---
title: "Standardized effect sizes"
author: "Neander M. Heming, Flávio Mota, and Gabriela Alves-Ferreira"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Standardized effect sizes}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
bibliography: references.bib
# csl: restoration-ecology.csl
# biblio-style: apelike
link-citations: true
editor_options:
markdown:
wrap: 72
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
## Contents
- [Standardized effect sizes](#ses)
- [Calculating SES](#analysis)
- [Random species generation](#randsp)
- [SES with spatial randomization](#ses-spat)
- [SES from species trait randomization](#ses-trait)
- [Conclusion](#concl)
- [References](#references)
After understanding how the spatial null model algorithms work (`vignette("spatial-null-models")`),
let's see how to create multiple null models and test for the effect size using `SESraster()`.
## Standardized effect size {#ses}
Standardized effect size (SES) is a measure of the magnitude of the
studied effect. It indicates the direction and the degree that the
effect departures from the null model. SESraster uses Cohen's *d* [@cohen1988],
which is measured as the difference between the observed pattern and the
average of *n* randomized observations divided by the standard deviation of
the randomized observations $SES = (Obs-mean(Null))/sd(Null)$.
## Calculating SES {#analysis}
### Random species generation {#randsp}
First, we will create some
random species distributions using the package `terra`.
```{r, rand-spp, fig.height=4, fig.width=4}
library(SESraster)
library(terra)
# creating random species distributions
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
set.seed(510)
r <- rast(lapply(1:18,
function(i, r, mn, mx){
app(r, function(x, t){
sapply(x, function(x, t){
xmin(t)
}, t = t)
}, t = sample(seq(mn, mx), 2))
}, r = r, mn = minmax(r)[1]+10, mx = minmax(r)[2]-10))
names(r) <- paste("sp", 1:nlyr(r))
plot(r)
```
With the distributions in hand, we can perform the spatial
randomizations.
### SES with spatial randomization {#ses-spat}
First we need a function that computes the desired metric. The function
must work with spatial data. Just to exemplify, we are creating a
function to compute the mean of presences and absences (1/0) within each
cell. You probably wants to use a more ecologically meaningful function,
but here is just an example of use.
```{r, ses-fun}
appmean <- function(x, ...){
terra::app(x, "mean", ...)
}
```
Now, to compute SES, we will compute our desired metric by sending our
function `appmean()` to `SESraster()` through `FUN` argument. We also randomize the
original data by `species` using the `bootspat_naive()` algorithm
and passing the argument `random="species"` through `spat_alg_args`.
```{r, ses-spat-sp, fig.height=4, fig.width=4}
ses.sp <- SESraster(r, FUN = appmean,
spat_alg = "bootspat_naive", spat_alg_args = list(random = "species"),
aleats = 5)
plot(ses.sp)
```
Compute metric and SES using `bootspat_naive()` and randomize by `site`
changing the argument to `random="site"` in `spat_alg_args`.
```{r, ses-spat-st, fig.height=4, fig.width=4}
ses.st <- SESraster(r, FUN = appmean,
spat_alg = "bootspat_naive", spat_alg_args = list(random = "site"),
aleats = 5)
plot(ses.st)
```
#### Passing arguments to `FUN` {#ses-fun-arg}
It is also possible to send arguments to the function that calculates the
desired metric (`FUN`). It can be done by sending a list of arguments
through `FUN_args`.
```{r, ses-spat-na1, fig.height=4, fig.width=4}
## let's create some missing values for layer/species 1
r2 <- r
set.seed(10)
cellsNA <- terra::spatSample(r2, 30, na.rm = TRUE, cells = TRUE, values = FALSE)
r2[cellsNA][1] <- NA
# plot(r)
set.seed(10)
sesNA <- SESraster(r2, FUN = appmean, FUN_args = list(na.rm = FALSE),
spat_alg = "bootspat_naive", spat_alg_args=list(random = "species"),
aleats = 5)
head(sesNA[cellsNA])
plot(sesNA)
```
Notice that NAs can be ignored by the `appmean()` function by using
`FUN_args = list(na.rm = TRUE)`:
```{r, ses-spat-na2, fig.height=4, fig.width=4}
set.seed(10)
ses.woNA <- SESraster(r2, FUN = appmean, FUN_args = list(na.rm = TRUE),
spat_alg = "bootspat_naive", spat_alg_args=list(random = "species"),
aleats = 5)
head(ses.woNA[cellsNA])
plot(ses.woNA)
```
### SES from species trait randomization {#ses-trait}
In addition to the spatial randomizations, it is possible to create a
null model by randomizing a parameter (i.e. argument) of the metric passed to FUN.
This is useful, for example, to randomize a species trait (e.g. branch length)
that is used to compute the metric. In the example below the function `appsv()`
uses the argument `lyrv` to compute the fictional metric. We also create some
fictional values for the trait.
```{r, ses-ftrait, fig.height=4, fig.width=4}
## example with `Fa_alg`
appsv <- function(x, lyrv, na.rm = FALSE, ...){
sumw <- function(x, lyrv, na.rm, ...){
ifelse(all(is.na(x)), NA,
sum(x*lyrv, na.rm=na.rm, ...))
}
stats::setNames(terra::app(x, sumw, lyrv = lyrv, na.rm=na.rm, ...), "sumw")
}
set.seed(10)
trait <- sample(100:2000, nlyr(r))
trait
```
In this exapmle, no spatial randomization will be performed, only trait randomization.
To select the _trait_ to be randomized, pick the desired argument of `FUN_args`
using `Fa_sample` and the name of the desired argument (here "lyrv").
Then select a function, here "sample" is used. It is also possible to send
arguments to the function in `Fa_alg` through `Fa_alg_args`. It works in the same way
that arguments are sent to `FUN` and `spat_alg` through `FUN_args` and `spat_alg_args`.
In this first example it is performed a trait sampling **without** replacement.
```{r, ses-trait1, fig.height=4, fig.width=4}
set.seed(10)
ses <- SESraster(r, FUN = appsv,
FUN_args = list(lyrv = trait, na.rm = TRUE),
Fa_sample = "lyrv",
Fa_alg = "sample", Fa_alg_args = list(replace = FALSE),
aleats = 5)
plot(ses)
```
In this second example it is performed a trait sampling **with** replacement by
passing `replace = TRUE` through `Fa_alg_args`.
```{r, ses-trait2, fig.height=4, fig.width=4}
set.seed(10)
ses <- SESraster(r, FUN = appsv,
FUN_args = list(lyrv = trait, na.rm = TRUE),
Fa_sample = "lyrv",
Fa_alg = "sample", Fa_alg_args = list(replace = TRUE),
aleats = 5)
plot(ses)
```
## Conclusion {#concl}
The `SESraster` R package aims to simplify the randomization of raster data and the
calculation of standardized effect sizes for spatial data. We hope it is useful
to analize the vast amount of raster data generated for the analysis of
biogeographycal and macroecological patterns.
## References {#references}