
Package ‘HiveR’
July 18, 2024

Type Package

Title 2D and 3D Hive Plots for R

Version 0.4.0

Date 2024-07-17

Description Creates and plots 2D and 3D hive plots. Hive plots are a unique method of displaying net-
works of many types in which node properties are mapped to axes using meaningful proper-
ties rather than being arbitrarily positioned. The hive plot concept was invented by Martin Krzy-
winski at the Genome Science Center (www.hiveplot.net/). Keywords: networks, food webs, lin-
net, systems biology, bioinformatics.

License GPL-3

Imports grid, plyr, jpeg, png, RColorBrewer, utils, stats, rgl, tcltk,
xtable

Suggests bipartite

URL https://github.com/bryanhanson/HiveR

ByteCompile TRUE

BugReports https://github.com/bryanhanson/HiveR/issues

Depends R (>= 3.0)

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Bryan A. Hanson [aut, cre] (<https://orcid.org/0000-0003-3536-8246>),
Vesna Memisevic [ctb],
Jonathan Chung [ctb]

Maintainer Bryan A. Hanson <hanson@depauw.edu>

Repository CRAN

Date/Publication 2024-07-18 10:30:05 UTC

1

https://github.com/bryanhanson/HiveR
https://github.com/bryanhanson/HiveR/issues
https://orcid.org/0000-0003-3536-8246

2 HiveR-package

Contents
HiveR-package . 2
adj2HPD . 3
animateHive . 5
Arroyo . 6
chkHPD . 7
dot2HPD . 8
drawHiveSpline . 9
edge2HPD . 10
HEC . 11
HidingAnAxis . 13
HivePlotData . 16
manipAxis . 18
mineHPD . 19
plot3dHive . 20
ranHiveData . 25
rcsr . 27
sph2cart . 31
sumHPD . 31

Index 34

HiveR-package 2D and 3D Hive Plots for R

Description

Creates and plots 2D and 3D hive plots. Hive plots are a unique method of displaying networks
of many types in which node properties are mapped to axes using meaningful properties rather
than being arbitrarily positioned. The hive plot concept was invented by Martin Krzywinski at
the Genome Science Center (www.hiveplot.net/). Keywords: networks, food webs, linnet, systems
biology, bioinformatics.

Author(s)

Bryan A. Hanson, DePauw University, Greencastle Indiana USA

See Also

Useful links:

• https://github.com/bryanhanson/HiveR

• Report bugs at https://github.com/bryanhanson/HiveR/issues

https://github.com/bryanhanson/HiveR
https://github.com/bryanhanson/HiveR/issues

adj2HPD 3

adj2HPD Process an Adjacency Graph into a HivePlotData Object

Description

This function will take an adjacency graph and convert it into a basic HivePlotData object. Further
manipulation by mineHPD will almost certainly be required before the data can be plotted.

Usage

adj2HPD(M = NULL, axis.cols = NULL, type = "2D", desc = NULL, ...)

Arguments

M A matrix with named dimensions. The names should be the node names. Should
not be symmetric. If it is, only the lower triangle is used and a message is given.

axis.cols A character vector giving the colors desired for the axes.

type One of c("2D", "3D"). If 2D, a HivePlotData object suitable for use with
plotHive will be created and the eventual hive plot will be static and 2D. If
3D, the HivePlotData object will be suitable for a 3D interactive plot using
plot3dHive.

desc Character. A description of the data set.

... Other parameters to be passed downstream.

Details

This function produces a "bare bones" HivePlotData object. The names of the dimensions of M are
used as the node names. All nodes are given size 1, an id number (1:number of nodes), are colored
black and are assigned to axis 1. The edges are all gray, and the weight is M[i,j]. The user will
likely have to manually make some changes to the resulting HivePlotData object before plotting.
Alternatively, mineHPD may be able to extract some information buried in the data, but even then,
the user will probably need to make some adjustments. See the examples.

Value

A HivePlotData object.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu> Vesna Memisevic contributed a fix
that limited this function to bipartite networks (changed in v. 0.2-12).

See Also

dot2HPD and adj2HPD

4 adj2HPD

Examples

Example 1: a bipartite network
Note: this first example has questionable scientific value!
The purpose is to show how to troubleshoot and
manipulate a HivePlotData object.

if (require("bipartite")) {
data(Safariland, package = "bipartite") # This is a bipartite network

You may wish to do ?Safariland or ?Safari for background

hive1 <- adj2HPD(Safariland, desc = "Safariland data set from bipartite")
sumHPD(hive1)

Note that all nodes are one axis with radius 1. Process further:

hive2 <- mineHPD(hive1, option = "rad <- tot.edge.count")
sumHPD(hive2)

All nodes still on 1 axis but degree has been used to set radius

Process further:

hive3 <- mineHPD(hive2, option = "axis <- source.man.sink")
sumHPD(hive3, chk.all = TRUE)

Note that mineHPD is generating some warnings, telling us
that the first 9 nodes were not assigned to an axis. Direct
inspection of the data shows that these nodes are insects
that did not visit any of the flowers in this particular study.

Pretty up a few things, then plot:

hive3$edges$weight <- sqrt(hive3$edges$weight) * 0.5
hive3$nodes$size <- 0.5
plotHive(hive3)

This is a one-sided hive plot of 2 axes, which results
from the curvature of the splines. We can manually fix
this by reversing the ends of edges as follows:

for (n in seq(1, length(hive3$edges$id1), by = 2)) {
a <- hive3$edges$id1[n]
b <- hive3$edges$id2[n]
hive3$edges$id1[n] <- b
hive3$edges$id2[n] <- a

}

plotHive(hive3)

Example 2, a simple random adjacency matrix
set.seed(31)

animateHive 5

nr <- 20
nc <- 15
M <- matrix(floor(runif(nc * nr, 0, 10)), ncol = nc)
colnames(M) <- sample(c(letters, LETTERS), nc, replace = FALSE)
rownames(M) <- sample(c(letters, LETTERS), nr, replace = FALSE)
hive4 <- adj2HPD(M)
sumHPD(hive4)

}

animateHive Animate One or More 3D Hive Plots with a Handy Controller

Description

This function takes a list of HivePlotData objects of type = "3D" and plots each in its own rgl
window using its own arguments, then adds a controller which handles rotation and scaling.

Usage

animateHive(hives = list(), cmds = list(), xy = 400, ...)

Arguments

hives A list of HivePlotData objects.

cmds A list of arguments corresponding to how you want each hive plotted.

xy An integer giving the size of the rgl window in pixels.

... Other parameters to be passed downstream to rgl.

Value

None. Side effect is one or more plots.

Warning

If you click the ’continue rotating’ box on the controller window, be sure to unclick it and wait for
the system to halt before closing any of the windows. If you close the controller w/o doing this, the
remaining open windows with the hive plots will continue rotating endlessly and it seems you can’t
get their attention to close the windows.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

6 Arroyo

Examples

Not run:
require("rgl")
Sillyness: let's draw different hives with different settings
List of hives
t4 <- ranHiveData(type = "3D", nx = 4)
t5 <- ranHiveData(type = "3D", nx = 5)
t6 <- ranHiveData(type = "3D", nx = 6)
myhives <- list(t4, t5, t6)
List of arguments to plot in different coordinate systems
cmd1 <- list(method = "abs", LA = TRUE, dr.nodes = FALSE, ch = 10)
cmd2 <- list(method = "rank", LA = TRUE, dr.nodes = FALSE, ch = 2)
cmd3 <- list(method = "norm", LA = TRUE, dr.nodes = FALSE, ch = 0.1)
mycmds <- list(cmd1, cmd2, cmd3)
#
animateHive(hives = myhives, cmds = mycmds)

End(Not run)

Arroyo Plant-Pollinator Data Sets in Hive Plot Data Format

Description

Plant-pollinator data sets which were derived ultimately from Vasquez and Simberloff, 2003. These
are two-trophic level systems that have almost exactly the same plants and pollinators. Safari is
from an undisturbed area, while Arroyo is from a nearby location grazed by cattle. In the original
publication, the data sets are called Safariland and Arroyo Goye. See Details for how the original
data was converted.

Details

These data sets are HivePlotData objects. They were created from the datasets Safariland and
vazarr in the package bipartite. The process was the same for each: 1. Plants were placed on
one axis, pollinators on the other. 2. A radius was assigned by calculating d’ using function dfun in
package bipartite. d’ is an index of specialization; higher values mean the plant or pollinator is
more specialized. 3. Edge weights were assigned proportional to the square root of the normalized
number of visits of a pollinator to a plant. Thus the width of the edge drawn is an indication of
the visitation rate. 4. The number of visits were divided manually into 4 groups and used to assign
edge colors ranging from white to red. The redder colors represent greater numbers of visits, and
the color-coding is comparable for each data set.

Author(s)

Bryan A. Hanson, DePauw University, Greencastle Indiana USA

chkHPD 7

chkHPD Verify the Integrity of a Hive Plot Data Object

Description

This function inspects the classes of each part of a HPD as a means of verifying its integrity. A few
other characteristics are checked as well.

Usage

chkHPD(HPD, confirm = FALSE)

Arguments

HPD An object of S3 class HivePlotData.

confirm Logical; if TRUE then a favorable result is affirmed in the console (problems are
always reported).

Value

A logical value; TRUE is there is a problem, otherwise FALSE.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

See Also

sumHPD which allows inspection (checking) of many properties of your HPD.

Examples

test4 <- ranHiveData(nx = 4)
good <- chkHPD(test4, confirm = TRUE)
mess it up and do again
next test is not run as it halts execution
Not run:
test4$nodes$color <- as.factor(test4$nodes$color)
bad <- chkHPD(test4)

End(Not run)

8 dot2HPD

dot2HPD Process a .dot Graph File into a Hive Plot Data Object

Description

This function will read a .dot file containing a graph specification in the DOT language, and (op-
tionally) using two other files, convert the information into a HivePlotData object.

Usage

dot2HPD(
file = NULL,
node.inst = NULL,
edge.inst = NULL,
axis.cols = NULL,
type = "2D",
desc = NULL,
...

)

Arguments

file The path to the .dot file to be processed.

node.inst The path to a .csv file containing instructions about how to map node tags in the
.dot file to parameters in the HivePlotData object. May be NULL.

edge.inst The path to a .csv file containing instructions about how to map edge tags in the
.dot file to parameters in the HivePlotData object. May be NULL.

axis.cols A character vector giving the colors desired for the axes.

type One of c("2D", "3D"). If 2D, a HivePlotData object suitable for use with
plotHive will be created and the eventual hive plot will be static and 2D. If
3D, the HivePlotData object will be suitable for a 3D interactive plot using
plot3dHive.

desc Character. A description of the data set.

... Other parameters to be passed downstream.

Details

This function is currently agnostic with respect to whether or not the .dot graph is directed or not.
Either type will be processed, but if the graph is directed, this will only be indirectly stored in the
HivePlotData object (in that the first node of an edge in the .dot file will be in HPD$nodes$id1 and
the second node of an edge will be in HPD$nodes$id2. This fact can be used; see the vignette and
mineHPD. Keep in mind the .dot standard is fairly loose. This function has been tested to work with
several .dot files, include those with multiple tag=value attributes (in such cases, a typical line in
the dot file should be formatted like this: node_name [tag1 = value1, tag2 = value2];). If you have
trouble, please file a issue at Github so I can track it down.

drawHiveSpline 9

Value

A HivePlotData object.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

See Also

See the vignette for an example of using this function. Use browseVignettes("HiveR") to pro-
duce the vignette.

adj2HPD for a means of importing adjacency matrices.

drawHiveSpline Draw a 3D Spline as Part of a 3D Hive Plot

Description

This function analyzes the edges of a HivePlotData object in order to draw 3D splines representing
those edges. Each pair of nodes at the ends of an edge is identified, and a control point is computed.
This information is passed to rcsr to work out the details.

Usage

drawHiveSpline(HPD, L_A = FALSE, ...)

Arguments

HPD An object of S3 class HivePlotData.

L_A Logical: should splines be drawn with line_antialias = TRUE?

... Parameters to be passed downstream.

Value

None. A spline is added to the 3D hive plot in progress.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

See Also

plot3dHive which calls this function and is the user interface.

10 edge2HPD

edge2HPD Process an Edge List into a Hive Plot Data Object

Description

This function will take an edge list and convert it into a basic HivePlotData object. Further ma-
nipulation by mineHPD will almost certainly be required before the data can be plotted.

Usage

edge2HPD(edge_df = NULL, axis.cols = NULL, type = "2D", desc = NULL, ...)

Arguments

edge_df A data frame containing edge list information. Columns should be node1, node2,
edge weight (column names are arbitrary). Edge weight information is optional.
If missing, edge weights will be set to 1.

axis.cols A character vector giving the colors desired for the axes.

type One of c("2D", "3D"). If 2D, a HivePlotData object suitable for use with
plotHive will be created and the eventual hive plot will be static and 2D. If
3D, the HivePlotData object will be suitable for a 3D interactive plot using
plot3dHive.

desc Character. A description of the data set.

... Other parameters to be passed downstream.

Details

This function produces a "bare bones" HivePlotData object. The user will likely have to make
some changes manually to the resulting HivePlotData object before plotting. Alternatively, mineHPD
may be able to extract some information buried in the data, but even then, the user might need to
make some adjustments. See the examples.

Value

A HivePlotData object.

Author(s)

Jonathan H. Chung, with minor changes for consistency by Bryan A. Hanson.

See Also

dot2HPD and adj2HPD

HEC 11

Examples

Create a simple edge list & process it
edges <- data.frame(

lab1 = LETTERS[c(1:8, 7)],
lab2 = LETTERS[c(2:4, 1:3, 4, 2, 2)],
weight = c(1, 1, 2, 2, 3, 1, 2, 3, 1)

)

td <- edge2HPD(edge_df = edges, desc = "Test of edge2HPD")
td.out <- sumHPD(td, plot.list = TRUE)
compare:
edges
td.out[, c(3, 7, 8)]

HEC A HivePlotData Object of the Hair Eye Color Data Set

Description

This is an HPD (HivePlotData object) derived from the built-in hair eye color data set (see ?HairEyeColor).
It serves as a test 2D data set, and the example below shows how it was built. While every data set
is different and will require a different approach, the example illustrates the general approach to
building a hive plot from scratch, step-by-step.

Format

The format is described in detail at HPD.

Examples

An example of building an HPD from scratch

Step 0. Get to know your data.

data(HairEyeColor) # see ?HairEyeColor for background
df <- data.frame(HairEyeColor) # str(df) is useful

Frequencies of the colors can be found with:
eyeF <- aggregate(Freq ~ Eye, data = df, FUN = "sum")
hairF <- aggregate(Freq ~ Hair, data = df, FUN = "sum")
es <- eyeF$Freq / eyeF$Freq[4] # node sizes for eye
hs <- hairF$Freq / hairF$Freq[3] # node sizes for hair

Step 1. Assemble a data frame of the nodes.

There are 32 rows in the data frame, but we are going to
separate the hair color from the eye color and thus
double the number of rows in the node data frame

12 HEC

nodes <- data.frame(
id = 1:64,
lab = paste(rep(c("hair", "eye"), each = 32), 1:64, sep = "_"),
axis = rep(1:2, each = 32),
radius = rep(NA, 64)

)

for (n in 1:32) {
assign node radius based most common colors
if (df$Hair[n] == "Black") nodes$radius[n] <- 2
if (df$Hair[n] == "Brown") nodes$radius[n] <- 4
if (df$Hair[n] == "Red") nodes$radius[n] <- 1
if (df$Hair[n] == "Blond") nodes$radius[n] <- 3

if (df$Eye[n] == "Brown") nodes$radius[n + 32] <- 1
if (df$Eye[n] == "Blue") nodes$radius[n + 32] <- 2
if (df$Eye[n] == "Hazel") nodes$radius[n + 32] <- 3
if (df$Eye[n] == "Green") nodes$radius[n + 32] <- 4

now do node sizes
if (df$Hair[n] == "Black") nodes$size[n] <- hs[1]
if (df$Hair[n] == "Brown") nodes$size[n] <- hs[2]
if (df$Hair[n] == "Red") nodes$size[n] <- hs[3]
if (df$Hair[n] == "Blond") nodes$size[n] <- hs[4]

if (df$Eye[n] == "Brown") nodes$size[n + 32] <- es[4]
if (df$Eye[n] == "Blue") nodes$size[n + 32] <- es[3]
if (df$Eye[n] == "Hazel") nodes$size[n + 32] <- es[2]
if (df$Eye[n] == "Green") nodes$size[n + 32] <- es[1]

}

nodes$color <- rep("black", 64)
nodes$lab <- as.character(nodes$lab) # clean up some data types
nodes$radius <- as.numeric(nodes$radius)

Step 2. Assemble a data frame of the edges.

edges <- data.frame(# There will be 32 edges, corresponding to the original 32 rows
id1 = c(1:16, 49:64), # This will set up edges between each eye/hair pair
id2 = c(33:48, 17:32), # & put the males above and the females below
weight = df$Freq,
color = rep(c("lightblue", "pink"), each = 16)

)

edges$color <- as.character(edges$color)

Scale the edge weight (det'd by trial & error to emphasize differences)
edges$weight <- 0.25 * log(edges$weight)^2.25

Step 3. Now assemble the HivePlotData (HPD) object.

HEC <- list()
HEC$nodes <- nodes

HidingAnAxis 13

HEC$edges <- edges
HEC$type <- "2D"
HEC$desc <- "HairEyeColor data set"
HEC$axis.cols <- c("grey", "grey")
class(HEC) <- "HivePlotData"

Step 4. Check it & summarize

chkHPD(HEC) # answer of FALSE means there are no problems
sumHPD(HEC)

Step 5. Plot it.

A minimal plot
plotHive(HEC, ch = 0.1, bkgnd = "white")
See ?plotHive for fancier options

HidingAnAxis How to Hide An Axis in a Hive Plot, with Bonus 2 Plots on One Page

Description

From time-to-time is useful to compare several hive plots based on related data (and you might wish
to plot them side-by-side to facilitate comparison). Depending the nature of the data set and how
it changes under the experimental design, some data sets may not have any nodes on a particular
axis (and therefore, they don’t participate in edges either). Let’s say your system fundamentally
has three axes, but in some data sets one of the axes has no nodes. When you plot them side-by-
side, for visual comparison it is nice if all the plots, including the one with an empty axis, have the
same general orientation. In other words, even if the data only requires two axes, you might want it
plotted as if it had three axes for consistency in overall appearance.

Details

When an axis is present but doesn’t have a node on it, this makes plotHive unhappy, but there is a
simple solution. You simply put a dummy or phantom node on the empty axis. This is illustrated in
the example below. Also demonstrated is a simple grid-based function for putting more than one
plot on a device.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

Examples

require("grid")

Adjacency matrix describing the connectivity in 2-butanone
H's on a single carbon collapsed into a group.
Matrix entry is bond order. CH3 is coded so the

14 HidingAnAxis

bond order between C & H is 3 (3 single C-H bonds)

dnames <- c("C1", "C2", "C3", "C4", "O", "HC1", "HC3", "HC4")

C1, C2, C3, C4, O, HC1, HC3, HC4
butanone <- matrix(c(

0, 1, 0, 0, 0, 3, 0, 0, # C1
1, 0, 1, 0, 2, 0, 0, 0, # C2
0, 1, 0, 1, 0, 0, 2, 0, # C3
0, 0, 1, 0, 0, 0, 0, 3, # C4
0, 2, 0, 0, 0, 0, 0, 0, # O
3, 0, 0, 0, 0, 0, 0, 0, # HC1
0, 0, 2, 0, 0, 0, 0, 0, # HC3
0, 0, 0, 3, 0, 0, 0, 0

), # HC4
ncol = 8, byrow = TRUE,
dimnames = list(dnames, dnames)
)

butanoneHPD <- adj2HPD(
M = butanone, axis.col = c("black", "gray", "red"),
desc = "2-butanone"

)

Fix up the nodes manually (carbon is on axis 1)
butanoneHPD$nodes$axis[5] <- 3L # oxygen on axis 3
butanoneHPD$nodes$axis[6:8] <- 2L # hydrogen on axis 2
butanoneHPD$nodes$color[5] <- "red"
butanoneHPD$nodes$color[6:8] <- "gray"

Exaggerate the edge weights, which are proportional to the number of bonds
butanoneHPD$edges$weight <- butanoneHPD$edges$weight^2
butanoneHPD$edges$color <- rep("wheat3", 7)

plotHive(butanoneHPD,
method = "rank", bkgnd = "white",
axLabs = c("carbon", "hydrogen", "oxygen"),
axLab.pos = c(1, 1, 1), axLab.gpar =
gpar(col = c("black", "gray", "red"))

)

Now repeat the process for butane

dnames <- c("C1", "C2", "C3", "C4", "HC1", "HC2", "HC3", "HC4")

C1, C2, C3, C4, HC1, HC2, HC3, HC4
butane <- matrix(c(

0, 1, 0, 0, 3, 0, 0, 0, # C1
1, 0, 1, 0, 0, 2, 0, 0, # C2
0, 1, 0, 1, 0, 0, 2, 0, # C3
0, 0, 1, 0, 0, 0, 0, 3, # C4
3, 0, 0, 0, 0, 0, 0, 0, # HC1
0, 2, 0, 0, 0, 0, 0, 0, # HC2

HidingAnAxis 15

0, 0, 2, 0, 0, 0, 0, 0, # HC3
0, 0, 0, 3, 0, 0, 0, 0

), # HC4
ncol = 8, byrow = TRUE,
dimnames = list(dnames, dnames)
)

butaneHPD <- adj2HPD(
M = butane, axis.col = c("black", "gray"),
desc = "butane"

)
butaneHPD$nodes$axis[5:8] <- 2L # hydrogen on axis 2
butaneHPD$nodes$color[5:8] <- "gray"
butaneHPD$edges$weight <- butaneHPD$edges$weight^2
butaneHPD$edges$color <- rep("wheat3", 7)

plotHive(butaneHPD,
method = "rank", bkgnd = "white",
axLabs = c("carbon", "hydrogen"),
axLab.pos = c(1, 1), axLab.gpar = gpar(col = c("black", "gray"))

)

butaneHPD has 2 axes. If we wanted to compare to butanoneHPD effectively
we should add a third dummy axis where the oxygen axis was in butanone
You might want to look at str(butaneHPD) before beginning

dummy <- c(9, "dummy", 3, 1.0, 1.0, "white") # mixed data types
but coerced to character
butaneHPD$nodes <- rbind(butaneHPD$nodes, dummy)
str(butaneHPD$nodes) # The data types are mangled from the rbind!

Now coerce the data types to the standard of the class, and check it
butaneHPD$nodes$id <- as.integer(butaneHPD$nodes$id)
butaneHPD$nodes$axis <- as.integer(butaneHPD$nodes$axis)
butaneHPD$nodes$radius <- as.numeric(butaneHPD$nodes$radius)
butaneHPD$nodes$size <- as.numeric(butaneHPD$nodes$size)
str(butaneHPD$nodes)

chkHPD(butaneHPD) # OK! (False means there were no problems)
sumHPD(butaneHPD)

Plot it

plotHive(butaneHPD,
method = "rank", bkgnd = "white",
axLabs = c("carbon", "hydrogen", "oxygen"),
axLab.pos = c(1, 1, 1), axLab.gpar =

gpar(col = c("black", "gray", "red"))
)

Put 2 plots side-by-side using a little helper function

vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)

16 HivePlotData

pdf("Demo.pdf", width = 10, height = 5) # Aspect ratio better
default screen device

grid.newpage()
pushViewport(viewport(layout = grid.layout(1, 2)))
pushViewport(vplayout(1, 1)) # left plot

plotHive(butanoneHPD,
method = "rank", bkgnd = "white",
axLabs = c("carbon", "hydrogen", "oxygen"),
axLab.pos = c(1, 1, 1), axLab.gpar =
gpar(col = c("black", "gray", "red")), np = FALSE

)
grid.text("butanone",

x = 0.5, y = 0.1, default.units = "npc",
gp = gpar(fontsize = 14, col = "black")

)

popViewport(2)
pushViewport(vplayout(1, 2)) # right plot
grid.text("test2")

plotHive(butaneHPD,
method = "rank", bkgnd = "white",
axLabs = c("carbon", "hydrogen", "oxygen"),
axLab.pos = c(1, 1, 1), axLab.gpar =
gpar(col = c("black", "gray", "red")), np = FALSE

)
grid.text("butane",

x = 0.5, y = 0.1, default.units = "npc",
gp = gpar(fontsize = 14, col = "black")

)

dev.off()

HivePlotData Hive Plot Data Objects

Description

In package HiveR, hive plot data sets are stored as an S3 class called HivePlotData, detailed below.

Structure

The structure of a HivePlotData object is a list of 6 elements, some of which are data frames, and
an attribute, as follows:

element (element) type description
$nodes data frame Data frame of node properties

HivePlotData 17

$id int Node identifier
$lab chr Node label
$axis int Axis to which node is assigned
$radius num Radius (position) of node along the axis
$size num Node size in pixels
$color chr Node color

$edges data frame Data frame of edge properties
$id1 int Starting node id
$id2 int Ending node id
$weight num Width of edge in pixels
$color chr Edge color

$type chr Type of hive. See Note.
$desc chr Description of data
$axis.cols chr Colors for axes
- attr chr "HivePlotData" The S3 class designation.

Note

While $edges$id1 and $edges$id2 are defined as the starting and ending nodes of a particular
edge, hive plots as currently implemented are not directed graphs (agnostic might be a better word).

HPD$type indicates the type of hive data: If 2D, then the data is intended to be plotted with hivePlot
which is a 2D plot with axes radially oriented, and (hopefully) no edges that cross axes. If 3D, then
the data is intended to be plotted with plot3dHive which gives an interactive 3D plot, with axes
oriented in 3D.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

See Also

sumHPD to summarize a HivePlotData object.
chkHPD to verify the integrity of a HivePlotData object.
ranHiveData to generate random HivePlotData objects for testing and demonstration.

Examples

test4 <- ranHiveData(nx = 4)
str(test4)
sumHPD(test4)
plotHive(test4)

18 manipAxis

manipAxis Modify the Display of Axes and Nodes in a Hive Plot

Description

This function modifies various aspects of a HivePlotData object. A typical use is to convert the
radii from the native/absolute values in the original object to either a normalized value (0. . . 1) or
to a ranked value. The order of nodes on an axis can also be inverted, and an axis can be pruned
(removed) from the HivePlotData object.

Usage

manipAxis(HPD, method, action = NULL, ...)

Arguments

HPD An object of S3 class HivePlotData.

method One of c("rank", "norm", "scale", "invert", "ranknorm","prune", "offset",
"stretch") giving the type of modification to be made.

action For method = c("scale", "invert", "offset", "stretch"), a numeric vec-
tor of the same length as the number of axes.

... Arguments to be passed downstream. Needed in this case for when plotHive
has arguments for grid that get laundered through manipAxis

Details

The rank method uses ties.method = "first" so that each node gets a unique radius. For pruning,
the nodes and edges are removed and then the remaining axes are renumbered to start from one.
Exercise caution!

For "scale" node radii will be multiplied by the corresponding value in this argument. For
"invert" a value of -1 will cause the corresponding axis to be inverted. For "prune", a single
value specifying the axis to be pruned should be given. For "offset" the values in "action" will
be subtracted from the node radii. For "stretch", node radii will first be offset so that the mini-
mum value is zero, then multiplied by the values in "action" to stretch the axis. Depending upon
the desired effect, one might use "stretch" followed by "offset" or perhaps other combinations.

Value

A modified HivePlotData object.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

mineHPD 19

Examples

data(HEC)
The first 3 examples take advantage of the argument '...'
in plotHive, which passes action through to manipAxis on the fly.
For this particular data, norm and absolute scaling appear the same.

plotHive(HEC, bkgnd = "white") # default is absolute positioning of nodes
plotHive(HEC, method = "rank", bkgnd = "white")
plotHive(HEC, method = "norm", bkgnd = "white")

In these examples, we'll explicitly use manipAxis and then plot
in a separate step. This is because trying to plot on the fly in
these cases will result in absolute scaling (which we do use here,
but one might not want to be forced to do so).

HEC2 <- manipAxis(HEC, method = "invert", action = c(-1, 1))
plotHive(HEC2, bkgnd = "white")
HEC3 <- manipAxis(HEC, method = "stretch", action = c(2, 3))
plotHive(HEC3, bkgnd = "white")
HEC4 <- manipAxis(HEC, method = "offset", action = c(0, 1.5))
plotHive(HEC4, bkgnd = "white")

mineHPD Examine (mine) a Hive Plot Data Object and Extract Information
Contained Within It

Description

A HivePlotData object, especially one created fresh using dot2HPD, generally contains a lot of
hidden information about the network described. This function can extract this hidden information.
This function has options which are quite specific as to what they do. The user can easily write new
options and incorporate them. This function can be called multiple times using different options to
gradually modify the HivePlotData object.

Usage

mineHPD(HPD, option = "rad <- tot.edge.count")

Arguments

HPD A HivePlotData object.

option A character string giving the option desired. See Details for current options.

Details

option = "rad <- tot.edge.count" This option looks through the HivePlotData object and de-
termines how many edges start or end on each node (the "degree"). This value is then assigned to
the radius for that node.

20 plot3dHive

option = "axis <- source.man.sink" This option examines the nodes and corresponding edges
in a HivePlotData object to determine if the node is a source, manager or sink. A source node
only has outgoing edges. A sink node only has incoming edges. A manager has both. Hence, this
option treats the HivePlotData object as if it were directed in that the first node of an edge in will
be in HPD$nodes$id1 and the second node of an edge will be in HPD$nodes$id2. As a result, this
option produces a hive plot with 3 axes (note: sources are on axis 1, sinks on axis 2, and managers
on axis 3). This concept is similar to the idea of FuncMap but the internals are quite different. See
also dot2HPD for some details about processing .dot files in an agnostic fashion.

option = "remove orphans" removes nodes that have degree zero (no incoming or outgoing edges).

option = "remove zero edge" removes edges with length zero. Such edges cause an error because
the spline cannot be drawn. This option combines the next two options.

option = "remove self edge" removes edges that start and end on the same node.

option = "remove virtual edge" removes virtual edges which are edges which involve different
nodes but the nodes happen to be on the the same axis at the same radius.

option = "remove edges same axis" removes edges which start and end on the same axis.

Value

A modified HivePlotData object.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

See Also

See the vignette for an example of using this function. Use browseVignettes("HiveR") to pro-
duce the vignette.

plot3dHive Create (Plot) a 2D or 3D Hive Plot

Description

These functions plot a HivePlotData object in either 2D or 3D, depending upon which function is
called.

Usage

plot3dHive(
HPD,
ch = 1,
dr.nodes = TRUE,
method = "abs",
axLabs = NULL,
axLab.pos = NULL,

plot3dHive 21

LA = FALSE,
...

)

plotHive(
HPD,
ch = 1,
method = "abs",
dr.nodes = TRUE,
bkgnd = "black",
axLabs = NULL,
axLab.pos = NULL,
axLab.gpar = NULL,
anNodes = NULL,
anNode.gpar = NULL,
grInfo = NULL,
arrow = NULL,
np = TRUE,
anCoord = "local",
...

)

Arguments

HPD An object of S3 class HivePlotData.

ch Numeric; the size of the central hole in the hive plot.

dr.nodes Logical; if TRUE nodes will be drawn.

method Character. Passed to manipAxis (see there for allowed values - the default given
above plots using the native or absolute coordinates of the data).

axLabs A vector of character strings for the axis labels.

axLab.pos Numeric; An offset from the end of the axis for label placement. Either a single
value or a vector of values. If a single value, all labels are offset the same
amount. If a vector of values, there should be a value for each axis. This allows
flexibility with long axis names. The units depend upon the method employed
(see Details).

LA (Applies to plot3dHive only) Logical: should splines be drawn with line_antialias
= TRUE? See Details.

... Additional parameters to be passed downstream.

bkgnd Any valid color specification. Used for the background color for plotHive.

axLab.gpar (Applies to plotHive only) A list of name - value pairs acceptable to gpar.
These control the label and arrow displays. See the examples.

anNodes (Applies to plotHive only) The path to a csv file containing information for la-
beling nodes. If present, a line segment will be drawn from the node to the spec-
ified text. The text is positioned near the end of the line segment. The columns
in the csv file must be named as follows (description and use in parentheses):
node.lab (node label from HPD$nodes$lab), node.text (the text to be drawn on

22 plot3dHive

the plot), angle (polar coordinates: angle at which to draw the segment), radius
(polar coordinates: radius at which to draw the text), offset (additional distance
along the radius vector to offset text), hjust, vjust (horizontal and vertical justi-
fication; nominally in [0. . . 1] but fractional and negative values also work). The
first two values will be treated as type character, the others as numeric.

anNode.gpar (Applies to plotHive only) A list of name - value pairs acceptable to gpar.
These control both the text used to annotate the nodes and the line segments
connecting that text to the node. See the examples.

grInfo (Applies to plotHive only) The path to a csv file containing information for
adding graphic decorations to the plot. If present, a line segment will be drawn
from the node to the specified location and the graphic is positioned near the
end the line segment. The columns in the csv file must be named as follows (de-
scription and use in parentheses): node.lab (node label from HPD$nodes$lab),
angle (polar coordinates: angle at which to position the graphic), radius (polar
coordinates: radius at which to position the graphic), offset (additional distance
along radius vector to offset the graphic), width (the width of the graphic), path
(a valid path to the graphics in jpg or png format). The path should include the
extension is it is autodetected. Valid extensions are jpg, JPG, jpeg, JPEG, png,
or PNG. All image files must be of the same type (all jpg, or all png).

arrow (Applies to plotHive only) A vector of 5 or 6 values: a character string to label
the arrow, and 4 numeric values giving the angle of the arrow, the radius at which
to start the arrow, the radius at which to end the arrow, and a value to offset the
arrow label from the end of the arrow. A 5th numeric value (the 6th argument
overall) can specify an offset in the y direction for the arrow useful when nx =
2. See the examples.

np (Applies to plotHive only) Logical; should a new device (page) be opened
when drawing the hive plot? If you are making multiple plots within some sort
of grid scheme then this should be set to FALSE.

anCoord (Applies to plotHive only) One of c("local","global"). Controls how the
position of node labels and graphic decorations are specified. See Details.

Details

General. plotHive uses grid graphics to produce a 2D hive plot in a style similar to the original
concept. For a 2D plot, axis number 1 is vertical except in the case of 2 axes in which case it is to
the right. plot3dHive produces a 3D hive plot using rgl graphics. Functions from either package
can be used to make additional modifications after the hive plot is drawn, either via the . . . argument
or by subsequent function calls. See the examples.

Units and Annotations. If you add node labels, arrows or graphic decorations, the units that you
must specify are those intrinsic to the data itself, modified by your setting of ch and method. These
generally cannot be known precisely ahead of time, so some experimentation will be necessary to
polish the plots. For instance, if you have data with node radii that run from 4-23 then you have
an idea of how to position your annotations if using method = "abs". But the same data plotted
with method = "norm" or method = "rank" will require that you move your annotation positions
accordingly. In the first case no radius is larger than 23, but the maximum radius is 1 when the data
is normed and when it is ranked, the maximum value will depend upon which axis has the most
nodes on it, and the number of unique radii values.

plot3dHive 23

Positioning Node Labels and Graphics. In addition to the nuances just above, there are two ways
to specify the location of node labels and graphic decorations. Polar coordinates are used in both
cases. If annCoord = "local" then the angle, radius and offset arguments are relative to the node
to be annotated. An angle of 0 positions the label horizontally to the right of the node. Thus
the label can be placed within a circular area around the node. If annCoord = "global" then the
specifications are relative to dead center on the plot. These two methods give one lots of flexibility
in lining up labels in different ways. See the examples.

Size of Graphics. The size of graphic decorations is controlled by the column ’width’ in grInfo.
The ultimate call to display the graphic is done with as.raster. Specifying only the width pre-
serves the aspect ratio of the graphic. See ?as.raster for further discussion.

Colors. For any of the gpar arguments, watch out: In grid graphics the default color for text and
arrows is black, so if are using the default bkgnd = "black" in the hive plot be sure to specify col
= "white" (or some other non-black color) for the labels and arrows or you won’t see them.

Speed and 3D Hive Plots. For most work with plot3dHive, use LA = FALSE for speed of drawing.
LA = TRUE is over 20 times slower, and is more appropriate for high quality hive plots. These are
probably better made with R CMD BATCH script.R rather than interactive use.

Value

None. Side effect is a plot.

Functions

• plot3dHive(): Create a 3D Hive Plot

• plotHive(): Create a 2D Hive Plot

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

Examples

2D Hive Plots
require("grid")
Generate some random data
test2 <- ranHiveData(nx = 2)
test3 <- ranHiveData(nx = 3)

First the nx = 2 case.
Note that gpar contains parameters that apply to both the
axis labels and arrow. A 6th value in arrow offsets the arrow vertically:
plotHive(test2,

ch = 5, axLabs = c("axis 1", "axis 2"), rot = c(-90, 90),
axLab.pos = c(20, 20), axLab.gpar = gpar(col = "pink", fontsize = 14, lwd = 2),
arrow = c("radius units", 0, 20, 60, 25, 40)

)

Now nx = 3:
plotHive(test3) # default plot

24 plot3dHive

Add axis labels & options to nx = 3 example. Note that rot is not part of gpar
plotHive(test3,

ch = 5, axLabs = c("axis 1", "axis 2", "axis 3"),
axLab.pos = c(10, 15, 15), rot = c(0, 30, -30),
axLab.gpar = gpar(col = "orange", fontsize = 14)

)

Call up a built-in data set to illustrate some plotting tricks
data(HEC)
require("grid") # for text additions outside of HiveR (grid.text)

plotHive(HEC,
ch = 0.1, bkgnd = "white",
axLabs = c("hair\ncolor", "eye\ncolor"),
axLab.pos = c(1, 1),
axLab.gpar = gpar(fontsize = 14)

)
grid.text("males", x = 0, y = 2.3, default.units = "native")
grid.text("females", x = 0, y = -2.3, default.units = "native")
grid.text("Pairing of Eye Color with Hair Color",

x = 0, y = 4,
default.units = "native", gp = gpar(fontsize = 18)

)

Add node labels and graphic decorations
The working directory has to include
not only the grInfo and anNodes files but also the jpgs.
So, we are going to move to such a directory and return you home afterwards.

currDir <- getwd()
setwd(system.file("extdata", "Misc", package = "HiveR"))
plotHive(HEC,

ch = 0.1, bkgnd = "white",
axLabs = c("hair\ncolor", "eye\ncolor"),
axLab.pos = c(1, 1),
axLab.gpar = gpar(fontsize = 14),
anNodes = "HECnodes.txt",
anNode.gpar = gpar(col = "black"),
grInfo = "HECgraphics.txt",
arrow = c("more\ncommon", 0.0, 2, 4, 1, -2)

)

grid.text("males", x = 0, y = 2.3, default.units = "native")
grid.text("females", x = 0, y = -2.3, default.units = "native")
grid.text("Pairing of Eye Color with Hair Color",

x = 0, y = 3.75,
default.units = "native", gp = gpar(fontsize = 18)

)
grid.text("A test of plotHive annotation options",

x = 0, y = 3.25,
default.units = "native", gp = gpar(fontsize = 12)

)
grid.text("Images from Wikipedia Commons",

ranHiveData 25

x = 0, y = -3.5,
default.units = "native", gp = gpar(fontsize = 9)

)
setwd(currDir)

Use the node label concept to create tick marks

currDir <- getwd()
setwd(system.file("extdata", "Misc", package = "HiveR"))
plotHive(HEC,

ch = 0.1, bkgnd = "white",
axLabs = c("hair\ncolor", "eye\ncolor"),
axLab.pos = c(1, 1),
axLab.gpar = gpar(fontsize = 14),
anNodes = "HECticks.txt",
anNode.gpar = gpar(col = "black"),
arrow = c("more\ncommon", 0.0, 2, 4, 1, -2),
dr.nodes = FALSE

)

grid.text("males", x = 0, y = 2.3, default.units = "native")
grid.text("females", x = 0, y = -2.3, default.units = "native")
grid.text("Pairing of Eye Color with Hair Color",

x = 0, y = 3.75,
default.units = "native", gp = gpar(fontsize = 18)

)
grid.text("Adding tick marks to the nodes",

x = 0, y = 3.25,
default.units = "native", gp = gpar(fontsize = 12)

)
setwd(currDir)

3D Hive Plots. The following must be run interactively.
Not run:
require("rgl")
test4 <- ranHiveData(nx = 4, type = "3D")
plot3dHive(test4)

End(Not run)

ranHiveData Generate Random Hive Plot Data

Description

This function generates random data sets which can be used to make a hive plot.

26 ranHiveData

Usage

ranHiveData(
type = "2D",
nx = 4,
nn = nx * 15,
ne = nx * 15,
rad = 1:100,
ns = c(0.5, 1, 1.5),
ew = 1:3,
nc = brewer.pal(5, "Set1"),
ec = brewer.pal(5, "Set1"),
axis.cols = brewer.pal(nx, "Set1"),
desc = NULL,
allow.same = FALSE,
verbose = FALSE

)

Arguments

type The type of hive plot to be generated. One of c("2D","3D").

nx An integer giving the number of axes to be created (2 =< nx =< 6).

nn An integer giving the number of nodes to be created. This is an initial number
which may be reduced during clean up. See Details.

ne An integer giving the number of edges to be created. This is an initial number
which may be reduced during clean up. See Details.

rad Numeric; a range of values that will be used as node radius values (the position
of the node along the axis).

ns Numeric; a range of values that will be used as the node sizes.

ew Numeric; a range of values that will be used as the edge weights.

nc A vector of valid color names giving the node colors.

ec A vector of valid color names giving the edge colors.

axis.cols A vector of valid color names to be used to color the axes; length(axis.cols)
must = nx.

desc Character; a description of the data set.

allow.same Logical; indicates if edges may begin and end on the same axis. Only applies to
type = 2D.

verbose Logical; If TRUE, the generation, processing and final result is reported to the
console.

Details

For type = "2D", after the function creates an initial set of random nodes, these are randomly cho-
sen and connected between adjacent axes, so that no edge crosses an axis.

For type = "3D", after the function creates an initial set of random nodes and edges, these are

rcsr 27

cleaned up by removing the following cases (which the rest of HiveR is not intended to handle at
this time): duplicated nodes, nodes that are not part of any edge, edges that begin and end on the
same point, edges that begin and end on the same axis, and finally, for nx = 5 or 6, edges that begin
and end on colinear axes. Most of these don’t cause an error, but produce some ugly results.

For the arguments rad, ns, ew, nc and ec, the values given are sampled randomly (with replace-
ment) and assigned to particular nodes or edges.

Value

An object of S3 class HivePlotData.

Warning

If you create a very small data set with few nodes, there may be no nodes assigned to some axes
which will give an error when you try to plot the data. It’s up to the user to check for this possibility
(you can use sumHPD).

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

Examples

test4 <- ranHiveData(nx = 4)
str(test4)
sumHPD(test4)

rcsr Compute the Details of a 3D Spline for a Hive Plot Edge

Description

This is a wild bit of trigonometry! Three points in 3D space, two ends and an control point, are
rotated into 2D space. Then a spline curve is computed. This is necessary because spline curves are
only defined in R as 2D objects. The new collection of points, which is the complete spline curve
and when drawn will be the edge of a hive plot, is rotated back into the original 3D space. rcsr
stands for rotate, compute spline, rotate back.

Usage

rcsr(p0, cp, p1)

Arguments

p0 A triple representing one end of the final curve (x, y, z).

cp A triple representing the control point used to compute the final curve (x, y, z).

p1 A triple representing the other end of the final curve (x, y, z).

28 rcsr

Details

See the code for exactly how the function works. Based upon the process described at http://www.
fundza.com/mel/axis_to_vector/index.html Timing tests show this function is fast and scales
linearly (i.e. 10x more splines to draw takes 10x more time). Roughly 3 seconds were required to
draw 1,000 spline curves in my testing.

Value

A 3 column matrix with the x, y and z coordinates to be plotted to create a hive plot edge.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

Examples

This is a lengthy example to prove it works.
Read it and then copy the whole thing to a blank script.
Parts of it require rgl and are interactive.
So none of the below is run during package build/check.

First, a helper function
Not run:

drawUnitCoord <- function() {

Simple function to draw a unit 3D coordinate system

Draw a Coordinate System

r <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1) # in polar coordinates
theta <- c(0, 0, 0, 90, 0, 180, 0, 270, 0, 0, 0, 0) # start, end, start, end
phi <- c(0, 90, 0, 90, 0, 90, 0, 90, 0, 0, 0, 180)
cs <- data.frame(radius = r, theta, phi)
ax.coord <- sph2cart(cs)

segments3d(ax.coord, col = "gray", line_antialias = TRUE)
points3d(
x = 0, y = 0, z = 0, color = "black", size = 4,
point_antialias = TRUE

) # plot origin

Label the axes

r <- c(1.1, 1.1, 1.1, 1.1, 1.1, 1.1) # in polar coordinates
theta <- c(0, 90, 180, 270, 0, 0)
phi <- c(90, 90, 90, 90, 0, 180)
l <- data.frame(radius = r, theta, phi)
lab.coord <- sph2cart(l)
text3d(lab.coord, texts = c("+x", "+y", "-x", "-y", "+z", "-z"))

}

http://www.fundza.com/mel/axis_to_vector/index.html
http://www.fundza.com/mel/axis_to_vector/index.html

rcsr 29

Now, draw a reference coordinate system and demo the function in it.

drawUnitCoord()

Draw a bounding box

box <- data.frame(
x = c(1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1),
y = c(1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1),
z = c(1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1)

)

segments3d(boxx, boxy, box$z, line_antialias = TRUE, col = "red")

Draw the midlines defining planes

mid <- data.frame(
x = c(0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1),
y = c(-1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, -1),
z = c(-1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0)

)

segments3d(midx, midy, mid$z, line_antialias = TRUE, col = "blue")

Generate two random points

p <- runif(6, -1, 1)

Special case where p1 is on z axis
Uncomment line below to demo
p[4:5] <- 0

p0 <- c(p[1], p[2], p[3])
p1 <- c(p[4], p[5], p[6])

Draw the pts, label them, draw vectors to those pts from origin

segments3d(
x = c(0, p[1], 0, p[4]),
y = c(0, p[2], 0, p[5]),
z = c(0, p[3], 0, p[6]),
line_antialias = TRUE, col = "black", lwd = 3

)

points3d(
x = c(p[1], p[4]),
y = c(p[2], p[5]),
z = c(p[3], p[6]),
point_antialias = TRUE, col = "black", size = 8

)

text3d(
x = c(p[1], p[4]),

30 rcsr

y = c(p[2], p[5]),
z = c(p[3], p[6]),
col = "black", texts = c("p0", "p1"), adj = c(1, 1)

)

Locate control point
Compute and draw net vector from origin thru cp
Connect p0 and p1

s <- p0 + p1
segments3d(

x = c(0, s[1]), y = c(0, s[2]), z = c(0, s[3]),
line_antialias = TRUE, col = "grey", lwd = 3

)

segments3d(
x = c(p[1], p[4]), # connect p0 & p1
y = c(p[2], p[5]),
z = c(p[3], p[6]),
line_antialias = TRUE, col = "grey", lwd = 3

)

cp <- 0.6 * s # Now for the control point

points3d(
x = cp[1], # Plot the control point
y = cp[2],
z = cp[3],
point_antialias = TRUE, col = "black", size = 8

)

text3d(
x = cp[1], # Label the control point
y = cp[2],
z = cp[3],
texts = c("cp"), col = "black", adj = c(1, 1)

)

Now ready to work on the spline curve

n2 <- rcsr(p0, cp, p1) # Compute the spline

lines3d(
x = n2[, 1], y = n2[, 2], z = n2[, 3],
line_antialias = TRUE, col = "blue", lwd = 3

)

Ta-Da!!!!!

End(Not run)

sph2cart 31

sph2cart Convert Spherical to Cartesian Coordinates

Description

This function converts spherical to Cartesian coordinates.

Usage

sph2cart(df)

Arguments

df A data frame with columns named r, theta and phi with the radius and angles (in
spherical coordinates) to be converted to Cartesian coordinates.

Value

A data frame with named columns containing the converted coordinates.

Note

Cobbled together from similar functions in other packages.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

sumHPD Summarize a Hive Plot Data Object and Optionally Run Some Checks

Description

This function summarizes a HivePlotData object in a convenient form. Optionally, it can run some
checks for certain conditions that may be of interest. It can also output a summary of edges to be
drawn, either as a data frame or in a LaTeX ready form, or a data frame of orphaned nodes.

Usage

sumHPD(
HPD,
chk.all = FALSE,
chk.sm.pt = FALSE,
chk.ax.jump = FALSE,
chk.sm.ax = FALSE,
chk.orphan.node = FALSE,

32 sumHPD

chk.virtual.edge = FALSE,
plot.list = FALSE,
tex = FALSE,
orphan.list = FALSE

)

Arguments

HPD An object of S3 class HivePlotData.

chk.all Logical; should all the checks below be run? See Details.

chk.sm.pt Logical; should the edges be checked to see if any of them start and end on the
same axis with the same radius? See Details.

chk.ax.jump Logical; should the edges be checked to see if any of them start and end on
non-adjacent axes, e.g. axis 1 –> axis 3? See Details.

chk.sm.ax Logical; should the edges be checked to see if any of them start and end on the
same axis?

chk.orphan.node

Logical; should orphan nodes be identifed? Orphan nodes have degree 0 (no
incoming or outgoing edges).

chk.virtual.edge

Logical; should the edges be checked to see if any of them start and end on
different nodes which happen to be at the same radius on the same axis? See
Details.

plot.list Logical; should a data frame of edges to be drawn be returned?

tex Logical; should the plot.list be formatted for LaTeX?

orphan.list Logical; should a data frame of orphaned nodes be returned?

Details

Argument chk.sm.pt applies only to hive plots of type = 2D. It checks to see if any of the edges
start and end at the same node id. These by definition exist at the same radius on the same axis,
which causes an error in plotHive since you are trying to draw an edge of length zero (the actual er-
ror message is Error in calcCurveGrob(x,x$debug) : End points must not be identical. Some
data sets may have such cases intrinsically or due to data entry error, or the condition may arise dur-
ing processing. Either way, one needs to be able to detect such cases for removal or modification.
This argument will tell you which nodes cause the problem.

Argument chk.virtual.edge applies only to hive plots of type = 2D and is similiar to chk.sm.pt
above except that it checks for virtual edges. These are edges start and end on the same axis at the
same radius but at different node id’s (in other words, two nodes have the same radius on the same
axis). This condition gives the same error as above. It is checked for separately as it arises via a
different problem in the construction of the data.

Argument chk.ax.jump applies only to hive plots of type = 2D. It checks to see if any of the edges
jump an axis, e.g. axis 1 –> axis 3. This argument will tell you which nodes are at either end of
the jumping edge. Jumping should should be avoided in hive plots as it makes the plot aesthetically
unpleasing. However, depending upon how you process the data, this condition may arise and hence
it is useful to be able to locate jumps.

sumHPD 33

Value

A summary of the HivePlotData object’s key characteristics is printed at the console, followed by
the results of any checks set to TRUE. The format of these results is identical to that of plot.list
described just below, except for the orphan node check. This is formatted the same as HPD$nodes;
see ?HPD for details.

If plot.list = TRUE, a data frame containing a list of the edges to be drawn in a format suitable for
troubleshooting a plot. If tex = TRUE as well, the data frame will be in a format suitable for pasting
into a LaTeX document. The data frame will contain rows describing each edge to be drawn with
the following columns: node 1 id, node 1 axis, node 1 label, node 1 radius, then the same info for
node 2, then the edge weight and the edge color.

If orphan.list = TRUE a data frame giving the orphan nodes is returned. If you want both plot.list
and orphan.list you have to call this function twice.

Author(s)

Bryan A. Hanson, DePauw University. <hanson@depauw.edu>

Examples

set.seed(55)
test <- ranHiveData(nx = 4, ne = 5, desc = "Tiny 4D data set")
out <- sumHPD(test, chk.all = TRUE, plot.list = TRUE)
print(out)

Index

∗ 3D
rcsr, 27

∗ classes
HivePlotData, 16

∗ datagen
ranHiveData, 25

∗ datasets
Arroyo, 6
HEC, 11

∗ hplot
drawHiveSpline, 9

∗ interactive
animateHive, 5
plot3dHive, 20

∗ package
HiveR-package, 2

∗ plot
drawHiveSpline, 9
plot3dHive, 20

∗ spline
rcsr, 27

∗ utilities
adj2HPD, 3
chkHPD, 7
dot2HPD, 8
edge2HPD, 10
manipAxis, 18
mineHPD, 19
rcsr, 27
sph2cart, 31
sumHPD, 31

adj2HPD, 3, 3, 9, 10
animateHive, 5
Arroyo, 6

chkHPD, 7, 17

dot2HPD, 3, 8, 10, 19, 20
drawHiveSpline, 9

edge2HPD, 10

FuncMap, 20

gpar, 21, 22

HEC, 11
HidingAnAxis, 13
HivePlotData, 3, 6, 8–10, 16, 19, 21, 27, 31
HiveR (HiveR-package), 2
HiveR-package, 2
HPD, 7, 11
HPD (HivePlotData), 16

manipAxis, 18, 21
mineHPD, 3, 8, 10, 19

plot3dHive, 3, 8–10, 20
plotHive, 3, 8, 10
plotHive (plot3dHive), 20

ranHiveData, 17, 25
rcsr, 9, 27

Safari (Arroyo), 6
sph2cart, 31
sumHPD, 7, 17, 31

TwoPlotsOnePage (HidingAnAxis), 13

34

	HiveR-package
	adj2HPD
	animateHive
	Arroyo
	chkHPD
	dot2HPD
	drawHiveSpline
	edge2HPD
	HEC
	HidingAnAxis
	HivePlotData
	manipAxis
	mineHPD
	plot3dHive
	ranHiveData
	rcsr
	sph2cart
	sumHPD
	Index

