
Package ‘StratPal’
October 4, 2024

Title Stratigraphic Paleobiology Modeling Pipelines

Version 0.2.0

Description The fossil record is a joint expression of ecological, taphonomic,
evolutionary, and stratigraphic processes (Holland and Patzkowsky, 2012, ISBN:978-
0226649382).
This package allowing to simulate biological processes in the time domain
(e.g., trait evolution, fossil abundance), and examine how their expression
in the rock record (stratigraphic domain) is influenced based on
age-depth models, ecological niche models, and taphonomic effects.
Functions simulating common processes used in modeling trait evolution or
event type data such as first/last occurrences are provided and can be used
standalone or as part of a pipeline. The package comes with example
data sets and tutorials in several vignettes, which can be used as a
template to set up one's own simulation.

License Apache License (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Imports admtools (>= 0.4.0), paleoTS

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Depends R (>= 4.2)

LazyData true

URL https://mindthegap-erc.github.io/StratPal/ ,

https://github.com/MindTheGap-ERC/StratPal

BugReports https://github.com/MindTheGap-ERC/StratPal/issues

Config/testthat/edition 3

Language en-US

NeedsCompilation no

Author Niklas Hohmann [aut, cre] (<https://orcid.org/0000-0003-1559-1838>)

Maintainer Niklas Hohmann <N.H.Hohmann@uu.nl>

1

https://mindthegap-erc.github.io/StratPal/
https://github.com/MindTheGap-ERC/StratPal
https://github.com/MindTheGap-ERC/StratPal/issues
https://orcid.org/0000-0003-1559-1838

2 apply_niche

Repository CRAN

Date/Publication 2024-10-04 06:50:02 UTC

Contents

apply_niche . 2
apply_taphonomy . 4
bounded_niche . 5
ornstein_uhlenbeck . 6
ornstein_uhlenbeck_sl . 7
p3 . 8
p3_var_rate . 9
prob_remove . 10
random_walk . 11
random_walk_sl . 12
reduce_to_paleoTS . 13
rej_samp . 14
scenarioA . 15
snd_niche . 16
stasis . 17
stasis_sl . 18
strict_stasis_sl . 19
thin . 20

Index 22

apply_niche apply niche model

Description

Models niches by removing events (fossil occurrences) or specimens when they are outside of their
niche. For event type data, this is done using the function thin, for pre_paleoTS this is done by
applying the function prob_remove on the specimens. Combines the functions niche_def and gc
("gradient change") to determine how the taxons’ collection probability changes with time/position.
This is done by composing niche_def and gc. The result is then used to remove events/specimens
in x.

Usage

apply_niche(x, niche_def, gc)

apply_niche 3

Arguments

x events type data, e.g. vector of times/ages of fossil occurrences or their strati-
graphic position, or a pre_paleoTS object (e.g. produced by stasis_sl).

niche_def function, specifying the niche along a gradient. Should return 0 when taxon
is outside of niche, and 1 when inside niche. Values between 0 and 1 are inter-
preted as collection probabilities. Must be vectorized, meaning if given a vector,
it must return a vector of equal length.

gc function, stands for "gradient change". Specifies how the gradient changes, e.g.
with time. Must be vectorized, meaning if given a vector, it must return a vector
of equal length.

Value

for a numeric vector input, returns a numeric vector, timing/location of events (e.g. fossil ages/locations)
preserved after the niche model is applied. For a pre_paleoTS object as input, returns a pre_paleoTS
object with specimens removed according to the niche model.

See Also

• snd_niche() and bounded_niche() for template niche models
• vignette("advanced_functionality) for how to create user-defined niche models

• apply_taphonomy() to model taphonomic effects based on a similar principle

• thin() and prob_remove() for the underlying mathematical procedures

Examples

example for event type data
setup
using water depth as gradient
t = scenarioA$t_myr
wd = scenarioA$wd_m[,"8km"]
gc = approxfun(t, wd)
plot(t, gc(t), type = "l", xlab = "Time", ylab = "water depth [m]",
main = "gradient change with time")
define niche
preferred wd 10 m, tolerant to intermediate wd changes (standard deviation 10 m), non-terrestrial
niche_def = snd_niche(opt = 10, tol = 10, cutoff_val = 0)
plot(seq(-1, 50, by = 0.5), niche_def(seq(-1, 50, by = 0.5)), type = "l",
xlab = "water depth", ylab = "collection probability", main = "Niche def")
niche pref with time
plot(t, niche_def(gc(t)), type = "l", xlab = "time",
ylab = "collection probability", main = "collection probability with time")

simulate fossil occurrences
foss_occ = p3(rate = 100, from = 0, to = max(t))
foss occ without niche pref
hist(foss_occ, xlab = "time")
foss_occ_niche = apply_niche(foss_occ, niche_def, gc)
fossil occurrences with niche preference

4 apply_taphonomy

hist(foss_occ_niche, xlab = "time")

see also
#vignette("event_data")
for a detailed example on niche modeling for event type data

example for pre_paleoTS objects
we reuse the niche definition and gradient change from above!
x = stasis_sl(seq(0, max(t), length.out = 10))
plot(reduce_to_paleoTS(x), main = "Trait evolution before niche modeling")
y = apply_niche(x, niche_def, gc)
plot(reduce_to_paleoTS(y), main = "Trait evolution after niche modeling")
note that there are fewer sampling sites
bc the taxon does not appear everywhere
and there are fewer specimens per sampling site

apply_taphonomy model taphonomic effects

Description

Models taphonomy by combining the change in taphonomic conditions with the preservation poten-
tial as a function of taphonomic conditions to determine how preservation potential changes. This
is then used to systematically remove (thin) the event data using thin/ remove specimens from the
pre_paleoTS object using prob_remove.

Usage

apply_taphonomy(x, pres_potential, ctc)

Arguments

x event type data, e.g. times/ages of fossil occurrences or their stratigraphic posi-
tion, or a pre_paleoTS object.

pres_potential function. Takes taphonomic conditions as input and returns the preservation
potential (a number between 0 and 1). Must be vectorized, meaning if given a
vector, it must return a vector of equal length.

ctc function, change in taphonomic conditions (ctc) with time or stratigraphic posi-
tion. . Must be vectorized, meaning if given a vector, it must return a vector of
equal length.

Value

if given event type data, a numeric vector, location/timing of events (e.g. fossil occurrences) after
the taphonomic filter is applied. If given a pre_paleoTS object, returns another pre_paleoTS
object with reduced number of specimens.

bounded_niche 5

See Also

• apply_niche() for modeling niche preferences based on the same principle. Internally, these
functions are structured identically.

• thin() and prob_remove() for the underlying mathematical procedures.

Examples

see
#vignette("advanced_functionality")
for details on usage

bounded_niche define niche from boundaries

Description

Defines a simple niche model where the niche defined is given by a lower limit (g_min) and an
upper limit (g_max) of a gradient the taxon can tolerate

Usage

bounded_niche(g_min, g_max)

Arguments

g_min lowest value of the gradient the taxon can tolerate

g_max highest value of the gradient the taxon can tolerate

Value

a function describing the niche for usage with apply_niche. The function returns 1 if the taxon is
within its niche (the gradient is between g_min and g_max), and 0 otherwise

See Also

• snd_niche() for an alternative niche model

• apply_niche() for the function that uses the function returned

• vignette("advanced_functionality") for details how to create user-defined niche models

6 ornstein_uhlenbeck

Examples

x = seq(0, 10, by = 0.2)
f = bounded_niche(2,5)
plot(x, f(x), type = "l",
xlab = "Gradient", ylab = "Observation probability",
main = "Observation probability of taxon")

see also
#vignette("event_data")
for details how to use this functionality

ornstein_uhlenbeck simulate ornstein-uhlenbeck (OU) process

Description

Simulates an Ornstein-Uhlenbeck process using the Euler-Maruyama method. The process is sim-
ulated on a scale of 0.25 * min(diff(t)) and then interpolated to the values of t.

Usage

ornstein_uhlenbeck(t, mu = 0, theta = 1, sigma = 1, y0 = 0)

Arguments

t times at which the process is simulated. Can be heterodistant

mu number, long term mean

theta number, mean reversion speed

sigma positive number, strength of randomness

y0 number, initial value (value of process at the first entry of t)

Value

A list with two elements: t and y. t is a duplicate of the input t, y are the values of the OU process
at these times. Output list is of S3 class timelist (inherits from list) and can thus be plotted
directly using plot, see ?admtools::plot.timelist

See Also

• ornstein_uhlenbeck_sl() for simulation on specimen level - for use in conjunction with
paleoTS package

• random_walk() and stasis() to simulate other modes of evolution

ornstein_uhlenbeck_sl 7

Examples

library("admtools") # required for plotting of results
t = seq(0, 3, by = 0.01)
l = ornstein_uhlenbeck(t, y0 = 3) # start away from optimum (mu)
plot(l, type = "l")
l2 = ornstein_uhlenbeck(t, y0 = 0) # start in optimum
lines(l2$t, l2$y, col = "red")

ornstein_uhlenbeck_sl simulate ornstein-uhlenbeck (OU) process (specimen level)

Description

Simulates an Ornstein-Uhlenbeck process on specimen level (_sl). The mean trait value is simulated
using the Euler-Maruyama method. The process is simulated on a scale of 0.25 * min(diff(t))
and then interpolated to the values of t. At each sampling location there are n_per_sample speci-
mens that are normally distributed around the mean trait value with a variance of intrapop_var.

Usage

ornstein_uhlenbeck_sl(
t,
mu = 0,
theta = 1,
sigma = 1,
y0 = 0,
intrapop_var = 1,
n_per_sample = 10

)

Arguments

t times at which the process is simulated. Can be heterodistant

mu number, long term mean

theta number, mean reversion speed

sigma positive number, strength of randomness

y0 number, initial value (value of process at the first entry of t)

intrapop_var intrapopulation variance, determines how many specimens from the same pop-
ulation vary

n_per_sample integer, number of specimens sampled per population/sampling locality

8 p3

Value

an object of S3 class pre_paleoTS, inherits from timelist and list. The list has two elements:
t, containing a vector of times of sampling, and vals, a list of trait values of the same length as t,
with element containing trait values of individual specimens. This object can be transformed using
apply_taphonomy, apply_niche or time_to_strat, and then reduced to a paleoTS object using
reduce_to_paleoTS. This can then be used to test for different modes of evolution.

See Also

• ornstein_uhlenbeck() to model mean trait values,
• reduce_to_paleoTS() to transform outputs into paleoTS format
• stasis_sl(), strict_stasis_sl() and random_walk_sl() to simulate other modes of evo-

lution

Examples

library("paleoTS")
x = ornstein_uhlenbeck_sl(1:5)
y = reduce_to_paleoTS(x) # turn into paleoTS format
plot(y) # plot using the paleoTS package

see also
#vignette("paleoTS_functionality")
#for details and advanced usage

p3 simulate Poisson point process

Description

Simulates events in the interval from to to based on a Poisson point process with rate rate. If the
parameter n is used, the number of fossils is conditioned to be n In the context of paleontology,
these events can be interpreted as fossil occurrences or first/last occurrences of species. In this case,
the rate is the average number of fossil occurrences (resp first/last occurrences) per unit

Usage

p3(rate, from, to, n = NULL)

Arguments

rate strictly positive number, rate of events (avg events per unit)
from lowest boundary of observed interval
to upper boundary of observed interval
n integer of NULL (default). Number of events to return. If NULL, the number is

random and determined by the rate parameter

p3_var_rate 9

Value

a numeric vector with timing/location of events.

See Also

p3_var_rate() for the variable rate implementation

Examples

for fossil occ.
x = p3(rate = 5, from = 0, to = 1) # 5 fossil occurrences per myr on avg.
hist(x, xlab = "Time (Myr)", ylab = "Fossil Occurrences")

x = p3(rate = 3, from = 0, to = 4)
hist(x, main = paste0(length(x), " samples")) # no of events is random

x = p3(rate = 3, from = 0, to = 4, n = 10)
hist(x, main = paste0(length(x), " samples")) # no of events is fixed to n

see also
#vignette("event_data")
for details on usage and applications to paleontology

p3_var_rate simulate variable rate Poisson point process

Description

simulates events based on a variable rate Poisson point process. Rates can be either specified by
a function passed to x, or by providing two vectors x and y. In this case the rate is specified by
approxfun(x, y, rule = 2), i.e. by linear interpolation between the values of x (abscissa) and
y (ordinate). See ?approxfun for details. In the context of paleontology, these events can be
interpreted as fossil occurrences or first/last occurrences of species. In this case, the rate is the
average number of fossil occurrences (resp first/last occurrences) per unit

Usage

p3_var_rate(x, y = NULL, from = 0, to = 1, f_max = 1, n = NULL)

Arguments

x numeric vector or function. If x is a function, it is used to specify the variable
rate. If x is a vector, x and y together specify the variable rate using linear
interpolation

y numeric vector or NULL. If not NULL, determines the variable rate. This is
done by using linear interpolation between the values of y. Here x specifies the
ordinate and y the abscissa

10 prob_remove

from lower boundary of the observed interval

to upper boundary of the observed

f_max maximum value of x in the interval from x_min to x_max. If x attains values
larger than f_max a warning is throw, f_max is adjusted, and sampling is started
again

n NULL or an integer. Number of events drawn. If NULL, the number of events
is determined by the rate (specified by x and y). If an integer is passed, n events
are returned.

Value

numeric vector, timing/location of events. Depending on the modeling framework, these events can
represent location/age of fossils, or first/last occurrences of a group of taxa.

See Also

p3() for the constant rate implementation, rej_samp() for the underlying random number genera-
tion.

Examples

assuming events are fossil occurrences
then rate is the avg rate of fossil occ. per unit
#linear decrease in rate from 50 at x = 0 to 0 at x = 1
x = c(0, 1)
y = c(50, 0)
s = p3_var_rate(x, y, f_max = 50)
hist(s, xlab = "Time (myr)", main = "Fossil Occurrences")
conditioned to return 100 samples
s = p3_var_rate(x, y, f_max = 50, n = 100)
hand over function
s = p3_var_rate(x = sin, from = 0 , to = 3 * pi, n = 50)
hist(s) # note that negative values of f (sin) are ignored in sampling

see also
#vignette("event_data")
for details on usage and applications to paleontology

prob_remove probabilistic removal of elements

Description

probabilistic removal of elements from x. For each element, the probability to be preserved is
independent and specified by prob

random_walk 11

Usage

prob_remove(x, prob)

Arguments

x vector

prob number between 0 and 1, probability to preserve elements

Value

a vector of the same type as x

See Also

• apply_niche() and apply_taphonomy() for functions that use this function for transforma-
tion of pre_paleoTS objects

Examples

x = prob_remove(1:10, 0.5)
x
x = prob_remove(1:10, 0.5)
x

random_walk simulate (un)biased random walk

Description

Simulates a (continuous time) random walk as a Brownian drift. For mu = 0 the random walk is
unbiased, otherwise it is biased.

Usage

random_walk(t, sigma = 1, mu = 0, y0 = 0)

Arguments

t numeric vector with strictly increasing elements, can be heterodistant. Times at
which the random walk is evaluated

sigma positive number, variance parameter

mu number, directionality parameter

y0 number, starting value (value of the random walk at the first entry of t)

12 random_walk_sl

Value

A list with elements t and y. t is a duplicate of the input parameter and is the times at which
the random walk is evaluated. y are the values of the random walk at said times. Output list
is of S3 class timelist (inherits from list) and can thus be plotted directly using plot, see
?admtools::plot.timelist

See Also

• stasis() and ornstein_uhlenbeck() to simulate other modes of evolution

• random_walk_sl() to simulate random walk on specimen level - for usage in conjunction
with the paleoTS package

Examples

library("admtools") # required for plotting of results
t = seq(0, 1, by = 0.01)
l = random_walk(t, sigma = 3) # high variability, no direction
plot(l, type = "l")
l2 = random_walk(t, mu = 1) # low variabliity, increasing trend
lines(l2$t, l2$y, col = "red")

random_walk_sl simulate (un)biased random walk (specimen level)

Description

Simulates a (continuous time) random walk as a Brownian drift on specimen level. For mu = 0 the
random walk is unbiased, otherwise it is biased.

Usage

random_walk_sl(
t,
sigma = 1,
mu = 0,
y0 = 0,
intrapop_var = 1,
n_per_sample = 10

)

Arguments

t numeric vector with strictly increasing elements, can be heterodistant. Times at
which the random walk is evaluated

sigma positive number, variance parameter

reduce_to_paleoTS 13

mu number, directionality parameter

y0 number, starting value (value of the random walk at the first entry of t)

intrapop_var intrapopulation variance, determines how many specimens from the same pop-
ulation vary

n_per_sample integer, number of specimens sampled per population/sampling locality

Value

an object of S3 class pre_paleoTS, inherits from timelist and list. The list has two elements:
t, containing a vector of times of sampling, and vals, a list of trait values of the same length as t,
with element containing trait values of individual specimens. This object can be transformed using
apply_taphonomy, apply_niche or time_to_strat, and then reduced to a paleoTS object using
reduce_to_paleoTS. This can then be used to test for different modes of evolution.

See Also

• random_walk() for the equivalent function to simulate mean trait values

• reduce_to_paleoTS() to transform outputs into paleoTS format.

• stasis_sl(), strict_stasis_sl() and ornstein_uhlenbeck_sl() to simulate other modes
of evolution

Examples

library("paleoTS")
x = random_walk_sl(1:5)
y = reduce_to_paleoTS(x) # turn into paleoTS format
plot(y) # plot using the paleoTS package
see also
#vignette("paleoTS_functionality")
#for details and advanced usage

reduce_to_paleoTS reduce pre-paleoTS format to paleoTS

Description

paleoTS is a format for paleontological time series. It is a summary format where interpopulation
variance is provided as a parameter. As a result, taphonomic and ecological effects that act on
individual specimens can not be modeled for paleoTS objects. To resolve this, the pre_paleoTS for-
mat tracks each specimen individually. This function reduces the pre-paleoTS format into standard
paleoTS object, which can be used by the paleoTS package.

Usage

reduce_to_paleoTS(x, min_n = 1, na.rm = TRUE, ...)

14 rej_samp

Arguments

x a pre_paleoTS object

min_n minimum number of specimens. If the number of specimens at a sampling lo-
cation falls below this number, the sampling location will be removed

na.rm Logical. If sampling locations are NA (e.g., because of erosion), should the
sample be removed?

... other options. currently unused

Value

a paleoTS object

See Also

• stasis_sl(), strict_stasis_sl, random_walk_sl, and ornstein_uhlenbeck_sl() to simulate
trait evolution on specimen level (sl), returning an object of type pre_paleoTS

Examples

x = stasis_sl(t = 0:5) # create pre_paleoTS object representing stasis on specimen level
y = reduce_to_paleoTS(x) # reduce to standard paleoTS format
plot(y)
now analyses using the paleoTS package can be applied to y

rej_samp random numbers from rejection sampling

Description

Rejection sampling from the (pseudo) pdf f in the interval between x_min and x_max. Returns n
samples. Note that values of f below 0 are capped to zero

Usage

rej_samp(f, x_min, x_max, n = 1L, f_max = 1, max_try = 10^4)

Arguments

f function. (pseudo) pdf from which the sample is drawn

x_min number, lower limit of the examined interval

x_max number, upper limit of the examined interval

n integer. number of samples drawn

f_max number, maximum value of f in the interval from x_min to x_max. If f attains
values larger than f_max a warning is throw, f_max is adjusted, and sampling is
started again

scenarioA 15

max_try maximum number of tries in the rejection sampling algorithm. If more tries
are needed, an error is thrown. If this is the case, inspect of your function f is
well-defined and positive, and if f_max provides a reasonable upper bound on
it. Adjust max_try if you are certain that both is the case, e.g. if f is highly
irregular.

Value

numeric vector, sample of size n drawn from the (pseudo) pdf specified by f

See Also

p3_var_rate() for the derived variable rate Poisson point process implementation.

Examples

f = sin
x = rej_samp(f, 0, 3*pi, n = 100)
hist(x) # note that no samples are drawn where sin is negative

scenarioA example data, scenario A from Hohmann et al. (2024)

Description

Scenario A as described in Hohmann et al. (2024), published in Hohmann et al. (2023). Contains
data from a carbonate platform simulated using CarboCAT Lite (Burgess 2013, 2023)

Usage

scenarioA

Format

A list with 6 elements:

• t_myr : numeric vector. timesteps of the simulation in Myr

• sl_m : numeric vector. eustatic sea level in m

• dist_from_shore : character vector. Distance from shore in km of locations at which the
observations were made. Available distances are "2km", "4km", "6km", "8km", "10km",
"12km".

• h_m : matrix of size length(t_myr) x length(dist_from_shore). Accumulated sediment height
in m at examined locations

• wd_m: matrix of size length(t_myr) x length(dist_from_shore). Water depth in m at examined
locations

16 snd_niche

• strat_col: list with length(dist_from shore) elements. Represents a stratigraphic column.
Each element is a list with two elements:

– bed_thickness_m: numeric vector. Bed thickness in m
– facies_code : integer vector. facies code of the bed

References

• Burgess, Peter. 2013. "CarboCAT: A cellular automata model of heterogeneous carbonate
strata." Computers & Geosciences. doi:10.1016/j.cageo.2011.08.026.

• Burgess, Peter. 2023. "CarboCATLite v1.0.1." Zenodo. doi:10.5281/zenodo.8402578

• Hohmann, Niklas; Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2024. "Identi-
fication of the mode of evolution in incomplete carbonate successions." BMC Ecology and
Evolution 24, 113. doi:10.1186/s12862024022872.

• Hohmann, Niklas, Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2023. “Identi-
fication of the Mode of Evolution in Incomplete Carbonate Successions - Supporting Data.”
Open Science Framework. doi:10.17605/OSF.IO/ZBPWA, published under the CC-BY 4.0
license.

snd_niche simple niche model

Description

Defines niche model based in the "Probability of collection" model by Holland and Patzkowsky
(1999). The collection probability follows the shape of a bell curve across a gradient, where opt
determines the peak (mean) of the bell curve, and tol the standard deviation. "snd" stands for
"scaled normal distribution", as the collection probability has the shape of the probability density
of the normal distribution.

Usage

snd_niche(opt, tol, prob_modifier = 1, cutoff_val = NULL)

Arguments

opt optimum value, gradient value where collection probability is highest

tol tolerance to changes in gradient. For large values, collection probability drops
off slower away from opt

prob_modifier collection probability modifier, collection probability at opt.

cutoff_val NULL or a number. If a number, all collection probabilities at gradient val-
ues below cutoff_value are set to 0. This can for example be used to model
exclusively marine species when the gradient is water depth (see examples).

Value

a function for usage with apply_niche.

https://doi.org/10.1016/j.cageo.2011.08.026
https://doi.org/10.5281/zenodo.8402578
https://doi.org/10.1186/s12862-024-02287-2
https://doi.org/10.17605/OSF.IO/ZBPWA
https://creativecommons.org/licenses/by/4.0/

stasis 17

References

• Holland, Steven M. and Patzkowsky, Mark E. 1999. "Models for simulating the fossil record."
Geology. https://doi.org/10.1130/0091-7613(1999)027%3C0491:MFSTFR%3E2.3.CO;2

See Also

• apply_niche() for usage of the returned function

• bounded_niche() for another niche model

• vignette("advenced_functionality") for details on how to create user defined niche
models

Examples

using water depth as niche
wd = seq(-3, 40, by = 0.5)
f = snd_niche(opt = 10, tol = 5)

plot(wd, f(wd), xlab = "Water depth", ylab = "Prob. of collection")
set cutoff value at to 0 to model non-terrestrial species.
f = snd_niche(opt = 10, tol = 5, cutoff_val = 0)
plot(wd, f(wd), xlab = "Water depth", ylab = "Prob. of collection")

see also
#vignette("event_data")
#for examples how to use it for niche modeling

stasis simulate phenotypic stasis

Description

Simulates stasis of mean trait values as independent, normally distributed random variables with
mean mean and standard deviation sd

Usage

stasis(t, mean = 0, sd = 1)

Arguments

t times at which the traits are determined

mean number, mean trait value

sd strictly positive number, standard deviation of traits

18 stasis_sl

Value

A list with two elements: t and y. t is a duplicate of the input t, y are the corresponding trait
values. Output list is of S3 class timelist (inherits from list) and can thus be plotted directly
using plot, see ?admtools::plot.timelist

See Also

• random_walk() and ornstein_uhlenbeck() to simulate other modes of evolution

• stasis_sl() to simulate stasis on specimen level - for usage in conjunction with the paleoTS
package.

Examples

library("admtools") # required for plotting of results
t = seq(0, 1, by = 0.01)
l = stasis(t)
plot(l, type = "l") # plot lineage
l2 = stasis(t, mean = 0.5, sd = 0.3) # simulate second lineage
lines(l2$t, l2$y, col = "red") # plot second lineage

stasis_sl simulate phenotypic stasis (specimen level)

Description

simulates stasis as independent, normally distributed random variables with mean mean and standard
deviation sd, draws n_per_sample samples from each sampling location (population) that have
specified variance intrapop_var

Usage

stasis_sl(t, mean = 0, sd = 1, intrapop_var = 1, n_per_sample = 10)

Arguments

t times at which the traits are determined

mean mean trait value

sd strictly positive number, standard deviation of traits around the mean

intrapop_var intrapopulation variance, determines how much specimens from the same pop-
ulation vary

n_per_sample integer, number of specimens sampled per population/sampling locality

strict_stasis_sl 19

Value

an object of S3 class pre_paleoTS, inherits from timelist and list. The list has two elements:
t, containing a vector of times of sampling, and vals, a list of trait values of the same length as t,
with element containing trait values of individual specimens. This object can be transformed using
apply_taphonomy, apply_niche or time_to_strat, and then reduced to a paleoTS object using
reduce_to_paleoTS. This can then be used to test for different modes of evolution.

See Also

• stasis() for the version that simulates stasis of mean trait values

• strict_stasis_sl() for more narrow definition of stasis

• reduce_to_paleoTS() to transform into the outputs into paleoTS format (e.g., for plotting
or further analysis)

• random_walk_sl() and ornstein_uhlenbeck_sl() for other modes of evolution

Examples

library("paleoTS")
x = stasis_sl(1:5, mean = 2, sd = 2)
y = reduce_to_paleoTS(x) # turn into paleoTS format
plot(y) # plot using paleoTS package
see also
#vignette("paleoTS_functionality")
#for details and advanced usage

strict_stasis_sl simulate strict phenotypic stasis (specimen level)

Description

simulates strict stasis on the population level (Hunt et al. 2015). This means each population has
the same mean trait value, and all deviations are due to the fact that specimens traits differ from this
value due to randomness.

Usage

strict_stasis_sl(t, mean = 0, intrapop_var = 1, n_per_sample = 10)

Arguments

t times at which the traits are determined

mean mean trait value

intrapop_var intrapopulation variance, determines how much specimens from the same pop-
ulation vary

n_per_sample integer, number of specimens sampled per population/sampling locality/time

20 thin

Value

an object of S3 class pre_paleoTS, inherits from timelist and list. The list has two elements:
t, containing a vector of times of sampling, and vals, a list of trait values of the same length as t,
with element containing trait values of individual specimens. This object can be transformed using
apply_taphonomy, apply_niche or time_to_strat, and then reduced to a paleoTS object using
reduce_to_paleoTS. This can then be used to test for different modes of evolution.

References

• Hunt, Gene, Melanie J. Hopkins, and Scott Lidgard. 2015. “Simple versus Complex Mod-
els of Trait Evolution and Stasis as a Response to Environmental Change.” Proceedings of
the National Academy of Sciences of the United States of America 112 (16): 4885–90.
https://doi.org/10.1073/pnas.1403662111.

See Also

• stasis_sl() for the (non-strict) equivalent

• reduce_to_paleoTS() to transform outputs into paleoTS format

• random_walk_sl() and ornstein_uhlenbeck_sl() for other modes of evolution

Examples

library("paleoTS")
x = strict_stasis_sl(1:5, mean = 2, intrapop_var = 2) # simulate strict stasis
y = reduce_to_paleoTS(x) # transform into paloeTS format
plot(y) # plot using paleoTS package

see also
#vignette("paleoTS_functionality")
#for details and advanced usage

thin thin a series of events (e.g. fossil occurrences)

Description

Thins a vector of events using the function thin, meaning the probability that the ith event in x is
preserved is given by thin(x(i)). Values of thin below 0 and above 1 are ignored. Is used to model
niche preferences in apply_niche and taphonomic effects in apply_taphonomy.

Usage

thin(x, thin)

thin 21

Arguments

x numeric vectors with events (e.g. locations, height, times)

thin a function used for thinning

Value

numeric vector, events after thinning. Depending on the modeling framework, these events can
represent fossil ages/locations or first/last occurrences, and the thinning taphonomic or ecological
effects.

See Also

• apply_niche() and apply_taphonomy() for use cases with biological meaning. Use thin
to model effects of taphonomy and ecology for event data.

Examples

x = p3(rate = 100, from = 0, to = 3 * pi) # simulate Poisson point process
y = thin(x, sin)
hist(y) # not how negative values of sin are treated as 0
yy = thin(x, function(x) 5 * sin(x))
hist(yy) # note how values of 5 * sin above 1 are not affecting the thinning

Index

∗ datasets
scenarioA, 15

apply_niche, 2
apply_niche(), 5, 11, 17, 21
apply_taphonomy, 4
apply_taphonomy(), 3, 11, 21

bounded_niche, 5
bounded_niche(), 3, 17

ornstein_uhlenbeck, 6
ornstein_uhlenbeck(), 8, 12, 18
ornstein_uhlenbeck_sl, 7
ornstein_uhlenbeck_sl(), 6, 13, 14, 19, 20

p3, 8
p3(), 10
p3_var_rate, 9
p3_var_rate(), 9, 15
prob_remove, 10
prob_remove(), 3, 5

random_walk, 11
random_walk(), 6, 13, 18
random_walk_sl, 12, 14
random_walk_sl(), 8, 12, 19, 20
reduce_to_paleoTS, 13
reduce_to_paleoTS(), 8, 13, 19, 20
rej_samp, 14
rej_samp(), 10

scenarioA, 15
snd_niche, 16
snd_niche(), 3, 5
stasis, 17
stasis(), 6, 12, 19
stasis_sl, 18
stasis_sl(), 8, 13, 14, 18, 20
strict_stasis_sl, 14, 19
strict_stasis_sl(), 8, 13, 19

thin, 20
thin(), 3, 5

22

	apply_niche
	apply_taphonomy
	bounded_niche
	ornstein_uhlenbeck
	ornstein_uhlenbeck_sl
	p3
	p3_var_rate
	prob_remove
	random_walk
	random_walk_sl
	reduce_to_paleoTS
	rej_samp
	scenarioA
	snd_niche
	stasis
	stasis_sl
	strict_stasis_sl
	thin
	Index

