Using PwrGSD to compute Operating Characteristics of a candidate monitoring scheme at a specified hypothetical trial scenario (Version 2.3.7)

Grant Izmirlian

July 26, 2024

1 Introduction

The function PwrGSD computes several operating characteristics, such as power, expected duration and relative risks at the stopping boundaries, given a specification of the interim monitoring scheme and choice of test statistic under a specified hypothetical progression of the trial. The capabilities of PwrGSD allow for

1 Non-proportional hazards alternatives via the specification of trial arm specific piecewise constant hazard rates, piecewise exponential survival functions, or the stipulation of one of these in arm 0 together with a piecewise constant hazard ratio for the main endpoint.

2 Flexible specification of the censoring distribution The trial arm specific censoring distributions may be specified via piecewise constant hazard or piecewise exponential survival functions.

3 Two modes of non-compliance per each of the two trial arms Each form of non-compliance is stipulated via a waiting time distribution, specified via piecewise constant hazards or piecewise exponential survival, together with a post-noncompliance main endpoint distribution, also specified via hazards or survival functions.

4 Choice of test statistic Currently, the asymptotic method of calculation supports several members of the weighted log-rank family of statistics: Fleming-Harrington wieghts of given exponents $F H(g, \rho)$, a variant $\operatorname{SFH}(g, \rho, x)$ which is equal to the $F H(g, \rho)$ function but stopped at the value attained at x, or the $\operatorname{Ramp}(x)$ function, which has linear rise from zero to its maximum value, attained at x and then constant weight thereafter. The simulation method of calculation supports all of these plus the integrated survival difference statistic.

5 Choice of boundary construction method: Currently either Lan-Demets with a variety of possible spending functions

> i O'Brien-Fleming
> ii Pocock
> iii Wang-Tsiatis Power Family

The Haybittle method is also supported in the case of efficacy bounds only
6 Efficacy bounds only or simultaneous calculation of efficacy and futility bounds
The goal of this vignette is to understand the features and capabilities of PwrGSD by trying several examples.

In the first example, we compute power at a specific alternative, rhaz, under an interim analysis plan with roughly one analysis per year, some crossover between intervention and control arms, with Efficacy
and futility boundaries constructed via the Lan-Demets procedure with O'Brien-Fleming spending. We investigate the behavior of three weighted log-rank statistics: (i) the Fleming-Harrington(0,1) statistic, (ii) a stopped version of the $\mathrm{F}-\mathrm{H}(0,1)$ statistic capped off at 10 years, and (iii) the deterministic weighting function with linear increase between time 0 and time 10 with constant weight thereafter.

```
> tlook <- c(7.14, 8.14, 9.14, 10.14, 10.64, 11.15, 12.14, 13.14,
+ 14.14, 15.14, 16.14, 17.14, 18.14, 19.14, 20.14)
> t0 <- 0:19
> h0 <- c(rep(3.73e-04, 2), rep(7.45e-04, 3), rep(1.49e-03, 15))
> rhaz <-c(1, 0.9125, 0.8688, 0.7814, 0.6941, 0.6943, 0.6072, 0.5202,
    0.4332, 0.652, 0.6524, 0.6527, 0.653, 0.6534, 0.6537,
    0.6541, 0.6544, 0.6547, 0.6551, 0.6554)
hc <- c(rep(1.05e-02, 2), rep(2.09e-02, 3), rep(4.19e-02, 15))
hd1B <- c(0.1109, 0.1381, 0.1485, 0.1637, 0.2446, 0.2497, 0)
library(PwrGSD)
example.1 <-
    PwrGSD(EfficacyBoundary=LanDemets(alpha=0.05, spending= ObrienFleming),
                FutilityBoundary=LanDemets(alpha=0.1, spending=ObrienFleming),
        RR.Futility = 0.82, sided="1<",method="A",accru =7.73, accrat=9818.65,
        tlook =tlook, tcut0 =t0, h0=h0, tcut1=t0, rhaz=rhaz,
        tcutc0=t0, hc0=hc, tcutc1=t0, hc1=hc,
        tcutdOB =c(0, 13), hdOB =c(0.04777, 0),
        tcutd1B =0:6, hd1B =hd1B,
        noncompliance =crossover, gradual =TRUE,
        WtFun =c("FH", "SFH", "Ramp"),
        ppar =c(0, 1, 0, 1, 10, 10))
```

In the next example, we construct the efficacy boundary using the stochastic curtailment procedure.

```
> example.2 <- update(example.1, EfficacyBoundary=LanDemets(alpha=0.05, spending=Pow(1)))
```

