

Methods for grouped data frame / compatibility with sf:

S3 method for class 'sf'
varying(x, by = NULL, cols = NULL, any_group = TRUE, use.g.names = TRUE, drop = TRUE, ...)

Arguments

x a vector, matrix, data frame, ’indexed_series’ (’pseries’), ’indexed_frame’ (’pdata.frame’)
or grouped data frame (’grouped_df’). Data must not be numeric.

g a factor, GRP object, atomic vector (internally converted to factor) or a list of
vectors / factors (internally converted to a GRP object) used to group x.

by same as g, but also allows one- or two-sided formulas i.e. ~ group1 + group2 or
var1 + var2 ~ group1 + group2. See Examples

any_group logical. If !is.null(g), FALSE will check and report variation in all groups,
whereas the default TRUE only checks if there is variation within any group. See
Examples.

cols select columns using column names, indices or a function (e.g. is.numeric).
Two-sided formulas passed to by overwrite cols.

use.g.names logical. Make group-names and add to the result as names (default method) or
row-names (matrix and data frame methods). No row-names are generated for
data.table’s.

drop matrix and data.frame methods: Logical. TRUE drops dimensions and returns an
atomic vector if the result is 1-dimensional.

effect plm methods: Select the panel identifier by which variation in the data should
be examined. 1L takes the first variable in the index, 2L the second etc.. Index
variables can also be called by name. More than one index variable can be
supplied, which will be interacted.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computa-
tion.

... arguments to be passed to or from other methods.

Details

Without groups passed to g, varying simply checks if there is any variation in the columns of x
and returns TRUE for each column where this is the case and FALSE otherwise. A set of data points
is defined as varying if it contains at least 2 distinct non-missing values (such that a non-0 standard
deviation can be computed on numeric data). varying checks for variation in both numeric and
non-numeric data.

If groups are supplied to g (or alternatively a grouped_df to x), varying can operate in one of 2
modes:

wlddev 217

• If any_group = TRUE (the default), varying checks each column for variation in any of the
groups defined by g, and returns TRUE if such within-variation was detected and FALSE other-
wise. Thus only one logical value is returned for each column and the computation on each
column is terminated as soon as any variation within any group was found.

• If any_group = FALSE, varying runs through the entire data checking each group for variation
and returns, for each column in x, a logical vector reporting the variation check for all groups.
If a group contains only missing values, a NA is returned for that group.

The sf method simply ignores the geometry column.

Value

A logical vector or (if !is.null(g) and any_group = FALSE), a matrix or data frame of logical
vectors indicating whether the data vary (over the dimension supplied by g).

See Also

Summary Statistics, Data Transformations, Collapse Overview

Examples

Checks overall variation in all columns
varying(wlddev)

Checks whether data are time-variant i.e. vary within country
varying(wlddev, ~ country)

Same as above but done for each country individually, countries without data are coded NA
head(varying(wlddev, ~ country, any_group = FALSE))

wlddev World Development Dataset

Description

This dataset contains 5 indicators from the World Bank’s World Development Indicators (WDI)
database: (1) GDP per capita, (2) Life expectancy at birth, (3) GINI index, (4) Net ODA and official
aid received and (5) Population. The panel data is balanced and covers 216 present and historic
countries from 1960-2020 (World Bank aggregates and regional entities are excluded).

Apart from the indicators the data contains a number of identifiers (character country name, factor
ISO3 country code, World Bank region and income level, numeric year and decade) and 2 generated
variables: A logical variable indicating whether the country is an OECD member, and a fictitious
variable stating the date the data was recorded. These variables were added so that all common data-
types are represented in this dataset, making it an ideal test-dataset for certain collapse functions.

Usage

data("wlddev")

218 wlddev

Format

A data frame with 13176 observations on the following 13 variables. All variables are labeled e.g.
have a ’label’ attribute.

country chr Country Name

iso3c fct Country Code

date date Date Recorded (Fictitious)

year int Year

decade int Decade

region fct World Bank Region

income fct World Bank Income Level

OECD log Is OECD Member Country?

PCGDP num GDP per capita (constant 2010 US$)

LIFEEX num Life expectancy at birth, total (years)

GINI num GINI index (World Bank estimate)

ODA num Net official development assistance and official aid received (constant 2018 US$)

POP num Population, total

Source

https://data.worldbank.org/, accessed via the WDI package. The codes for the series are
c("NY.GDP.PCAP.KD", "SP.DYN.LE00.IN", "SI.POV.GINI", "DT.ODA.ALLD.KD", "SP.POP.TOTL").

See Also

GGDC10S, Collapse Overview

Examples

data(wlddev)

Panel-summarizing the 5 series
qsu(wlddev, pid = ~iso3c, cols = 9:13, vlabels = TRUE)

By Region
qsu(wlddev, by = ~region, cols = 9:13, vlabels = TRUE)

Panel-summary by region
qsu(wlddev, by = ~region, pid = ~iso3c, cols = 9:13, vlabels = TRUE)

Pairwise correlations: Ovarall
print(pwcor(get_vars(wlddev, 9:13), N = TRUE, P = TRUE), show = "lower.tri")

Pairwise correlations: Between Countries
print(pwcor(fmean(get_vars(wlddev, 9:13), wlddev$iso3c), N = TRUE, P = TRUE), show = "lower.tri")

Pairwise correlations: Within Countries

https://data.worldbank.org/

wlddev 219

print(pwcor(fwithin(get_vars(wlddev, 9:13), wlddev$iso3c), N = TRUE, P = TRUE), show = "lower.tri")

Index

∗ array
psmat, 171

∗ attribute
small-helpers, 202

∗ datasets
GGDC10S, 137
wlddev, 217

∗ documentation
collapse-documentation, 23
collapse-options, 25
data-transformations, 33
efficient-programming, 38
fast-data-manipulation, 43
fast-grouping-ordering, 45
fast-statistical-functions, 46
list-processing, 160
quick-conversion, 186
recode-replace, 192
small-helpers, 202
summary-statistics, 205
time-series-panel-series, 206

∗ htest
fFtest, 67

∗ list
get_elem, 135
is_unlistable, 155
ldepth, 159
list-processing, 160
rapply2d, 191
t_list, 211
unlist2d, 212

∗ manip
across, 11
arithmetic, 14
BY, 16
collap, 18
collapse-package, 4
colorder, 30
dapply, 31

data-transformations, 33
efficient-programming, 38
fast-data-manipulation, 43
fast-grouping-ordering, 45
fast-statistical-functions, 46
fbetween-fwithin, 50
fcount, 54
fcumsum, 56
fdiff, 58
ffirst-flast, 65
fgrowth, 70
fhdbetween-fhdwithin, 73
flag, 77
fmatch, 83
fmean, 85
fmin-fmax, 88
fmode, 90
fndistinct, 93
fnobs, 95
fnth-fmedian, 97
fprod, 101
frename, 106
fscale, 108
fselect-get_vars-add_vars, 112
fsubset, 116
fsum, 118
fsummarise, 121
ftransform, 124
funique, 130
fvar-fsd, 132
get_elem, 135
groupid, 140
GRP, 141
indexing, 148
join, 156
list-processing, 160
pad, 161
pivot, 163
psacf, 169

220

INDEX 221

psmat, 171
qF-qG-finteraction, 175
quick-conversion, 186
radixorder, 189
rapply2d, 191
recode-replace, 192
rowbind, 195
roworder, 196
rsplit, 198
seqid, 200
summary-statistics, 205
t_list, 211
time-series-panel-series, 206
timeid, 207
TRA, 208
unlist2d, 212
varying, 215

∗ math
arithmetic, 14
efficient-programming, 38

∗ misc
small-helpers, 202

∗ multivariate
fdist, 62
fhdbetween-fhdwithin, 73
pwcor-pwcov-pwnobs, 173
qtab, 184

∗ nonparametric
fdist, 62

∗ package
collapse-package, 4

∗ ts
fcumsum, 56
fdiff, 58
fgrowth, 70
flag, 77
psacf, 169
psmat, 171
seqid, 200
time-series-panel-series, 206
timeid, 207

∗ univar
descr, 35
fast-statistical-functions, 46
ffirst-flast, 65
fmean, 85
fmin-fmax, 88
fmode, 90

fndistinct, 93
fnobs, 95
fnth-fmedian, 97
fprod, 101
fquantile, 104
fsum, 118
fvar-fsd, 132
qsu, 178

∗ utilities
efficient-programming, 38
is_unlistable, 155
ldepth, 159
small-helpers, 202
t_list, 211

(Memory) Efficient Programming, 24
(f)mutate, 28
(f)summarise, 28
(f/set)ftransform(<-), 44
(f/set)rename, 24, 44
(f/set)transform(v)(<-), 24
(set)TRA, 24, 34, 35
(set)relabel, 24, 44
.COLLAPSE_ALL (collapse-documentation),

23
.COLLAPSE_DATA

(collapse-documentation), 23
.COLLAPSE_GENERIC

(collapse-documentation), 23
.COLLAPSE_OLD (collapse-renamed), 29
.COLLAPSE_TOPICS

(collapse-documentation), 23
.FAST_FUN, 12
.FAST_FUN (fast-statistical-functions),

46
.FAST_STAT_FUN

(fast-statistical-functions),
46

.OPERATOR_FUN, 24

.OPERATOR_FUN (data-transformations), 33

.Rprofile, 27, 28

.c (small-helpers), 202

.lm.fit, 82

.op (collapse-options), 25

.quantile, 36

.quantile (fquantile), 104

.range (fquantile), 104
[.descr (descr), 35
[.index_df (indexing), 148

222 INDEX

[.indexed_frame (indexing), 148
[.indexed_series (indexing), 148
[.psmat (psmat), 171
[<-.indexed_frame (indexing), 148
[[.indexed_frame (indexing), 148
[[<-.indexed_frame (indexing), 148
$.indexed_frame (indexing), 148
$<-.indexed_frame (indexing), 148
%!=% (efficient-programming), 38
%!iin% (fmatch), 83
%!in% (fmatch), 83
%*=% (efficient-programming), 38
%+=% (efficient-programming), 38
%-=% (efficient-programming), 38
%/=% (efficient-programming), 38
%==% (efficient-programming), 38
%=% (small-helpers), 202
%c*% (arithmetic), 14
%c+% (arithmetic), 14
%c-% (arithmetic), 14
%c/% (arithmetic), 14
%cr% (arithmetic), 14
%iin% (fmatch), 83
%r*% (arithmetic), 14
%r+% (arithmetic), 14
%r-% (arithmetic), 14
%r/% (arithmetic), 14
%rr% (arithmetic), 14
%

%
in%, 24

%(r/c)(+/-/*//)%, 24
%(r/c)(r/+/-/*//)%, 35
%(r/c)r%, 24
%*=%, 34
%+=%, 34
%/=%, 34
%==%, 118
%[

%[
]iin%, 24

%c*%, 34
%c+%, 34
%c/%, 34
%cr%, 34
%r*%, 34
%r+%, 34
%r/%, 34

%rr%, 34

A0-collapse-documentation
(collapse-documentation), 23

A1-fast-statistical-functions
(fast-statistical-functions),
46

A2-fast-grouping-ordering
(fast-grouping-ordering), 45

A3-fast-data-manipulation
(fast-data-manipulation), 43

A4-quick-conversion (quick-conversion),
186

A5-advanced-aggregation (collap), 18
A6-data-transformations

(data-transformations), 33
A7-time-series-panel-series

(time-series-panel-series), 206
A8-list-processing (list-processing),

160
A9-summary-statistics

(summary-statistics), 205
AA1-recode-replace (recode-replace), 192
AA2-efficient-programming

(efficient-programming), 38
AA3-small-helpers (small-helpers), 202
AA4-collapse-options

(collapse-options), 25
acf, 169, 170
across, 11, 24, 122, 124, 125, 127
add_stub (small-helpers), 202
add_vars, 43, 195
add_vars (fselect-get_vars-add_vars),

112
add_vars(<-), 24, 44
add_vars<- (fselect-get_vars-add_vars),

112
Advanced Data Aggregation, 24
advanced-aggregation (collap), 18
aggregate, 17
all.vars, 203
all_funs (small-helpers), 202
all_identical (small-helpers), 202
all_obj_equal (small-helpers), 202
allNA (efficient-programming), 38
alloc (efficient-programming), 38
allv (efficient-programming), 38
any, 150
any_duplicated, 24, 45, 46, 84

INDEX 223

any_duplicated (funique), 130
anyDuplicated, 45, 130, 131, 149, 151
anyv (efficient-programming), 38
aperm.psmat (psmat), 171
append, 162
apply, 32
arithmetic, 14
as.character_factor (collapse-renamed),

29
as.data.frame.descr (descr), 35
as.data.frame.qsu (qsu), 178
as.data.frame.table, 180
as.factor_GRP (collapse-renamed), 29
as.factor_qG (collapse-renamed), 29
as.numeric_factor (collapse-renamed), 29
as_character_factor (quick-conversion),

186
as_factor_GRP, 24
as_factor_GRP (GRP), 141
as_factor_qG (qF-qG-finteraction), 175
as_integer_factor (quick-conversion),

186
as_numeric_factor (quick-conversion),

186
atomic_elem, 160, 161
atomic_elem (get_elem), 135
atomic_elem(<-), 24
atomic_elem<- (get_elem), 135
attr, 151
av (fselect-get_vars-add_vars), 112
av<- (fselect-get_vars-add_vars), 112
ave, 34

B (fbetween-fwithin), 50
BY, 16, 21, 24, 33, 35, 37, 142, 165, 186, 210
by, 17

cat, 157
cat_vars, 43
cat_vars (fselect-get_vars-add_vars),

112
cat_vars(<-), 24, 44
cat_vars<- (fselect-get_vars-add_vars),

112
cbind, 114
ccf, 169
char_vars, 43
char_vars (fselect-get_vars-add_vars),

112

char_vars(<-), 24, 44
char_vars<-

(fselect-get_vars-add_vars),
112

chol, 75
cinv (efficient-programming), 38
ckmatch, 24
ckmatch (fmatch), 83
collap, 18, 18, 33, 122, 139, 142, 166
collapg (collap), 18
collapse, 23
collapse (collapse-package), 4
Collapse Overview, 13, 15, 18, 21, 28, 31,

33, 35, 38, 41, 44, 46, 49, 53, 55, 58,
61, 63, 65, 67, 69, 72, 76, 80, 82, 85,
87, 89, 92, 94, 96, 100, 103, 105,
107, 111, 115, 118, 120, 122, 127,
131, 134, 137, 138, 140, 141, 146,
152, 156, 158, 159, 161, 162, 166,
170, 173, 175, 178, 182, 185, 189,
190, 192, 194, 195, 197, 199, 201,
204, 206–208, 210, 212, 214, 217,
218

collapse-documentation, 23
collapse-options, 25
collapse-package, 4, 25, 28
collapse-renamed, 29
collapv (collap), 18
colorder, 30, 44, 197
colorder(v), 24, 44
colorderv (colorder), 30
copy, 41
copyAttrib (small-helpers), 202
copyMostAttrib (small-helpers), 202
copyv, 194
copyv (efficient-programming), 38
cor, 174
cor.test, 174
cov, 170, 174
cumsum, 57, 206

D, 206
D (fdiff), 58
dapply, 15–18, 24, 31, 33, 35, 126, 186
Data Frame Manipulation, 31, 46, 107, 115,

118, 122, 127, 158, 166, 195, 197
Data Transformation Functions, 44
Data Transformations, 15, 18, 24, 33, 41,

48, 49, 53, 69, 76, 82, 111, 207, 210,

224 INDEX

217
data-transformations, 33
data.frame methods, 150
Date, 36
Date_vars (collapse-renamed), 29
date_vars, 43
date_vars (fselect-get_vars-add_vars),

112
date_vars(<-), 24, 44
Date_vars<- (collapse-renamed), 29
date_vars<-

(fselect-get_vars-add_vars),
112

descr, 24, 26, 35, 182, 185, 205
detectCores(), 17, 32
dist, 63
Dlog, 206
Dlog (fdiff), 58
documentation, 4
droplevels, 45, 64
duplicated, 45, 130

Efficient Programming, 15, 194, 204
efficient-programming, 38

F, 206
F (flag), 77
fact_vars, 43
fact_vars (fselect-get_vars-add_vars),

112
fact_vars(<-), 24, 44
fact_vars<-

(fselect-get_vars-add_vars),
112

factor, 64, 176
Fast Data Manipulation, 13, 24
Fast Grouping and Ordering, 24, 55, 65,

85, 131, 140, 141, 146, 158, 178,
190, 197, 201

Fast Statistical Function, 20, 21, 122,
177

Fast Statistical Functions, 18, 20, 21,
24, 26, 27, 33–35, 38, 44, 63, 67, 87,
89, 92, 94, 96, 100, 103, 105, 111,
120–122, 134, 145, 164, 165, 182,
184, 185, 194, 206, 210

fast-data-manipulation, 43
fast-grouping-ordering, 45
fast-statistical-functions, 46

fbetween (fbetween-fwithin), 50
fbetween-fwithin, 50
fbetween/B, 24, 34, 35, 48, 210
fcompute, 44
fcompute (ftransform), 124
fcompute(v), 24, 44
fcomputev (ftransform), 124
fcount, 45, 54
fcount(v), 24, 46
fcountv, 45
fcountv (fcount), 54
fcumsum, 24, 34, 35, 48, 56, 206, 207
fdiff, 58, 58, 72, 80, 151, 206
fdiff/D/Dlog, 24, 34, 35, 48, 72, 206, 207
fdim (efficient-programming), 38
fdist, 24, 62
fdroplevels, 24, 45, 46, 64, 117, 144, 176
fduplicated, 24, 45, 46
fduplicated (funique), 130
ffirst, 24, 47
ffirst (ffirst-flast), 65
ffirst-flast, 65
fFtest, 24, 67, 76, 82
fgroup_by, 24, 44–46, 121, 122, 139, 150
fgroup_by (GRP), 141
fgroup_vars, 24
fgroup_vars (GRP), 141
fgrowth, 58, 70, 80, 206
fgrowth/G, 24, 34, 35, 48, 61, 207
fHDbetween (collapse-renamed), 29
fhdbetween (fhdbetween-fhdwithin), 73
fhdbetween-fhdwithin, 73
fhdbetween/HDB, 24, 34, 35, 48
fHDwithin (collapse-renamed), 29
fhdwithin, 68, 69
fhdwithin (fhdbetween-fhdwithin), 73
fhdwithin/HDW, 24, 34, 35, 48, 82
findex, 24
findex (indexing), 148
findex_by, 24
findex_by (indexing), 148
findex_by/iby, 206
finteraction, 24, 45, 46, 79, 139, 149, 164
finteraction (qF-qG-finteraction), 175
finteraction/itn, 68
flag, 57, 60, 61, 71, 72, 77, 150, 151, 170, 206
flag/L/F, 24, 34, 35, 48, 61, 72, 206
flast, 24, 47

INDEX 225

flast (ffirst-flast), 65
flm, 24, 63, 69, 75, 76, 81
fmatch, 24, 26, 45, 46, 83, 156–158
fmax, 24, 47
fmax (fmin-fmax), 88
fmean, 24, 25, 47, 85, 92, 100, 120
fmedian, 24, 47, 87, 92
fmedian (fnth-fmedian), 97
fmin, 24, 47
fmin (fmin-fmax), 88
fmin-fmax, 88
fmode, 24, 47, 87, 90, 100
fmutate, 11, 13, 24, 44, 142, 150
fmutate (ftransform), 124
fncol (efficient-programming), 38
fNdistinct (collapse-renamed), 29
fndistinct, 24, 36, 37, 47, 55, 93, 96, 131
fnlevels (efficient-programming), 38
fNobs (collapse-renamed), 29
fnobs, 24, 37, 47, 55, 94, 95
fnrow (efficient-programming), 38
fnth, 24, 47, 105
fnth (fnth-fmedian), 97
fnth-fmedian, 97
fnunique, 24, 45, 46, 94
fnunique (funique), 130
fprod, 24, 47, 101, 120
fquantile, 24, 37, 38, 48, 98–100, 104
frange, 24, 37, 48
frange (fquantile), 104
frename, 44, 106
fscale, 76, 108, 170, 209
fscale/STD, 24, 34, 35, 48, 53, 210
fsd, 24, 47, 111, 180
fsd (fvar-fsd), 132
fselect, 43, 55, 118
fselect (fselect-get_vars-add_vars), 112
fselect(<-), 24, 44
fselect-get_vars-add_vars, 112
fselect<- (fselect-get_vars-add_vars),

112
fsubset, 44, 115, 116, 150
fsubset/ss, 24
fsum, 24, 47, 86, 87, 89, 103, 118, 134
fsummarise, 11, 13, 21, 24, 44, 121, 127, 142
fsummarize (fsummarise), 121
ftransform, 44, 114, 115, 118, 124, 195
ftransform<- (ftransform), 124

ftransformv (ftransform), 124
fungroup, 24
fungroup (GRP), 141
fungroup(), 210
funique, 24, 26, 31, 45, 46, 65, 85, 130, 139,

150
fvar, 24, 26, 47
fvar (fvar-fsd), 132
fvar()/fsd(), 26
fvar-fsd, 132
fwithin, 111
fwithin (fbetween-fwithin), 50
fwithin/W, 24, 34, 35, 48, 111, 210

G, 206
G (fgrowth), 70
gby (GRP), 141
get_collapse (collapse-options), 25
get_elem, 24, 135, 160, 161
get_vars, 43, 118
get_vars (fselect-get_vars-add_vars),

112
get_vars(<-), 24, 44
get_vars<- (fselect-get_vars-add_vars),

112
getOption, 25
GGDC10S, 24, 137, 218
greorder, 24
greorder (GRP), 141
grep, 30, 31, 114
grepl, 193, 194
grid, 172
group, 24, 26, 45, 46, 51, 57, 60, 71, 78, 85,

110, 131, 139, 142, 144, 146, 165,
170, 176–178, 190

group(x), 178
group_by_vars, 24
group_by_vars (GRP), 141
grouped, 192, 197
groupid, 24, 46, 140, 177, 178, 201
GRP, 16, 17, 19, 24, 36, 37, 45–47, 51, 55, 57,

60, 66, 67, 71, 78, 86, 88, 91, 94, 96,
98, 102, 110, 133, 139, 141, 170,
177–180, 198, 199, 209, 210

GRP.default, 20
GRPid, 24, 140
GRPid (GRP), 141
GRPN, 24, 55
GRPN (GRP), 141

226 INDEX

GRPnames, 24
GRPnames (GRP), 141
gsplit, 17, 24, 198, 199
gsplit (GRP), 141
gsub, 203
gv (fselect-get_vars-add_vars), 112
gv<- (fselect-get_vars-add_vars), 112
gvr (fselect-get_vars-add_vars), 112
gvr<- (fselect-get_vars-add_vars), 112

has_elem, 24, 156, 159–161
has_elem (get_elem), 135
HDB (fhdbetween-fhdwithin), 73
HDW (fhdbetween-fhdwithin), 73

iby (indexing), 148
index, 52, 57, 75, 110, 144, 146, 180, 207, 216
indexed, 192, 197
indexed data, 48
Indexing, 208
indexing, 40, 117, 131, 148, 172
interaction, 45
irreg_elem, 24, 160, 161
irreg_elem (get_elem), 135
is.categorical (collapse-renamed), 29
is.Date (collapse-renamed), 29
is.GRP (collapse-renamed), 29
is.qG (collapse-renamed), 29
is.unlistable (collapse-renamed), 29
is_categorical, 19, 163
is_categorical (small-helpers), 202
is_date (small-helpers), 202
is_GRP, 24
is_GRP (GRP), 141
is_irregular, 24
is_irregular (indexing), 148
is_qG, 24
is_qG (qF-qG-finteraction), 175
is_unlistable, 24, 155, 159–161, 213
itn (qF-qG-finteraction), 175
ix (indexing), 148

join, 24, 26, 43, 44, 83, 85, 156

L, 26, 206
L (flag), 77
lag, 150
lapply, 17, 32, 160
ldepth, 24, 156, 159, 160, 161

length.GRP (GRP), 141
List Processing, 24, 137, 156, 159, 192,

199, 212, 214
list-processing, 160
list_elem, 160, 161
list_elem (get_elem), 135
list_elem(<-), 24
list_elem<- (get_elem), 135
lm, 12, 81
logi_vars, 43
logi_vars (fselect-get_vars-add_vars),

112
logi_vars(<-), 24, 44
logi_vars<-

(fselect-get_vars-add_vars),
112

mapply, 41
massign (small-helpers), 202
match, 45, 64, 83
match.call, 144
Math, 151
matrix, 32
max, 89, 105
mclapply, 17, 20, 21, 32
mctl, 32
mctl (quick-conversion), 186
min, 89, 105
missing_cases (efficient-programming),

38
model.matrix, 75
mrtl, 32
mrtl (quick-conversion), 186
mtt (ftransform), 124
mutate, 125

na.omit, 150
na_focb (efficient-programming), 38
na_insert (efficient-programming), 38
na_locf (efficient-programming), 38
na_omit, 150
na_omit (efficient-programming), 38
na_rm (efficient-programming), 38
names, 185
namlab (small-helpers), 202
NextMethod, 145, 150
NextMethod(), 149
num_vars, 43

INDEX 227

num_vars (fselect-get_vars-add_vars),
112

num_vars(<-), 24, 44
num_vars<- (fselect-get_vars-add_vars),

112
nv (fselect-get_vars-add_vars), 112
nv<- (fselect-get_vars-add_vars), 112

Ops, 151
options, 25

pacf, 169, 170
Package Options, 24
pad, 24, 161, 194
paste, 144, 177
pivot, 24, 26, 44, 163
plot.acf, 170
plot.GRP (GRP), 141
plot.psmat (psmat), 171
print.descr (descr), 35
print.GRP (GRP), 141
print.index_df (indexing), 148
print.pwcor (pwcor-pwcov-pwnobs), 173
print.pwcov (pwcor-pwcov-pwnobs), 173
print.qsu (qsu), 178
psacf, 24, 169, 206, 207
psccf, 24, 206, 207
psccf (psacf), 169
psmat, 24, 171, 206, 207
pspacf, 24, 206, 207
pspacf (psacf), 169
pwcor, 12, 24, 26, 38, 205
pwcor (pwcor-pwcov-pwnobs), 173
pwcor-pwcov-pwnobs, 173
pwcov, 24, 205
pwcov (pwcor-pwcov-pwnobs), 173
pwNobs (collapse-renamed), 29
pwnobs, 24, 205
pwnobs (pwcor-pwcov-pwnobs), 173

qDF, 19, 21, 36, 55
qDF (quick-conversion), 186
qDF(x), 55
qDT (quick-conversion), 186
qF, 24, 26, 45, 46, 65, 139, 146, 185, 187, 189,

210
qF (qF-qG-finteraction), 175
qF-qG-finteraction, 175
qG, 24, 45, 46, 79, 139–141, 146, 201, 207, 208

qG (qF-qG-finteraction), 175
qM, 63, 174
qM (quick-conversion), 186
qr, 75
qsu, 24, 36–38, 48, 175, 178, 205
qsu(), 26
qsu.default, 36
qtab, 24, 26, 37, 38, 184, 205
qtable (qtab), 184
qTBL (quick-conversion), 186
quantile, 17, 36, 97, 99, 104, 105
Quick Data Conversion, 24, 44
quick-conversion, 186

radixorder, 26, 45, 98, 99, 105, 146, 157,
177, 189

radixorder(v), 24, 46, 196
radixorderv, 45, 57, 131, 142, 144, 197
radixorderv (radixorder), 189
rainbow, 172
range, 104, 105
rapply, 160, 191, 192
rapply2d, 24, 160, 161, 191, 199, 214
Recode and Replace Values, 24, 44, 162
recode-replace, 192
recode_char (recode-replace), 192
recode_num (recode-replace), 192
reg_elem, 24, 160, 161
reg_elem (get_elem), 135
reindex, 24
reindex (indexing), 148
relabel, 44
relabel (frename), 106
rep_len, 40
replace_Inf (collapse-renamed), 29
replace_inf (recode-replace), 192
replace_NA (collapse-renamed), 29
replace_na (recode-replace), 192
replace_outliers (recode-replace), 192
replicate, 40
rm_stub (small-helpers), 202
rnm (frename), 106
rowbind, 24, 43, 44, 115, 161, 166, 195, 212,

214
roworder, 26, 31, 44, 196
roworder(v), 24, 44–46, 150
roworderv (roworder), 196
rsplit, 24, 160, 161, 192, 198, 212, 214

228 INDEX

sbt (fsubset), 116
scale, 34
selecting and replacing columns, 118
seq_col (efficient-programming), 38
seq_row (efficient-programming), 38
seqid, 24, 46, 141, 200, 208
set, 41
set_collapse (collapse-options), 25
setAttrib (small-helpers), 202
setattrib (small-helpers), 202
setColnames (small-helpers), 202
setDimnames (small-helpers), 202
setLabels (small-helpers), 202
setop, 14, 15, 34
setop (efficient-programming), 38
setrelabel, 44
setrelabel (frename), 106
setrename, 44
setrename (frename), 106
setRownames (small-helpers), 202
settfm (ftransform), 124
settfmv (ftransform), 124
setTRA, 14, 15
setTRA (TRA), 208
settransform, 44
settransform (ftransform), 124
settransformv (ftransform), 124
setv, 118, 194
setv (efficient-programming), 38
slt (fselect-get_vars-add_vars), 112
slt<- (fselect-get_vars-add_vars), 112
Small (Helper) Functions, 24, 41, 162
small-helpers, 202
smr (fsummarise), 121
split, 145, 160, 198
ss, 44
ss (fsubset), 116
STD, 26
STD (fscale), 108
strftime, 151
subset, 44, 116, 117
subset.data.frame, 117
subset.matrix, 117
Summary Statistics, 24, 38, 175, 182, 185,

217
summary-statistics, 205
sweep, 209, 210

t_list, 24, 160, 161, 165, 211

table, 184, 185, 205
tabulate, 144
tapply, 17
tfm (ftransform), 124
tfm<- (ftransform), 124
tfmv (ftransform), 124
Time Series and Panel Series, 24, 34, 35,

46, 48, 49, 58, 61, 72, 80, 152, 170,
173, 208

time-series-panel-series, 206
timeid, 24, 46, 79, 141, 150–152, 201, 206,

207
to_plm, 24
to_plm (indexing), 148
TRA, 15, 47, 53, 65, 66, 76, 85–96, 98, 100,

102, 103, 111, 118–120, 132–134,
142, 165, 194, 208

transform, 44, 124
transformation operators, 26
ts.plot, 172

unattrib (small-helpers), 202
unindex, 24
unindex (indexing), 148
unique, 45, 64, 130, 131
unlist, 32, 92, 160, 185, 212
unlist2d, 24, 160, 161, 166, 192, 195, 199,

212

varying, 24, 205, 215
vclasses (small-helpers), 202
vec, 166
vec (efficient-programming), 38
vgcd (efficient-programming), 38
vlabels, 44, 181, 185
vlabels (small-helpers), 202
vlabels<- (small-helpers), 202
vlengths (efficient-programming), 38
vtypes (efficient-programming), 38

W, 26
W (fbetween-fwithin), 50
whichNA (efficient-programming), 38
whichv (efficient-programming), 38
wlddev, 24, 138, 217

	collapse-package
	across
	arithmetic
	BY
	collap
	collapse-documentation
	collapse-options
	collapse-renamed
	colorder
	dapply
	data-transformations
	descr
	efficient-programming
	fast-data-manipulation
	fast-grouping-ordering
	fast-statistical-functions
	fbetween-fwithin
	fcount
	fcumsum
	fdiff
	fdist
	fdroplevels
	ffirst-flast
	fFtest
	fgrowth
	fhdbetween-fhdwithin
	flag
	flm
	fmatch
	fmean
	fmin-fmax
	fmode
	fndistinct
	fnobs
	fnth-fmedian
	fprod
	fquantile
	frename
	fscale
	fselect-get_vars-add_vars
	fsubset
	fsum
	fsummarise
	ftransform
	funique
	fvar-fsd
	get_elem
	GGDC10S
	group
	groupid
	GRP
	indexing
	is_unlistable
	join
	ldepth
	list-processing
	pad
	pivot
	psacf
	psmat
	pwcor-pwcov-pwnobs
	qF-qG-finteraction
	qsu
	qtab
	quick-conversion
	radixorder
	rapply2d
	recode-replace
	rowbind
	roworder
	rsplit
	seqid
	small-helpers
	summary-statistics
	time-series-panel-series
	timeid
	TRA
	t_list
	unlist2d
	varying
	wlddev
	Index

