library(alpha-correction-bh)
This package provides functions for calculating alpha corrections for a list of p-values according to the Benjamini-Hochberg alpha correction.
Reference: Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: series B (Methodological), 57(1), 289-300.
For a sorted list containing m p-values indexed from 1 to m, the alpha for each p-value p is computed as:
alpha(i) = (p_value(i)/m)Q
where:
Install the package using dev-tools directly from github or from cran.
devtools::install_github('pcla-code/alpha.correction.bh')
This library uses knitr to render tables.
Import the package:
library(alpha-correction-bh)
library(knitr)
And call the get_alphas_bh function, passing your p_values and, optionally, Q:
get_alphas_bh(p_values, Q)
Use this function to calculate corrected values for a list of p-values and a given false discovery rate Q.
If you do not provide Q, a default value of 0.05 will be used.
You can customize the output of the function using the following two options:
output
- valid values are:
print - print the data frame to the console only
data_frame - return the data frame only
both - print the data frame to the console and return it. This is the default behavior.
include_is_significant_column
- valid values are:
get_alphas_bh(list(0.08,0.01,0.039))
Output:
p-value | alpha | is significant? |
---|---|---|
0.08 | 0.05 | NO |
0.01 | 0.017 | YES |
0.039 | 0.033 | NO |
get_alphas_bh(list(0.08,0.01,0.039), .07)
Output:
p-value | alpha | is significant? |
---|---|---|
0.08 | 0.07 | NO |
0.01 | 0.023 | YES |
0.039 | 0.047 | YES |
To read the documentation of the function, execute the following in R:
?get_alphas_bh
You can also read the vignette here.