
A Grammar Supporting Conditional and Parallel

Parsing

Dave Bone

December 10, 2014

Abstract

This is the second paper in the series responding to the questions
raised as to why deterministic context-free grammars are not making
it any easier to define and compile current-day computer languages
like C++. As the first paper broadly outlined the requirements sup-
porting parallel parsing, this paper defines an extended Backus-Naur
Form (EBNF) grammar to support conditional and parallel parsing
in a bottom-up fashion. With this material, the reader will be able to
continue with the third paper which discusses parallel parsing solutions
to the questions raised by the first paper in this series.

1 Introduction

As I come from Quebec, bienvenue — welcome to the 2nd paper. To start
with, the basic language theory of a context free grammar is developed along
with the terminology used throughout this paper. I will draw from a mar-
velous book on language theory —“Formal Languages and Their Relation
to Automata” by Hopcroft and Ullman. My copy is 1969 vintage. I’m im-
pressed by its drawings, brevity, and depth on the subject even with its 35
years of age.

I will then build on this definition using as a model yacco2’s grammar
[1]. Below, the 3 items will be developed to extend a basic grammar into
the parallel parsing domain:

• terminal classifications and definitions

• productions

• parallel and conditional parsing grammatical expressions

1

The principle theme of this paper is for the reader to feel comfortable
with the developed ideas expressed within a grammar’s context. Examples
are drawn from yacco2 to illustrate the ideas being developed. The intent
is not to be a user manual but to describe the “what part” needed within a
grammar to support parallel parsing drawn from experience.

2 Context Free Grammar Definition

As defined by [2], a context-free grammar is composed of 4 parts with one
restriction highlighted below in bold:

• VN symbol represents the variables alphabet: synonyms are rules and
nonterminals.

• VT symbol represents the terminals alphabet.

• P symbol represents a set of productions with the following structure:

lhs → rhs

lhs is the left-hand-side of a production using a rule ∈ VN , → sepa-
rates the two sides, rhs is the right-hand-side of the production rep-
resenting a string of symbols drawn from VN and VT . rhs can be the
empty string.

• S start symbol drawn from VN appearing only in the lhs of a produc-
tion

VN , VT , and P are finite sets. VN and VT are disjoint: there are no common
elements between them. All the components making up a grammar is called
a grammar tupple — { VN ,VT ,P ,S }.

Other terminology:
Below are 2 types of terminal sets described within the LR(1) domain hav-
ing 1 terminal look ahead. I do not generalize their definitions to the k
look-ahead scene as this does not add anything to their usage within this
paper. How they are derived is out of the scope of this paper.

Lookahead : set of terminals that delineates a boundary. These are the sets
that demarcate when a rhs of a production reduces to its lhs. Lookahead
boundary is used inter-changeably with lookahead to emphasis the nature

2

of demarcation.

First set : set of terminals derived from a set of symbol strings drawn from
VN and VT . Depending on their contextual use, the terminals are the first
terminals starting (derived from) the string of symbols: consequently its
name.

2.1 A Metamorphosis...

Yacco2’s grammar has a basic anatomy of 4 parts: Fsm, Parallel thread,
Terminals, and Productions. It has the same grammar tupple just described
with Terminals and Productions being equivalent to the formal definitions
of VT and P . P is used to implicitely define S and VN thus completing the
grammar tupple. Impliciteness makes for a neater grammar and eases in its
maintenance.

As the bare essence of a grammar just outlined is elegant and seductive
in simplicity, reality demands taking this definition and adding source code
appendages to forge it into software. There are two related problems: have
the compiler / compiler digest the grammar and secondly in parallel, as-
sociate the syntax-directed code with its emitted finite state tables. These
code appendages go across all the elements of a grammar tupple. Fsm and
Parallel thread are explicit extensions to the basic grammar which are pack-
aging agents. The basic framework for syntax-directed directives will be
developed later relating to parallel and conditional parsing. See [1] for a
complete discussion with extensions into polymorphic class design.

3 Dressing up a grammar

Within the parallel parsing paradign, there are two types of grammars:

• stand-alone

• parallel

A stand-alone grammar is per current bottom-up parsing usuage. It is mono-
lithic in nature, housing all grammatical expressions. It is equivalent to each
of the grammatical passes made on a language — lexical, syntatic, semantic,
emitting phases.

A parallel thread grammar contains a fragment of a grammatical expres-
sion that gets called by the parallel operator from within either grammar
type. One can think of it as a recursive descent module except that it runs

3

as a thread and parses in bottom-up fashion. Its productions have the same
properties of a stand-alone grammar except that its lookahead boundary is
tunable whereas the stand-alone is not. It allows one to apply the divide-
and-conquer approach to parsing.

Yacco2’s language constructs uses a design similar to subroutines found
in traditional computer languages. Though the grammar parts are not
callable, each has a name, formal parameters and an enclosed body of code.

3.1 Fsm Section — the outer coat of a grammar

The Fsm section of the grammar supplies all the necessary ingredients to
define the container housing the grammar in emitted C++ form. Of course
as you have guessed, it stands for finite state machine. It houses the shift,
reduce, and lookahead tables, user syntax-directed data and code, along
with basic comments and compile time relics. Below is the Fsm construct
of a grammar and its formal parameters each separated by a comma.

1 fsm (

2 fsm-id "eol.lex",fsm-filename eol,fsm-namespace NS_eol

3 ,fsm-class Ceol

4 ,fsm-version "1.0",fsm-date "17 Juin 2003",fsm-debug "false"

5 ,fsm-comments "end-of-line recognizer"

6)

Each parameter has 2 parts: a keyword prefixed by fsm- whose name in-
dicates intent and its related value; Yacco2’s other sections use this same
pattern for their parameters. The four most important keywords of fsm are:
filename, namespace, class, and debug. These data are used in creating the
outputed file by the compiler / compiler, with the C++ namespace and class
name for the class definition of the fsm. The fsm-class parameter can also
take on a syntax-directed coding block. See [1] for complete details. Debug
is a switch to control tracing by the pushdown automaton and is currently
turned off. In a multi-threaded run environment, this comes in very handy
in debugging or in regression tests.

3.2 Parallel Thread Section — birth of a sidekick

The Parallel Thread section of the grammar supplies all the necessary ingre-
dients to define the external name of the thread, the lookahead boundary,
and the code needed to run the thread. Below is a grammar snippet of the
parallel thread construct. In the interior of the parallel-parser construct

4

are various keyword / *** paired components. parallel-thread-function
at source line 2 provides the external thread name.

1 parallel-parser (

2 parallel-thread-function

3 TH_eol

4 ***

5 parallel-la-boundary

6 eolr

7 ***

8)

At source line 5 the parallel-la-boundary component is the most in-
teresting to the grammar writer. This is the environment where one can
fine tune the lookahead boundary for the thread’s recognizing phrase. As
stated in the first paper, ambiguity comes from too many contexts being
mixed together. Parallel parsing allows one to refine the lookahead and to
remove the conflicts of mixed contexts. This refinement to the lookahead
is a major breakthrough in extending the expressive ability of deterministic
context-free grammars. The lookahead expression is similar to an arithmeti-
cal expression made from VT , VN and the plus, minus operators indicating
to add or to remove from the lookahead set. The above example has only
one VT : eolr. This terminal represents all terminals including itself in VT .
The - operator is generally used in conjunction with the eolr terminal just
explained.

To make it easier for the grammar writer, local productions can be de-
fined and referenced in this expression instead of sequentially writing a long
list of terminals. Use of the rule in the expression means apply its first set
under the set operator in effect. It is a bulking mechanism that makes life
easy for the grammar writer and gives a descriptive sense to the action being
taken. For example, if the boundary is composed of hexadecimal digits, a
production can be defined with these digits and the expression just refer-
ences the hex rule defined. The production does not have to be used in the
grammar proper. It can just be defined strictly for the lookahead expression.
Here are some examples to give you a feel in the expressive ease defining the
lookahead set. Let’s assume that VT has these terminals: 0..9 and eolr

where .. reads through to.

Example 1: eolr - 0

This defines a lookahead set of eolr and 1..9. Zero has been removed.
Remember eolr indicates all the terminals in VT .

5

Example 2: Roctal + 8 + 9

To help in understanding this example, the Roctal definition is given below
even though Yacco2’s P has not formally been defined. Its correspondence
to the formal definition of P should be obvious to the reader.

1 Roctal AD AB(){ // Roctal production having 8 sub-rules

2 -> 0 // sub-rule 1

3 -> 1

4 ... // 2..6 have been left out for space reasons

5 -> 7 // sub-rule 8

6 }

Roctal’s first set is 0..7 terminals. Using the addition operator for terminals
8 and 9, the lookahead set now contains the decimal digits.

3.3 Terminals Section — bring on the hors d’oeuvres

Terminals in general are entities that make up the language being parsed. It
is the fodder to all other parsing passes. Now that’s a nice general statement
but... Let’s look at the contents of a file to be parsed. To be more specific, it
will be a character stream file of ASCII 8 bit variety. This does not detract
from other file types which could be tree based. It makes it easier for me to
build my argument. Its composition is made up of raw characters. These raw
characters (RC) are converted to raw terminals with positional attributes.
The end-of-the-character stream condition needs expressing though it is not
a character in the recognized language. Yacco2 defines these type of sit-
uations as constant terminals: LRk terminals :}. Following this, the raw
terminals are digested into concatenated entities represented by other ter-
minal types in the food chain. Three things can happen in the digestion
process: the raw terminals breaks into sequences of other terminal entities,
the sequence is in error, and sequence end has been reached (another LRk
situation). Of course each pass over the terminal sequences can evolve other
terminals or meta-terminals that are terminal carriers.

The scene just described illustrates how Yacco2 classifies its terminals
into 4 basic categories according to situations. These situations are classed
as: special k terminals representing situations outside of the input stream,
raw characters: I use this term as it deals with raw material, error, and your
evolutionary terminals (terminals) that get transformed from raw terminal
sequences or evolutionary parse sequences: for example, your basic stables

6

like identifiers, keywords and comments, to terminals of positional declara-
tion caused by a later pass. This classification provides a simple framework
to deal with VT . LRk and RC are unvaried in their makeup. They are fixed
and ready made: done once, used forever... With this classification, Yacco2
enumerates VT by ranking the terminals in the following order: LRk, RC,
evolutionary, and errors. From this, one can see that both error and evolu-
tionary are dynamic and grow out as VT is being developed. This growth
evolves as more passes regurgitate and continue the terminal digestion pro-
cess. This ranking is published globally across all emitted grammars which
allows the grammar writer to specifically identify each terminal.

Yacco2’s VT is composed of 5 sequential parts. An enumeration compo-
nent followed by the 4 individual terminal types. Each language construct
contains the filename and namespace for the emitted file. For the terminal
types, their appropriate declarations are given. Normally these definitions
are brought into the grammar by Yacco2’s ‘@’ include file operator which
allows nesting.

3.3.1 VT Enumeration — And a one and a two...

Enumeration gives a specific identity to each terminal across the 4 terminal
types. It is the most efficient tag in the terminal registration process manu-
factured by the compiler / compiler. There is also the literal identifier used
in generating the terminal class’s name: great for tracing purposes but very
inefficient in lineup identification. As designed by C++ advice at the time,
the C++ namespace facility was used for all the given reasons. The grammar
construct is minimal in that it just provides the filename and namespace for
the emitted C++ terminal enumeration. The manufactured code is included
across all other grammar objects for the pushdown automaton and poten-
tial use by syntax-directed code. This is the internal dictionary of terminal
terms that allows to differentiate abstract terminal objects during parsing.
Below is the grammar construct for enumerating terminals introduced by
T-enumeration.

1 /*

2 Purpose:

3 Supplies emitted enumeration file name and namespace.

4 The lr1 compiler/compiler generates the "enum" type for

5 the 4 classes of terminals:

6 1) lrk

7 2) raw characters

8 3) evolutionary terminals

9 4) errors

7

10

11 Note:

12 The symbol ordering is as follows:

13

14 0 <= Lrk < RC < evolutionary terminals < Errors

15 */

16 T-enumeration

17 (file-name yacco2_T_enumeration,name-space NS_yacco2_T_enum)

18 {}

3.3.2 Just show me

LRk will be developed in detail as it defines the parallel and conditional
terminals needed in this paper. It also gives to the reader the cookie cutter
attitude to the other 3 categories of terminals: error, RC, and evolutionary.
The same pattern of definition is used for these others. Below is a snip-
pet defining the LRk terminals introduced by lr1-constant-symbols. It
has the same subroutine skeleton as previously described in Fsm with the
additional enclosure bounding the terminal declarations by an open / close
brace pair of lines 3 and 36.

8

1 lr1-constant-symbols

2 (file-name yacco2_k_symbols,name-space NS_yacco2_k_symbols)

3 {

4 eog (sym-class LR1_eog

5 {

6 user-declaration

7 LR1_eog();

8 ***

9 user-implementation

10 LR1_eog::LR1_eog(){

11 T_CTOR("eog",T_LR1_eog_,0,0,false,false,0,0)

12 }

13 LR1_eog LR1_eog__;

14 extern CAbs_lr1_sym*

15 NS_yacco2_k_symbols::PTR_LR1_eog__ = &LR1_eog__;

16 ***

17 }

18)

19

20 // the following terminals take the same pattern as eof

21 // the material is edited for space purposes

22 eolr (sym-class LR1_eolr)

23 "|||" (sym-class LR1_parallel_operator)

24 "|r|" AD AB (sym-class LR1_parallel_reduce_operator)

25 "|?|" (sym-class LR1_dynamic_operator)

26 "|.|" (sym-class LR1_invisible_shift_operator)

27 "|+|" (sym-class LR1_all_shift_operator)

28 "|t|" AD AB (sym-class LR1_fset_transience_operator)

29

30 lrk-sufx

31 extern CAbs_lr1_sym* PTR_LR1_eog__;

32 extern CAbs_lr1_sym* PTR_LR1_eof__;

33 ... // editorial discretion exercised

34 extern CAbs_lr1_sym* PTR_LR1_eolr__;

35 ***

36 }

LRk defines all the situational terminals outside of the language being
recognized. These situations are end-of-grammar: eog, elimination of looka-
head set bloat: eolr, and an assortment of internal grammatical operators
used within the rhs of P . The eolr symbol represents all symbols in VT
including itself. Its definition is a major convenience in the detailing of a
thread’s lookahead expression and in dieting of its set size. Each declaration

9

starts with its VT symbol followed by its C++ emitted attributes. Source
line 22 for terminal eolr illustrates a minimalist declaration. Source Line
24 shows two attributes, AD and AB, that can be associated with the ter-
minal definition. They are house cleaning indicators. The AD attribute
signals delete the terminal when popped from the parse stack typically used
when the returned terminal from a thread is a meta-terminal carrier that
gets thrown away after its contents have been extracted. The AB attribute
indicates delete the terminal when the parse has aborted. AD comes into its
own when parallel threads have partially parsed a phase and their remnants
need cleaning up.

Source lines 4 to 18 defines eog and shows some syntax-directed direc-
tives that adds additional C++ code to its definition. Directives use the con-
struction model of directive keyword, code, *** format. user-declaration
and user-implementation are directives placing their code within the fab-
ricated C++ terminal class. Within a terminal declaration and across the
terminal classification, directives model a before / during / after an event.
Lines 30 to 35 illustrates the lrk-sufx directive to place its C++ code at
the end of the header file for all LRk terminals. Directives try to be self
defining for anyone reading the grammar.

3.3.3 A little thing called...

Okay, what are these internal grammatical operators? Lines 23 to 28 defines
them with their C++ class name giving an incline of intent. Only the im-
portant ones pertinent to parallel and conditional parsing will be reviewed.
The design of the parallel symbols took the basic geometrical figure of two
vertical lines indicating parallelism. Building on this, common symbols on
the keyboard were sandwiched between the vertical lines ‘||’ to mimic intent.
Here are the relevant operators:

• ||| operator introduces a thread expression in the rhs of a production.

• |+| operator — wild shift operator allows one to generalize the shift
operation.

• |.| operator — invisible shift operator allows one to shift out of an
ambiguous situation. It is a correctional symbol in fine tuning ambi-
guity.

The contexts of where these parallel symbols are deployed will be developed
in the P section to follow.

10

3.4 Production Section — waiter, did I order this?

To get quickly into the Productions part, below is a Production construct
of Yacco2:

1 // Productions: I use rules but it really is Productions

2 rules

3 {

4 Reol AD AB() // 1st rule which defines S: Start rule Reol

5 {

6 -> Rdelimiters // rhs using rule Rdelimiters defined later

7 }

8

9 Rdelimiters AD AB() // Rdelimiters rule having 3 sub-rules

10 {

11 -> "x0a" // 1st rhs - raw char terminal: line feed

12 -> "x0d" // 2nd rhs - carriage rtn

13 -> "x0d" "x0a" // 3rd rhs - carriage rtn with line feed

14 }

15 }

From the snippet, rules introduces the Productions section to the grammar
with its bounding open–close braces of source lines 3 and 15. The comments
in the example should orientate the reader to Yacco2’s karaoke of formally
defined P , and the implicit definitions of S and VN derived from P . Where
the formal definition of a grammar defines the productions having a lhs →
rhs structure, for efficiency reasons, the lhs is defined once followed by its
enclosure containing one or more → rhs expressions. Each individual sub-
production is unique; I refer to them as sub-rules. As grammars are written
using basic keyboard symbols that are not turned into graphical symbols, I
chose to simulate the → symbol by ->.

The attributes AD and AB are as previously defined: house cleaning
indicators for the pushdown automaton applied against the rule. Following
the AB attribute are parentheses illustrated by source line 4 which con-
tains nothing. Their purpose is to declare various types of syntax-directed
coding blocks for the production. This will be explored later as it handles
arbitration on results returned from threads.

3.4.1 rhs — strings of things...

From the formal definition, rhs is composed of symbols, possibly empty,
drawn from VT , VN . The example below is of no difference to conventional

11

grammars except for the empty string which is usually represented by epsilon
— ε in the formal definition, Yacco2 represents it by a blank rhs:

1 -> 0 "." Rfraction

2 -> // rhs epsilon

An empty rhs can be placed anywhere within the list of sub-rules of a
Production.

To express parallelism within a grammar, one restriction was placed on
the rhs’s string of symbols: it has a fixed format of symbols and associated
syntax-directed code. To simplify the parallel expression, the normal direc-
tive declaration was removed and its contents exposed. The parallel phrase
is made up of three parts which are the parallel operator ||| introducing
the grammatical phrase, the terminal returned from the called thread, and
the thread to be called which is the associated syntax-directed code. Below
is a sample parallel phrase:

1 -> ||| "bad-char" NS_bad_char_set::TH_bad_char_set

The first two terminals, ||| "bad-char", are parsed like any normal rhs ex-
pression while the to-be-called thread name is associated with the finite state
tables. The alert reader will notice that the associated code is not executed
after the returned terminal but before, a slight twist on normal syntax-
directed code execution which follows at the end of a grammatical phrase;
a design decision made to be consistent with all other grammatical phrases.
This phrase cannot be mixed with other symbols in its sub-production.

Now let’s build on a parallel thread phrase. Multiple situations can be
mixed within a production. There are no exceptions to their use within a
production. It is just another type of grammatical string of symbols making
up a sub-rule. Typical variations of use are:

• a thread can return different terminals.

• a thread recognizes many terminals and it’s too expensive in coding to
acknowledge all terminals returned. So, a meta-terminal is returned
where by its contents contains the specific terminal recognized.

• multiple thread phrases are present but only one terminal will be re-
turned.

• multiple thread phrases are present and arbitration is required to select
which terminal is accepted.

12

Here is an example illustrating these variations:

1 -> ||| keyword NS_yacco2_keyword::TH_yacco2_keyword {

2 op

3 CAbs_lr1_sym* key = sf->p2__->keyword();// get rtned kw

4 ADD_TOKEN_TO_PRODUCER_QUEUE(key)

5 ***

6 }

7 -> ||| comment NS_c_comments::TH_c_comments

8 -> ||| "comment-overrun" NULL

The above example shows 3 sub-rules all of which are calling threads. Source
line 8 uses NULL to indicate that one of the other threads called in the
production could return its terminal "comment-overrun". Source line 1
is an example of a meta-terminal where keyword is returned and how the
syntax-directed code block extracts the real keyword found. This should
keep the curious interested.

3.4.2 Arbitration — grrrr

When disputing parties cannot come to an agreement, arbitration is needed.
Parallelism does not have such emotional tantrums but it does need medi-
ation. You might be wondering ‘Why any judgement is needed at all?’.
Simultaneous use of parallel threads can produce these situations. So me-
diation is dictated by the use of parallel threads within a production; no
parallel going on, no arbitration required. Now, ‘What happens when there
are 2 or more threads being run and are successful in their parsing?’. As
occurs normally in deterministic parsing there should only be one option
open for execution. If two or more options are returned, how does one con-
tinue to parse? This is quite easy, associate at that point in the parse an
arbitrator who decides the outcome. Based on the decision, that specific rhs
containing the winning terminal continues parsing while the other returned
terminals are destroyed.

To arrive at this decision point, two requirements are needed: a holding
pool for the returned terminals that can be searched, and a unique identity
per terminal which is supplied by the enumeration construct of VT . The
below example shows where and how arbitration is declared within a specific
production. This is one part of the subset-superset problem mentioned in
the previous paper where mediation determines the outcome if the keyword
is present in the pool of returned terminals:

13

1 Rtoken AD AB

2 (

3 lhs

4 ,parallel-control-monitor

5 {

6 arbitrator-code

7 using namespace NS_yacco2_T_enum;

8 i = accept_queue->find(T_ENUM::T_T_keyword_);

9 if(i != ie){

10 accept_parse_parm = (*i).second;

11 goto arbitrated_paramater;

12 }

13 ***

14 }

15)

16 {

17 -> ||| keyword NS_yacco2_keyword::TH_yacco2_keyword

18 -> ||| identifier NS_identifier::TH_identifier

19 }

20 }

In this example mediation is achieved by the opening up of the specific
production’s syntax-directed coding block: source lines 2 to 15. Within
this block are comma delimited contexts noted by their names. The ar-
bitration context is introduced by parallel-control-monitor. Following
this are enclosure braces, lines 5 and 14, that contains the mediation direc-
tive arbitrator-code. Not to become too intimate with Yacco2’s imple-
mentation, the example shows where and how the grammar writer’s C++
code arbitrates. The code uses predefined variables and modules within the
generated Fsm class, and terminal enumeration to support the mediation
process.

3.4.3 Conditionals — Wild thing, I think I ...

Conditionals is a slight misnomer but I feel it relays to the reader its in-
tent. It comes about when there is a ranking of activities within the parsing
configuration where failure of one activity becomes the condition to try to
continue down the parsing chain of the other potential activities. These
ranked activities, as stated in the previous paper, are parallel parsing, reg-
ular terminal shift, invisible shift operator, ‘wild shift’ operator, and finally
reduce operation . The following example shows both terminal types.

14

1 -> |+| // wild shift

2 -> "x0d" |.| // example of invisible shift

There is no restriction on their use. They can be placed anywhere within
the string of symbols and without any limits to their number of appearances
within the rhs. They are treated like any other grammatical expression.

|+| is the last shift terminal to be tried in the potential chain of parsing
activities: potential shifts first, followed by reduce. As it is a wild card
facility, this allows one to be general and not be specific in the terminals
recognized. It is the last-chance shift activity to succeed before trying a
reduce. In this context, two things can be programmed for:

1. catchall facility for error handling or a catcher of terminals that need
recognition and are just passed through the parse process.

2. wild shift facility that shrinks the size of the grammar by generalizing
on the terminals accepted rather than programming for each specific
terminal.

This last-chance facility gives the grammar writer the chance to handle
unexpected aborts. It can be programmed throughout the grammar thus
giving a form of error processing controlled by the grammar writer. Care
must be exercised when specific generalities sneak into the grammar. When
multiple contexts of above are needed within the specific production, the
grammar must either be rewritten to eliminate the split personalities by
adding specific terminals as sub-rules, or use syntax-directed code in the
catchall sub-rule to distinguish the various contexts. This facility is as useful
as its other personality.

|.| is higher up the food chain in ranked activities. Its only use is to
specifically shift out of an ambiguous situation. Normally it is a reaction
to the compiler / compiler stating that a specific state’s configuration is
in trouble. I am always amused and surprised when it happens. Using
|.| drastically lowers the debugging time in trying to resolve ambiguity. It
is simple, elegant, and efficient as a solution to ambiguity: just shift it—
an aphorism to scrub it out! It is explicitly programmed into the grammar.
Where ambiguity is caused by a too general lookahead of a thread, instead of
fine tuning the parallel thread’s lookahead expression, use |.| to correct the
situation and be more efficient in runtime and space of the lookahead set.
Ambiguous resolution becomes fun when using this operator and threads
with their tuneable lookahead expressions.

15

4 Conclusion

Hopefully this paper has taught and entertained you regarding the parallel
parsing requirements within a grammatical context. Though not a lot of
time was spent describing syntax-directed code, I believe the reader should
feel comfortable with the points raised from experience with other compiler
/ compilers. [1] gives a reasonable, though a bit out of date, appendix on
its design and implementation components.

Now onto the third paper in this series. Gentle reader, you should be
armed to take it on. The raised questions from paper one will be addressed
with their solutions taken from real situations. Bring on the desert so that
the three courses can be judged.

References

[1] Bone, D. A syntax-directed compiler/compiler emitting lr(1) object-
oriented code. Master’s thesis, Concordia University, Montreal, Que,
Canada, 1998.

[2] Hopcroft, J. E., and Ullman, J. D. Formal Languages and their
Relation to Automata. Addison-Wesley Publishing Company, Reading,
MA, USA, 1969.

16

