## ----setup, include = FALSE--------------------------------------------------- library(MBNMAdose) #devtools::load_all() library(rmarkdown) library(knitr) library(dplyr) library(ggplot2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, include=TRUE, tidy.opts=list(width.cutoff=80), tidy=TRUE ) ## ----results="hide", warning=FALSE, message=FALSE----------------------------- # Using the alogliptin dataset alognet <- mbnma.network(alog_pcfb) nma <- nma.run(alognet, method="random") ume <- nma.run(alognet, method="random", UME = TRUE) ## ----echo=FALSE--------------------------------------------------------------- kable(data.frame( "Model"=c("NMA", "UME"), "resdev"=c(nma$jagsresult$BUGSoutput$median$totresdev, ume$jagsresult$BUGSoutput$median$totresdev), "sd"=c(MBNMAdose:::neatCrI(nma$jagsresult$BUGSoutput$summary[rownames(nma$jagsresult$BUGSoutput$summary)=="sd", c(3,5,7)], digits = 2), MBNMAdose:::neatCrI(ume$jagsresult$BUGSoutput$summary[rownames(ume$jagsresult$BUGSoutput$summary)=="sd", c(3,5,7)], digits=2)) ), digits=2, col.names=c("Model", "Residual Deviance", "Betwen-study SD")) ## ----results="hide", warning=FALSE, message=FALSE----------------------------- # Compares residual deviance contributions from NMA and UME models devdev(nma, ume, dev.type="resdev") ## ----results="hide", warning=FALSE, message=FALSE, fig.show = "hide", eval=FALSE---- # # Using the psoriasis dataset (>75% improvement in PASI score) # psoriasis$r <- psoriasis$r75 # psorinet <- mbnma.network(psoriasis) # # # Identify comparisons on which node-splitting is possible # splitcomps <- inconsistency.loops(psorinet$data.ab, incldr=TRUE) # print(splitcomps) # # # If we want to fit an Emax dose-response function, there is insufficient # #indirect evidence in all but the first 6 comparisons # nodesplit <- mbnma.nodesplit(psorinet, fun=demax(), comparisons=splitcomps[1:6,], method="common") ## ----eval=FALSE--------------------------------------------------------------- # print(nodesplit) ## ----eval=FALSE--------------------------------------------------------------- # # Plot forest plots of direct, indirect and pooled (MBNMA) results for each comparison # plot(nodesplit, plot.type="forest") # # # Plot posterior densities of direct and indirect results for each nodesplit comparisons # plot(nodesplit, plot.type="density")