## ----setup, include = FALSE--------------------------------------------------- library(MBNMAdose) #devtools::load_all() library(rmarkdown) library(knitr) library(dplyr) library(ggplot2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, include=TRUE, tidy.opts=list(width.cutoff=80), tidy=TRUE ) ## ----reg.prep, results="hide"------------------------------------------------- # Using the SSRI dataset ssri.reg <- ssri # For a continuous covariate ssri.reg <- ssri.reg %>% dplyr::mutate(x.weeks = weeks - mean(weeks, na.rm=TRUE)) # For a categorical covariate table(ssri$weeks) # Using 8 weeks as the reference ssri.reg <- ssri.reg %>% dplyr::mutate(r.weeks=factor(weeks, levels=c(8,4,5,6,9,10))) # Create network object ssrinet <- mbnma.network(ssri.reg) ## ----results="hide", message=FALSE-------------------------------------------- # Regress for continuous weeks # Separate effect modification for each agent vs Placebo ssrimod.a <- mbnma.run(ssrinet, fun=dfpoly(degree=2), regress=~x.weeks, regress.effect = "agent") ## ----------------------------------------------------------------------------- summary(ssrimod.a) ## ----results="hide", message=FALSE-------------------------------------------- # Regress for continuous weeks # Random effect modification across all agents vs Placebo ssrimod.r <- mbnma.run(ssrinet, fun=dfpoly(degree=2), regress=~x.weeks, regress.effect = "random") ## ----------------------------------------------------------------------------- summary(ssrimod.r) ## ----results="hide", message=FALSE-------------------------------------------- # Regress for categorical weeks # Common effect modification across all agents vs Placebo ssrimod.c <- mbnma.run(ssrinet, fun=dfpoly(degree=2), regress=~r.weeks, regress.effect = "common") ## ----------------------------------------------------------------------------- summary(ssrimod.c) ## ----------------------------------------------------------------------------- # For a continuous covariate, make predictions at 5 weeks follow-up pred <- predict(ssrimod.a, regress.vals=c("x.weeks"=5)) plot(pred) ## ----------------------------------------------------------------------------- # For a categorical covariate, make predictions at 10 weeks follow-up regress.p <- c("r.weeks10"=1, "r.weeks4"=0, "r.weeks5"=0, "r.weeks6"=0, "r.weeks9"=0) pred <- predict(ssrimod.c, regress.vals=regress.p) plot(pred)