
§1 YACCO2˙STBL LICENSE 1

1. License.
Gened date: January 2, 2015
Copyright c© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 SUMMARY OF YACCO2 AND LINKER’S SYMBOL TABLE YACCO2˙STBL §2

2. Summary of Yacco2 and Linker’s Symbol Table. Basic hash table for Yacco2’s symbols. It is
also used by Yacco2’s linker companion who deals in the terminal first sets of threads.

Yacco2’s ratatouille:
\yacco2\compiler\stbl - NT symbol table directory
yacco2stbl .w - cweb generator file
hash table size - current space allocator
yacco2 stbl .h - header file
yacco2 stbl .cpp - implementation
yacco2 stbl - symbol table namespace
yacco2 stbl ::stbl - global symbol table variable
T sym report card - defined in Yacco2’s terminal alphabet

Dependency files from other Yacco2 sub-systems:
yacco2 .h - basic definitions used by Yacco2
yacco2 err symbols .h - error definitions from Yacco2’s grammar alphabet
yacco2 terminals .h - regular terminal definitions from Yacco2’s grammar alphabet

Symbol table procedures:
yacco2 ::add sym to stbl
yacco2 ::find sym in stbl
yacco2 ::get sym entry by sub
yacco2 :: test program — see ‘how to run the test’ section

Note: yacco2 stbl .cpp gets compiled with Yacco2 parse library’s grammars and placed into the runtime
library.

3. Synopsis of table entries.
Is it a Forest or a tree?
As u the reader are probably IT types and so trees can have a different meaning, the question can be
rephrased: is it a group or an individual? The symbol table takes a group approach to symbols. What does
this mean? Each specific symbol (tree) is classified as either a rule, terminal, keyword, or a thread thus
pigeon holeing the entry into a forest. This generalization makes parsing the grammar easier. See rule in stbl
and T in stbl defined in the terminal grammar as classified examples.

The weakness in this 1 to 1 relationship is in error processing where the point of reference is not where
the point of entry into the symbol table occured. To correct this weakness, the symbol table’s entry has
2 parts: the symbol that created the definition and a cross reference list as referenced within the subrule’s
right-hand-side string of symbols. Each symbol in this xref list provides the source file coordinates for error
processing purposes. The referenced symbol is entered in LILO order.

4. Special note.
Scratch pad coordinates of rule in stbl and T in stbl
When the symbol table is accessed, the current token’s coordinates overrides the found table entry’s original
birthings of rule in stbl or T in stbl . The other entries th in stbl or kw in stbl are similarly serviced.

Using this returned generalization terminal with its scratch pad origins allows the grammar writer to create
other tokens like refered rule or refered T containing the current coordinates. There are 2 create contexts
for a symbol table entry: at definition time for all terminals and sometimes rules, and referenced time for
rules of a subrule definition. All symbols in a subrule are references but i relaxed the requirement that rules
must be defined before use as in the formal definition of a grammar. The waiving of this formality allows
Productions to forward reference to-be-defined rules. Of course, Yacco2 must post process the declarations
of rule use against their definitions to report referenced but not defined rules within the Productions.

§5 YACCO2˙STBL INTRODUCTION TO YACCO2’S SYMBOL TABLE 3

5. Introduction to Yacco2’s Symbol Table. This is Yacco2’s family of symbol table routines. It
uses the Linear probing and insertion hashing AlgorithmL from Vol. 3 Sorting and Searcing P. 526 of The
Art of Computer Programming by Donald E. Knuth. As the symbols from Yacco2 are variable in length, the
Hash procedurecode uses a scheme suggested by R. Sedgewick from his book Algorithms 2nd edition p. 233
to modulo per character.

A grammar’s symbols are the nonterminals and terminals. The terminals are constant across all grammars
being defined as a thread or a stand-alone unit. Usually they are brought into the grammar by Yacco2’s “@”
include file operator. Nonterminals (rules) are local to the grammar being defined allowing for same name
usuage across multiple grammars. The only globalness to a grammar’s name is its namespace and possibly
its thread name. All grammar symbols are mutually exclusive to one another: there is no commonness across
these enities. From a grammar’s perspective, Terminals are classified into 4 categories: errors, raw characters,
lr constant symbols, and finally the regular terminals. It is their literal string that one uses throughout the
grammar’s productions which makes it global in scope. From a syntax-directed code perspective, these
categories are emitted using their namespace qualifiers. This decision was made to lower global namespace
pollution. Hence the syntax-directed c++ code must use their namespace qualifier. From a symbol table
management point of view, symbol handling is very easy as a symbol scoping stack is not required as in the
Pascal language.

Using cweb allows me to converse with myself on various considerations which hopefully is not too verbous
or symptoms of paranoia. An array of symbol entry records is used. Yes I know what is written about the
merits of object oriented programming but... As a package all-inclusive-deal the class is safe — no need
to remember cleanup duties like routines that are loosely coupled. But do I want to include all the other
mechanisms required like the operator[] or use a type from the Standard Template Library (STL) like Vector?
No I don’t but I want a containment facility of all its loosely declared elements. So how to do it? Just wrap
it in a namespace construct. Now the safe way is to not use a pointer mechanism requiring a destructor
for cleanup but an array of symbol entry records which does not grow out the memory dynamically but
takes the maximum size at startup time. No memory leakage can occur and no cleanup required. This
requires a change to the symbol entry to indicate vacancy which had used the null pointer. The cost of table
initialization should be done at the compiler/linker/startup time. Each occupied entry in the table records
how the symbol has been used and declared with a pointer to the symbol’s definition.

As this is the oracle of Yacco2’s symbol table management, I want it to be safe and fast. It is the safe
part that becomes intriguing. There are many ways to handle errors:

1) abort
2) throw/catch an error using c++ constructs
3) return some form of status

Abort is a drastic last-resort measure. Flow control is shutdown with a message directed to the user.
Throw/catch has merit but I’m not wanting to get into it for efficiency purposes. The degree of error
processing for this family of routines is single level calls: not recursive. Typically point 3 is a singular
entity: an integer. When things evolve, this strategy is too simplistic when more points of evidence need
reporting. So, lets look at a report card approach which must be safe and efficient. When I went to school
and teachers could write or would take the time to properly evaluate the student through comments, the
take home bulletin had to be signed by the parent or a proxy... Now the report card allows multiple statuses
to be marked up and returned to the caller. It becomes the caller’s responsibility to check for irregularities
and take appropriate action: not like the old days when an unsigned report card meant go back home until
a signature acknowledges receipt.

So how can efficiency be put into place? A globally defined variable accessed by the caller/called routines
has no discipline. The caller and the called do their thing with the implicit understanding that each routine
deposits and checks the global variable. It is this implicit coupling that makes it highly efficient in a one-to-
one action/response narration. I do not like implicitness as it forces one to build up all these untold truths,
constraints, pre-post conditions. By importing all components via parameters to the called routine removes
misunderstanding or forgetfullness.

Now how to make the report card approach efficient? Returning a result by use of a function call is the
usual way of doing things. Established between the caller / called routines is the explicit relationship that the

4 INTRODUCTION TO YACCO2’S SYMBOL TABLE YACCO2˙STBL §5

result is returned. Return-by-value depends on the optimization of the compiler regarding efficiency on “the
copy of objects” syndrome. Return-by-address thrashs the memory heap. Both methods leaves one open
to not deal with the returned result. In fact the function can be called with the returned parameter being
dropped: the returned parameter is not assigned to a caller’s variable though the compiler should shriek at
you. This form of calling still leaves the potential of memory leaks and sloppy programming. Elimination
of memory leaks can be programmed out but not the sloppy programming; you still need to deal with the
report card’s verdict. Well, 50% improvement is not bad.

So the only alternative is to pass the report card as a parameter: either by reference or by pointer. My past
experience with threads and pass-by-reference have not been good. In fact, depending on the compiler used,
the program just did not work consistently! Passing by address pointer, though it contains the potential of
a bad pointer, has never failed me. So my leanings are towards the pointer approach. Therefore parameter
passing makes the global variable a local scope issue for the called routine with its parametric pre-conditions
forced onto the calling routine. This pro-con debate is now settled for my routines that are multi-dimensional
in findings: even a singular dimension gives the mechanism to build out extensions using new axes for actions,
errors, specific results and ... In my mind’s eye, this concludes how I will continue developing code. The
hard part is to maintain this discipline.

October 2004 - grumblings from within. Optimism leads to re-trying. We’ll have again a go of passing
parameters by reference. I hope the compilers are more reliable this time in a multi-threaded environment
than in the past. It certainly lowers constraint checks. Here goes. You’ll get a post evaluation report if it’s
not successful.

Now for the good stuff — the report card. It should contain the following items:
1) status indicator — okay or failure
2) action taken — aborted,not fnd,fnd,inserted
3) ↑ error terminal when an error occured
4) ↑ symbol-table-entry if found or inserted
5) subscript value used

The report card is defined in Yacco2’s grammar Terminal section that acts as a dictionary of terms.

6. Namespace sections.

〈bns 6 〉 ≡
namespace yacco2 stbl {

7.

〈 ens 7 〉 ≡
} /∗ end of namspace yacco2 stbl ∗/

8.

〈uns 8 〉 ≡
using namespace yacco2 stbl;

This code is used in section 34.

9. Yacco2’s symbol table blueprint. Output of the code.

〈 yacco2_stbl.cpp 9 〉 ≡
〈 Include header file 22 〉;
using namespace NS yacco2 err symbols;
using namespace NS yacco2 terminals;
using namespace yacco2;

〈Accrue source code 20 〉;

10. Maintenance.
The following subsections explain what to do in various cases.

§11 YACCO2˙STBL MAINTENANCE 5

11. How to compile the symbol table. Originally the project uses Microsoft’s Visual Studio c++. Now
it’s Unix compiled. The below notes are in a Microsoft context. U can easily substitute a Unix context. In
project \yacco2\compiler\grammars, the emitted code yacco2 stbl . cpp is compiled with the grammars
used by Yacco2.

12. How to print out cweave report.
Fire up the DOS batch command processor and set the default directory as follows:

cd \yacco2\compiler\symbol table

To produce a PDF document, type in the following at the DOS PROMPT:
pdftex yacco2stbl

To produce a postscript document, for the visually impaired like my aging self due to the PDF styled
greyed section numbers within the table of contents and index, type in the following at the DOS PROMPT:
tex yacco2stbl
dvips yacco2stbl

Use Ghostscript to print out the yacco2stbl.ps file and Adobe Reader for the pdf version.

13. Salient Points established.
Key points concluded:

1) Procedure calls only used. Results are returned thru a passed Report card parameter.
2) c++ native types used for efficiency with no memory leaks.
3) Namespace eliminates loosely defined entities spread across different spectrums.
4) Report card is the scratch pad of evolutionary results used throughout all the symbol table phrases.

14. How to expand the symbol table.
Defined as a cweb macro, hash table size is the size of the table expressed as a prime number. If you

need to enlarge it, use a Google search on prime number and find the Java applelet and run it. Adjust
this macro definition and re-generate the project symbol table in Visual Studio which creates a new ctangle
yacco2 stbl . cpp c++ file. This file then needs to be recompiled. See How tocompile above.

6 HOW TO RUN THE TEST YACCO2˙STBL §15

15. How to run the test.
Create the following DOS batch file:

rem file: t1.bat
@ECHO OFF
rem testdriver batch harness
rem first parm indicated the option to test
rem 1 - cmd line only
rem 2 - cmd line then P1 lex
rem 3 - cmd line then P3 syntax
rem 4 - runs the symbol table test
echo on
cd \yacco2\testdriver\debug
rem echo Test out symbol table
testdriver 4 \yacco2\compiler \grammars\fsm class phrase6.dat

Now double click on the batch file created “t1.bat”. NT will launch the batch process and execute the
“testdriver” with its passed parameters. The appropriate tests are displayed on the console of the batch
process.

The test run should produce the following approximate facsimile:
C:\yacco2\testdriver>rem file: t1.bat
C:\yacco2\testdriver> rem note: remed out lines that have been tested okay
C:\yacco2\testdriver> cd \yacco2\testdriver\debug
C:\yacco2\testdriver\Debug> rem echo test out symbol table
C:\yacco2\testdriver\Debug> testdriver 4 /yacco2/compiler/grammars/fsm class phrase6.dat
Prime number used: 20011
Test zero len key
zero len name: zero-len-symbol
1st entry test
duplicate entry test
Error duplicate entry: dup-entry-in-sym-table
Same key address test
Error same key address: same-address-as-key-in-symbol-table
Fill up balance of table
Overflow test
Error overflow: sym-table-full
Find symbol test
Not found test
Get symbol by subscript test
Error subscript out of range: -1 subscript-out-of-range
Error not found if this message appears more than once: 17482
Remember 1 spot is left vacant in the algorithm!
Error subscript out of range: 20011 subscript-out-of-range
Clean up
enter any key then press Enter: x

16. Terminology.
Symbol’s literal — a variable length array of characters delimited by the null character “00”. In c++,

it’s a const char ∗ type. It is the value used to find a symbol in Yacco2’s symbol table expressed by the
string of characters bracketed by the double quotes: example is "#user−declaration". Go see Yacco2’s
terminal definitions.

§17 YACCO2˙STBL FACTS 7

17. Facts.
Forget the tabloids and graffitti. Here is the gospel truth:

1) 1..primenumber is the total spots in the symbol table
2) algorithm leaves 1 spot vacant.
3) primenumber − 1 is the number of spots for insertion.
4) 0..primenumber − 1 subscript range due to modulo calculation
5) Grammar symbols fall into lrk, err, raw character, or terminals
6) Each terminal group has its own namespace

The vacant spot only surfaces when the table is full and is pseudo-random in nature; this is due to value of
the keys entered and where the hash function positions them.

18. Anatomy of symbol table.

R
0

b
1

e
2

g
3

n
4

5

char pool

top

stbl[].table entry

key ↑
0

1

2

prime-1

table entry:

• key↑ • key len • stbl pos

• vacant — boolean valued

• defined • used — both boolean valued
• type ∈ rule, terminal, keyword, thread, unknown

• symbol ↑ ∈ rule in stbl, T in stbl, kw in stbl, th in stbl, tth in stbl

The above figure shows the symbol table (stbl) as an array of fixed size records of table entry having
one entry in it. I use a quasi Pascal definition to describe the stbl cuz its more intuitively descriptive than
its “c++” cousin. A hash function on the symbol’s literal name is used where it stores the key in its own
character pool (char pool). Access to the symbol table is thru the hash function or by subscript.

Various table entries:

rule in stbl:

• stbl index
• rule def ↑
• auto delete • auto abort
• contains an epsilon subrule

• rule name
• parallel monitor phrase↑
• subrules phrase↑
• rule lhs phrase↑
• lhs directives map — <string, CAbs lr1 sym↑>

• list of refered rule ↑
• referenced rule — rule in stbl↑

T in stbl:

• stbl index
• terminal def ↑
• auto delete • auto abort

• terminal name

• class name
• directives map — <string, CAbs lr1 sym↑>

• list of refered T ↑
• referenced terminal — T in stbl↑

th in stbl: Linker only

• stbl index
• thread attributes ↑
• transitive • monolithic
• grammar name

• namespace name

• thread name

• file name

• enumeration value

tth in stbl: Linker only

• stbl index
• T attributes ↑
• fully qualified name

• enumeration value

kw in stbl:

• stbl index
• CAbs lr1 sym ↑

8 CREATE HEADER FILE FOR SYMBOL TABLE ENVIRONMENT YACCO2˙STBL §19

19. Create header file for symbol table environment.
Please note the appropriate include files that have been generated by other Yacco2’s cweb sub-systems.

〈 yacco2_stbl.h 19 〉 ≡
〈Preprocessor definitions 〉

#ifndef yacco2 stbl
#define yacco2 stbl 0
#include "yacco2.h"

#include "yacco2_err_symbols.h"

#include "yacco2_terminals.h"

#include <cstring>

namespace yacco2 stbl {
using namespace NS yacco2 terminals;
using namespace yacco2;
extern table entry stbl [hash table size];
void hash fnct (T sym tbl report card & Report , const char &Key);
extern void add sym to stbl
(T sym tbl report card & Report , const char &Name
,yacco2 ::CAbs lr1 sym & Sym
, table entry ::defined or used typWhy
, table entry ::entry typWhat);
extern void find sym in stbl (T sym tbl report card & Report , const char &Name);
extern void test program ();
extern void get sym entry by sub(T sym tbl report card & Report , int Sub);
extern char char pool [char pool size];
extern int char pool idx ;
};

#endif

20. Accrue source code.

〈Accrue source code 20 〉 ≡
table entryyacco2 stbl ::stbl [hash table size] = {table entry ()};
char yacco2 stbl ::char pool [char pool size] = { }
;

int yacco2 stbl ::char pool idx (0);

See also sections 24, 25, 30, 33, and 34.

This code is used in section 9.

21. 〈Hashing 21 〉 ≡
yacco2 stbl ::hash fnct (Report ,Name);

This code is used in sections 25 and 30.

22. Include header file.

〈 Include header file 22 〉 ≡
#include "yacco2_stbl.h"

This code is used in section 9.

§23 YACCO2˙STBL NOTES REGARDING HASHING 9

23. Notes regarding hashing.
Due to the variable length of a symbol’s name, the hash function goes across the character list whereby each
character’s value is added to the previous calculated hashed value shifted by some amount and then divided
by the hash table size to get the remainder. Moduloing per character prevents a potential overflow.

The reason for not making the hash function external to the world is that its output is not universal. The
calculated value is just the starting seed for the add sym to stbl to find a vacant spot. Hence it is locally
accessible by yacco2 stbl’s namespace procedures.

Constraints:
ip1: report card to contain the result
ip2: symbol’s literal

Errors:
1) Zero len symbol

A potential error could occur if the symbol literal is not delimited by a “00” the null character. This could
lead to an address violation. As Yacco2 creates this using the c++ string facility, this type of error can only
be caused by the c++ compiler. Originally I had programmed an artificial maximun len of 512 characters
but decided that this was overkill.

#define hash table size 20011 /∗ prime of course ∗/
#define hash table full hash table size − 1
#define str delimiter ’\x00’

#define char pool size 100 ∗ 1024

24. The hash procedure code: hash fnct . The length of key includes the delimiter. This allows the
complete key to be moved into the character pool.

〈Accrue source code 20 〉 +≡
void yacco2 stbl ::hash fnct (T sym tbl report card & Report , const char &Key)
{

Report .pos = −1;
Report .key len = strlen (&Key);
if (Report .key len ≡ 0) {

Report .status = T sym tbl report card :: failure ;
Report .err entry = new Err zero len sym ;
return;

}
Report .key len += 1;

const char ∗k = &Key ;

Report .pos = ∗k++;
for (; ∗k 6= 0; ++k) { /∗ walk the plank characters ∗/

Report .pos = ((Report .pos ∗ 257) + ∗k) % hash table size ;
}
Report .status = T sym tbl report card ::okay ;
}

10 ADD SYMBOL TO TABLE ROUTINE: ADD SYM TO STBL YACCO2˙STBL §25

25. Add symbol to table routine: add sym to stbl .
AlgorithmL. Watch for the subtlety of the algorithm. It leaves one spot vacant so as to not check upfront on
every entry whether the table is full. This check is done when the item is to be inserted which can produce a
table overflow error. I was caught by this due to my assumptions going into the reading of the algorithm as
opposed to the remarks on L4 which refines the assumptions to stop the looping due to the one spot always
left empty. Again I prefer the upfront statement of expectations but this was done for teaching purposes.
As C is not restriced to label length as in MIX, I use the label name to indicate intent rather than MIX’s
letter-number combination. The “leave one spot vacant” optimization benefits finding an entry.

Constraints:
ip1: report card to contain the result
ip2: symbol’s literal
ip3: symbol object
ip4: reason for entry — defined or used
ip5: what type of symbol — terminal or rule

Errors:
1) duplicate entry
3) hash function errors
4) same key address between new symbol and item in symbol table

〈Accrue source code 20 〉 +≡
void yacco2 stbl ::add sym to stbl
(T sym tbl report card & Report
, const char &Name
,yacco2 ::CAbs lr1 sym & Sym
, table entry ::defined or used typWhy
, table entry ::entry typWhat)
{

static int guest cnt (0);

hash : 〈Hashing 21 〉;
〈Handle hash errors 26 〉;

compare : 〈Compare 27 〉;
advance : 〈Advance to next 28 〉;
insert : 〈 Insert 29 〉;
}

26. Check the report card for appropriate behavior.

〈Handle hash errors 26 〉 ≡
if (Report .status ≡ T sym tbl report card :: failure) return;
if (Report .status ≡ T sym tbl report card :: fatal) return;

This code is used in sections 25 and 30.

§27 YACCO2˙STBL ADD SYMBOL TO TABLE ROUTINE: ADD SYM TO STBL 11

27. Find a free spot for the symbol.

〈Compare 27 〉 ≡
table entry ∗ te = &yacco2 stbl ::stbl [Report .pos];

int r(0);

if (te~vacant ≡ true) goto insert ;
r = strcmp(te~key ,&Name);
if (r ≡ 0) {

Report .status = T sym tbl report card :: failure ;
Report .err entry = new Err dup entry in sym table ;
Report .tbl entry = te ;
Report .key len = 0;
return;
}

This code is used in section 25.

28. Linear probing to find spot.

〈Advance to next 28 〉 ≡
−−Report .pos ;
if (Report .pos < 0) Report .pos += hash table size ;
goto compare ;

This code is used in section 25.

29. Insert the symbol into the table.

〈 Insert 29 〉 ≡
if (guest cnt ≡ hash table full) {

Report .status = T sym tbl report card :: failure ;
Report .err entry = new Err sym tbl full ;
return;
}
if (char pool idx + Report .key len > char pool size) {

Report .status = T sym tbl report card :: failure ;
Report .err entry = new Err sym tbl char pool full ;
return;
}
++guest cnt ;
te~pos = Report .pos ;
te~vacant = false ;

char ∗key name = &char pool [char pool idx];

strncpy (key name ,&Name ,Report .key len);
te~key = key name ;
te~key len = Report .key len ;
char pool idx += Report .key len ;
te~symbol = &Sym ;
te~ type = What ;
if (Why ≡ table entry ::used) te~used = true ;
else te~defined = true ;
Report .status = T sym tbl report card ::okay ;
Report .action = T sym tbl report card :: inserted ;
Report .tbl entry = te ;

This code is used in section 25.

12 FIND SYMBOL IN TABLE ROUTINE: FIND SYM IN STBL YACCO2˙STBL §30

30. Find symbol in table routine: find sym in stbl .
This routine’s only purpose is to verification whether a symbol exists in the symbol table. It allows the
programmer to be proactive rather than reactive to a symbol table problem. How so? Reactive would be
when a duplicate error occured when adding a symbol to the table. As an error has been posted to the
report card, now the programmer has to deal with this situation requiring cleanup if corrective action is
taken that is different to the posted error. If the error is acceptable, then one can piggy back off the posted
error. Having options is what it’s all about.

Constraints:
ip1: report card to contain the result
ip2: symbol’s literal

Errors:
1) hash function errors

〈Accrue source code 20 〉 +≡
void yacco2 stbl ::find sym in stbl (T sym tbl report card & Report , const char &Name)
{
hash : 〈Hashing 21 〉;
〈Handle hash errors 26 〉;

compare : 〈Find Compare 31 〉;
advance : 〈Find Advance to next 32 〉;
}

31. Find a free spot for the symbol.

〈Find Compare 31 〉 ≡
Report .tbl entry = &yacco2 stbl ::stbl [Report .pos];
table entry ∗ te = Report .tbl entry ;
if (te~vacant ≡ true) {

Report .status = T sym tbl report card ::okay ;
Report .action = T sym tbl report card ::not fnd ;
return;
}
int r = strcmp(te~key ,&Name);

if (r ≡ 0) {
Report .status = T sym tbl report card ::okay ;
Report .action = T sym tbl report card :: fnd ;
return;
}

This code is used in section 30.

32. Find Advance to next. Linear probing to find spot.

〈Find Advance to next 32 〉 ≡
−−Report .pos ;
if (Report .pos < 0) Report .pos += hash table size ;
goto compare ;

This code is used in section 30.

§33 YACCO2˙STBL GET TABLE ENTRY BY SUBSCRIPT: GET SYM ENTRY BY SUB 13

33. Get table entry by subscript: get sym entry by sub .
Constraints:

ip1: report card to contain the result
ip2: subscript where range 0..hash table size - 1

Errors:
1) subscript out of range

〈Accrue source code 20 〉 +≡
void yacco2 stbl ::get sym entry by sub(T sym tbl report card & Report , int Sub)
{

Report .pos = Sub ;
if ((Sub < 0) ∨ (Sub > hash table full)) {

Report .status = T sym tbl report card :: failure ;
Report .err entry = new Err subscript out of range ;
return;

}
Report .tbl entry = &yacco2 stbl ::stbl [Sub];
Report .status = T sym tbl report card ::okay ;
if (Report .tbl entry ~vacant ≡ false) Report .action = T sym tbl report card :: fnd ;
else Report .action = T sym tbl report card ::not fnd ;
}

14 TEST PROGRAM: TEST PROGRAM YACCO2˙STBL §34

34. Test program: test program .
A generator manufactures all the symbol literals up to table full. The literate routines below describe well

each type of test with their appropriate range of errors.

〈Accrue source code 20 〉 +≡
void yacco2 stbl :: test program ()
{
〈uns 8 〉;
〈 Initial variables 35 〉;
〈Test 1st entry, duplicate, and same key address 36 〉;
〈Fill up balance of table 37 〉;
〈Test table overflow error 38 〉;
〈Test find symbol in table 39 〉;
〈Test get entry by subscript 40 〉;
〈Cleanup 41 〉;
}

35. Initial variables for test.

〈 Initial variables 35 〉 ≡
const char ∗zero len name = "";

T eol ∗ a good sym = new T eol ;

int cnt (0);

T sym tbl report card report card ;
std ::cout � "Prime number used: " � hash table size � std ::endl ;
std ::cout � "Test zero len key" � std ::endl ;
add sym to stbl (report card , ∗zero len name , ∗a good sym , table entry ::used , table entry :: terminal);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error zero_len_name: " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
else {

std ::cout � "Should have been a zero_len_name error " � std ::endl ;
}

This code is used in section 34.

§36 YACCO2˙STBL TEST PROGRAM: TEST PROGRAM 15

36. Test 1st entry, duplicate, and same key address.

〈Test 1st entry, duplicate, and same key address 36 〉 ≡
char buf [256];

std ::string ∗ sbuf [hash table size]; /∗ sbuf [0] symbolic vacant spot ∗/
sbuf [1] = new string ("1");

const char ∗f1st dup = "1";

std ::cout � "1st entry test" � std ::endl ;
add sym to stbl (report card , ∗sbuf [1]~c str (), ∗a good sym , table entry ::defed , table entry ::rule);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error first entry failed: " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
std ::cout � "duplicate entry test" � std ::endl ;
add sym to stbl (report card , ∗f1st dup , ∗a good sym , table entry ::defed , table entry ::rule);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error duplicate entry: " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
else {

std ::cout � "Should have been a duplicate entry error " � std ::endl ;
}
cout � "Same key address test " � endl ;
add sym to stbl (report card , ∗sbuf [1]~c str (), ∗a good sym , table entry ::defed , table entry ::rule);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error same key address: " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
else {

std ::cout � "Should have been a same key address error " � std ::endl ;
}

This code is used in section 34.

37. Fill up balance of table.

〈Fill up balance of table 37 〉 ≡
const char ∗numeric key = "%i";

std ::cout � "Fill up balance of table" � std ::endl ;
for (cnt = 2; cnt ≤ hash table full ; ++cnt) {

sprintf (buf ,numeric key , cnt);
sbuf [cnt] = new string (buf);
add sym to stbl (report card , ∗sbuf [cnt]~c str (), ∗a good sym , table entry ::defed , table entry ::rule);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error entry failed: " � cnt � " " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;

}
}

This code is used in section 34.

16 TEST PROGRAM: TEST PROGRAM YACCO2˙STBL §38

38. Test table overflow error.

〈Test table overflow error 38 〉 ≡
const char ∗overflow key = "overflow";

std ::cout � "Overflow test" � std ::endl ;
add sym to stbl (report card , ∗overflow key , ∗a good sym , table entry ::defed , table entry ::rule);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error overflow: " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
else {

std ::cout � "Should be overflow error" � std ::endl ;
}

This code is used in section 34.

39. Test find symbol in table. It walks all the keys just entered whose range is 1..hash table full . The last
test is “not found” on the overflow key.

〈Test find symbol in table 39 〉 ≡
std ::cout � "Find symbol test" � std ::endl ;
for (cnt = 1; cnt ≤ hash table full ; ++cnt) {

find sym in stbl (report card , ∗sbuf [cnt]~c str ());
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error Should have been found: " � cnt � " " � report card .err entry ~ id �
std ::endl ;

delete report card .err entry ;
}
else {

if (report card .action ≡ T sym tbl report card ::not fnd) {
std ::cout � "Error Action should have been found: " � cnt � std ::endl ;

}
}
}
std ::cout � "Not found test" � std ::endl ;
find sym in stbl (report card , ∗overflow key);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Should not be an error: " � cnt � " " � report card .err entry ~ id � std ::endl ;
delete report card .err entry ;
}
else {

if (report card .action ≡ T sym tbl report card :: fnd) {
std ::cout � "Error should be not found: " � std ::endl ;

}
}

This code is used in section 34.

§40 YACCO2˙STBL TEST PROGRAM: TEST PROGRAM 17

40. Test get entry by subscript. Walk thru -1..hash table size . This should produce 2 out-of-bound errors:
one at each end of the spectrum traveled — -1 and hash table full . The range 0..hash table full should have
all spots occupied except 1 vacant spot as explained in the Facts section.

〈Test get entry by subscript 40 〉 ≡
std ::cout � "get symbol by subscript test" � std ::endl ;
for (cnt = −1; cnt ≤ hash table size ; ++cnt) {

get sym entry by sub(report card , cnt);
if (report card .status ≡ T sym tbl report card :: failure) {

std ::cout � "Error subscript out of range: " � cnt � " " � report card .err entry ~ id �
std ::endl ;

delete report card .err entry ;
}
else {

if (report card .action ≡ T sym tbl report card ::not fnd) {
std ::cout � "Error not found if this message appears more than once: " � cnt �

std ::endl ;
std ::cout � "Remember 1 spot is left vacant in the algorithm!" � std ::endl ;

}
}
}

This code is used in section 34.

41. Cleanup.

〈Cleanup 41 〉 ≡
std ::cout � "Clean up" � std ::endl ;
delete a good sym ;
for (cnt = 1; cnt ≤ hash table full ; ++cnt) {

delete sbuf [cnt];
}

This code is used in section 34.

18 NOTES: BRIC-A-BRAC YACCO2˙STBL §42

42. Notes: bric-a-brac.

43. Remove key address dependency and copy key to a global char pool area.
Originally I used the passed key’s address also as storage and guarded against the same key address passed
by an error. Now what if one drains its info from cin into a common storage area? So I am more robust but
with more overhead.

The symbol table can now be used elsewhere. The CAbs lr1 sym value item would be changed to some
generic or specific object. Possibly void ∗ with type casting or adjusted to the local requirements.
Improvement: 8 Mar. 2005

§44 YACCO2˙STBL INDEX 19

44. Index.

a good sym : 35, 36, 37, 38, 41.
action : 29, 31, 33, 39, 40.
add sym to stbl : 2, 19, 23, 25, 35, 36, 37, 38.
advance : 25, 30.
Algorithm : 5, 25.
buf : 36, 37.
c str : 36, 37, 39.
CAbs lr1 sym : 19, 25, 43.
char pool : 19, 20, 29, 43.
char pool idx : 19, 20, 29.
char pool size : 19, 20, 23, 29.
cnt : 35, 37, 39, 40, 41.
code : 5.
compare : 25, 28, 30, 32.
compile : 14.
cout : 35, 36, 37, 38, 39, 40, 41.
cpp : 2, 11, 14.
cweave : 12.
cweb : 5, 19.
defed : 36, 37, 38.
defined : 29.
defined or used typ : 19, 25.
endl : 35, 36, 37, 38, 39, 40, 41.
entry typ : 19, 25.
Err dup entry in sym table : 27.
err entry : 24, 27, 29, 33, 35, 36, 37, 38, 39, 40.
Err subscript out of range : 33.
Err sym tbl char pool full : 29.
Err sym tbl full : 29.
Err zero len sym : 24.
Facts: 17, 40.
failure : 24, 26, 27, 29, 33, 35, 36, 37, 38, 39, 40.
false : 29, 33.
fatal : 26.
find sym in stbl : 2, 19, 30, 39.
fnd : 31, 33, 39.
f1st dup : 36.
get sym entry by sub : 2, 19, 33, 40.
guest cnt : 25, 29.
hash : 25, 30.
Hash : 5.
hash function: 17, 23.
hash fnct : 19, 21, 24.
hash table full : 23, 29, 33, 37, 39, 40, 41.
hash table size : 2, 14, 19, 20, 23, 24, 28, 32,

33, 35, 36, 40.
How : 14.
How to compile the symbol table: 11, 14.
How to expand the symbol table: 14.
How to print —cweave— report: 12.
How to run the test: 15.

id : 35, 36, 37, 38, 39, 40.
insert : 25, 27.
inserted : 29.
k: 24.
Key : 19, 24.
key : 27, 29, 31.
key len : 24, 27, 29.
key name : 29.
kw in stbl : 4.
Name : 19, 21, 25, 27, 29, 30, 31.
not fnd : 31, 33, 39, 40.
NS yacco2 err symbols: 9.
NS yacco2 terminals: 9, 19.
number : 17.
numeric key : 37.
okay : 24, 29, 31, 33.
overflow key : 38, 39.
pos : 24, 27, 28, 29, 31, 32, 33.
prime : 17.
procedure : 5.
r: 27, 31.
refered rule : 4.
refered T : 4.
Report : 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33.
report card : 35, 36, 37, 38, 39, 40.
rule : 36, 37, 38.
rule in stbl : 3, 4.
Salient points : 13.
sbuf : 36, 37, 39, 41.
sprintf : 37.
status : 24, 26, 27, 29, 31, 33, 35, 36, 37, 38, 39, 40.
stbl : 2, 19, 20, 27, 31, 33.
std : 35, 36, 37, 38, 39, 40, 41.
str delimiter : 23.
strcmp : 27, 31.
string : 36, 37.
strlen : 24.
strncpy : 29.
Sub : 19, 33.
Sym : 19, 25, 29.
Symbol’s literal: 16.
symbol : 29.
T eol : 35.
T in stbl : 3, 4.
T sym report card : 2.
T sym tbl report card : 19, 24, 25, 26, 27, 29, 30,

31, 33, 35, 36, 37, 38, 39, 40.
table entry : 19, 20, 25, 27, 29, 31, 35, 36, 37, 38.
tbl entry : 27, 29, 31, 33.
te : 27, 29, 31.
terminal : 35.

20 INDEX YACCO2˙STBL §44

Terminals : 5.
Terminology: 16.
test program : 2, 19, 34.
th in stbl : 4.
to : 14.
true : 27, 29, 31.
type : 29.
used : 29, 35.
used : 29.
vacant : 27, 29, 31, 33.
What : 19, 25, 29.
Why : 19, 25, 29.
yacco2: 2, 9, 19, 25.
yacco2 err symbols : 2.
yacco2 stbl: 2, 6, 7, 8, 11, 14, 19, 20, 21, 23,

24, 25, 27, 30, 31, 33, 34.
yacco2 stbl : 19.
yacco2 terminals : 2.
yacco2stbl : 2.
zero len name : 35.

YACCO2˙STBL NAMES OF THE SECTIONS 21

〈Accrue source code 20, 24, 25, 30, 33, 34 〉 Used in section 9.

〈Advance to next 28 〉 Used in section 25.

〈Cleanup 41 〉 Used in section 34.

〈Compare 27 〉 Used in section 25.

〈Fill up balance of table 37 〉 Used in section 34.

〈Find Advance to next 32 〉 Used in section 30.

〈Find Compare 31 〉 Used in section 30.

〈Handle hash errors 26 〉 Used in sections 25 and 30.

〈Hashing 21 〉 Used in sections 25 and 30.

〈 Include header file 22 〉 Used in section 9.

〈 Initial variables 35 〉 Used in section 34.

〈 Insert 29 〉 Used in section 25.

〈Test 1st entry, duplicate, and same key address 36 〉 Used in section 34.

〈Test find symbol in table 39 〉 Used in section 34.

〈Test get entry by subscript 40 〉 Used in section 34.

〈Test table overflow error 38 〉 Used in section 34.

〈bns 6 〉
〈 ens 7 〉
〈uns 8 〉 Used in section 34.

〈 yacco2_stbl.cpp 9 〉
〈 yacco2_stbl.h 19 〉

YACCO2˙STBL

Section Page

License . 1 1

Summary of Yacco2 and Linker’s Symbol Table . 2 2
Synopsis of table entries . 3 2
Special note . 4 2

Introduction to Yacco2’s Symbol Table . 5 3
Namespace sections . 6 4
Maintenance . 10 4
Salient Points established . 13 5
How to run the test . 15 6
Terminology . 16 6
Facts . 17 7
Anatomy of symbol table . 18 7
Create header file for symbol table environment . 19 8

Notes regarding hashing . 23 9
The hash procedure code: hash fnct . 24 9
Add symbol to table routine: add sym to stbl . 25 10
Find symbol in table routine: find sym in stbl . 30 12
Get table entry by subscript: get sym entry by sub . 33 13

Test program: test program . 34 14
Notes: bric-a-brac . 42 18
Index . 44 19

	License
	Summary of Yacco2 and Linker's Symbol Table
	Synopsis of table entries
	Special note
	Introduction to Yacco2's Symbol Table
	Namespace sections
	Maintenance
	Salient Points established
	How to run the test
	Terminology
	Facts
	Anatomy of symbol table
	Create header file for symbol table environment
	Notes regarding hashing
	The hash procedure code: hash_fnct
	Add symbol to table routine: add_sym_to_stbl
	Find symbol in table routine: find_sym_in_stbl
	Get table entry by subscript: get_sym_entry_by_sub
	Test program: test_program
	Notes: bric-a-brac
	Index

	Names of the sections
	Accrue source code
	Advance to next
	Cleanup
	Compare
	Fill up balance of table
	Find Advance to next
	Find Compare
	Handle hash errors
	Hashing
	Include header file
	Initial variables
	Insert
	Test 1st entry, duplicate, and same key address
	Test find symbol in table
	Test get entry by subscript
	Test table overflow error
	bns
	ens
	uns
	yacco2_stbl.cpp
	yacco2_stbl.h

