
Can Deterministic Context Free Grammars

Catch-up

in Defining Current Programming Languages?

Dave Bone

December 1, 2014

Abstract

This paper is a first in a series questioning why deterministic context-
free grammars and current bottom-up parsers are not making it any
easier to define and compile current-day computer languages like C++.
It discusses limitations drawn from my LR(1) compiler / compiler —
yacco2 — at the time of thesis development. It introduces the ideas
to do parallel parsing, with the companion papers describing the ex-
tended Backus-Naur Form (EBNF) language, and sampled solutions
to the limitations raised.

1 Introduction

To set the tone of the paper, the following quote from Stroustrup’s book
“The Design and Evolution of C++” published in 1994 [?] illustrates the
frustrations in using bottom-up compiler / compilers with their limitations.

In 1982 when I first planned Cfront, I wanted to use a recur-
sive descent parser because I had experience writing and main-
taining such a beast, because I liked such parsers’ ability to pro-
duce good error messages, and because I liked the idea of having
the full power of a general-purpose programming language avail-
able when decisions had to be made in the parser. However,
being a conscientious young computer scientist I asked the ex-
perts. Al Aho and Steve Johnson were in the Computer Science
Research Center and they, primarily Steve, convinced me that
writing a parser by hand was most old-fashioned, would be an
inefficient use of my time, would almost certainly result in a

1



hard-to-understand and hard-to-maintain parser, and would be
prone to unsystematic and therefore unreliable error recovery.
The right way was to use an LALR(1) parser generator, so I
used Al and Steve’s YACC[Aho,1986].

For most projects, it would have been the right choice. For al-
most every project writing an experimental language from scratch,
it would have been the right choice. For most people, it would
have been the right choice. In retrospect, for C++ and me it
was a bad mistake. C++ was not a new experimental language,
it was an almost compatible superset of C — and at the time
nobody had been able to write an LALR(1) grammar for C. The
LALR(1) grammar used by ANSI C was constructed by Tom
Pennello about a year and a half later — far too late to benefit
me and C++.

In January 1997, ACM SIGPLAN Notice’s article “Programming Languages:
Past, Present, and Future” [?] where Peter Trott interviews a variety of
computer scientists intimate in language processing, Dr. Stroustrup again
restates his frustration with bottom-up processing and its over-exaggerated
expressive powers (I apologize if this is an overstatement). In 1998 my
thesis’s concluding chapter concurred with Dr. Stroustrup?s sentiments.
While using yacco2 [?] to compile itself, I slammed into the deterministic
context-free grammar limitations. As I was still convinced that LR(1) style
of compiling is the way to go, particularly when it?s the most powerful
deterministic grammar recognizer [?], the concluding remarks of my thesis
described limitations to be explored within the domain of parallel parsing
to cure its ills.

Before delving into the LR limitations experienced, I would like to com-
ment lightly on hand-coded recursive decent parsing. I’m all for it when
it’s the only technique at hand to get the job done. My reservation is its
freedom to do what you want, how you want, and when you want within
the author’s programming language. Let me rephrase this, the compiler
writer can use whatever programming discipline to achieve his goals. One
is not bound to the limitations of a compiler / compiler, the grammars it
accepts, nor the limitations of its emitted run-time environment. There is
a one-to-one relationship between the author and language used with no
indirectness to the compiled code effected by the grammar. A grammar, on
the other hand, is translated by a compiler / compiler into another language
which then gets compiled. Depending on the type of compiler / compiler
being used, a LL type recognizer produces recursive decent code while a LR

2



recognizer produces table driven code which makes it very difficult for the
programmer to tweak when grammar limitations are to be overcome. This
code tweaking should not be tolerated but when a tool has limitations, it
might be the last measure to complete the job at hand.

As this paper’s intent is to ask questions, let me put forth this thought
“How easy is it for one to understand the flow-control of a hand-coded
recursive decent compiler?”. Usually, the program is accompanied by the
railroad type diagrams as in “Pascal User Manual and Report” by Kath-
leen Jensen and Niklaus Wirth. Though these diagrams are very helpful,
their one weakness is that they are not mechanically verified. Grammars are
verified by a compiler / compiler. Each person has his own preferences to
writing a compiler. My leanings are towards the tools supporting determin-
istic context free grammars and their verification process. This series intent
is to develop a parsing paradigm to eliminate the constraints that led to the
above quote by Dr. Stroustrup and my own experiences with the original
yacco2’s grammar with its nested syntax-directed C++ code. Now with ap-
proximately four years experience using the parallel parsing paradigm, this
paper begins the journey into the LR parsing shortcomings and the parallel
parsing paradigm as a solution.

Plan of the paper: Section ?? discusses the limitations using yacco2. The
limitations are general manifestations also exhibited by other LR recogniz-
ers. Section 3 discusses the source of the context free grammars limitations.
Section 4 introduces the framework required to support the multi-parsing
concept. Section 5 concludes the paper with lead-ins to the companion
papers to follow.

2 Limitations to Bottom-up Parsing

The shortcomings come from experiences using my LR compiler / compiler.
Though the points raised are not exhaustive, I believe they represent well the
general problems experienced by others using LR compiler / compilers and
their accepted grammars. The points are in no significant order of appear-
ance in the list. Some limitations are generalizations about grammars while
others are implementation / facilities needed when using the grammars.

2.1 Ambiguity Resolution is Hard to Correct

When struck with an ambiguous grammar and the explicative(s) usually
muttered, how easy is it to find the source of the ambiguity and to fine-
tune the ambiguity or better yet to get rid of it? In bottom-up parsing,

3



there are two types of ambiguous situations produced by a grammar’s finite
automaton:

• reduce / reduce

• shift / reduce

The following examples are to re-enforce to the reader the necessity in sim-
plifying ambiguity resolution. I know gentle reader that you don’t need this
remainder; the examples give the common source of ambiguity — mixed
contexts that surprisingly compete equally for resolve. They fall into the
following contexts:

• grammars defining subset / superset language features. I use the term
grammars in the sense of grammatical expressions within one gram-
mar.

• nested grammars

• ambiguous language features

Example one is the mixing together subset and superset grammars. An
example is keywords being a subset of identifiers defined in a language. For
most implementations, the compiler uses the grammar defining an identifier
and does post processing by table lookup to see whether the identifier is
a keyword. Though this illustrates the problem, you might wonder is this
really a problem particularly when the superset grammar suffices — strange
that a grammar snippet is used to define the keywords [?] but cannot be
incorporated into the overall grammar. Apart from efficiency issues whereby
each identifier formed must be checked by a table lookup as to its terminal
type, does this situation not ask for a better way to resolve the mixing of
grammatical expressions into a grammatical environment without ambigu-
ity? Is there a way to break them up, use them as separate entities within
the parsing environment and yet have no uncertainty about their parsed
results?

Example two is the defining of multiple language entities that are nested
such as all the legitimate character sequences allowed within a C++ literal:
ex. “abc\xab\n”. There are the regular characters sequences, octal and
hexadecimal escape sequences, and character escape sequences expressing
the likes of line feed, bell, tab, etc. The principal grammar now contains
other grammatical expressions to refine the language accepted; the various
escape sequences are such a refinement. Mix them as one grammar and am-
biguity shows up as a gorgon. Again post processing on the literal is usually

4



done after using a coarser grammar. But can this be refined using multiple
grammars without interference from ambiguity? Are there assurances that
their findings (accepted input) are unique and well behaved as reported to
the pushdown automaton?

The last example deals with language features that are inherently am-
biguous. Is there a C++ grammar out there that handles templates, excep-
tions, and run-time-type identification [?][item 37.11]? Typically a coarser
grammar is used to define a larger language with semantic routines used to
complete the verification of the accepted string. Deterministic context-free
grammars are very expressive but become weak in processing quasi context
sensitive environments. The normal recourse is to use a dis-ambiguity strat-
egy within the pushdown automaton, or modify the grammar to accept a
larger language and to legitimize its accepted input by post-process semantic
routines. Can this limitation be eliminated or minimized?

An ambiguous grammar can be difficult to resolve particularly if there are
many rules that have been recognized in a long grammatical sentence. The
common prefixes of grammatical phrases being reduced can be challenging
to pinpoint the source of the problem when the grammar is large. Figuring
out who contributed to the lookahead sets when merges have occurred within
the lookahead graph can be vexing when faced with correcting the grammar
to make it kosher.

Ambiguity reporting in my eyes is good. I mumble like everyone when
such a situation occurs. It takes on the same context as an error message
from a traditional compiler. Unfortunately, the correction of it can be a
bit of a challenge though witness convoluted template errors from C++
which can produce the same perplexity. Regardless of the algorithm used
to compile a grammar into its finite automaton: LR(0), SLR(1), LALR(1),
LR(1), LR(k), the expressive difference between them is not very significant
[?, Horning:9]. To the grammar writer, somehow ambiguity needs a different
approach for its resolution. YACC [?] defaulted to a simple set of rules to
ease the ambiguous situation as a last resort by favouring shifting instead of
reducing. Other research uses an on-demand technique of “k look-ahead” in
resolving the ambiguity [?]. This does not completely solve ambiguity but at
least gives another way out of the dilemma. Are there other ways to resolve
ambiguous grammars with simplicity and elegance? Are there grammatical
contexts and constructs that can bailout ambiguity without the Dr. Watson
type investigations needed to unravel a convoluted ambiguous grammar?
The generic question being raised is “how can one fine tune a grammar with
possible extensions to the EBNF language and not jeopardize the LR(1)
constraint to help resolve ambiguity?”.

5



2.2 Monolithic Grammars Are Difficult to Understand and
Maintain

To prepare the reader, look at any textbook that uses a grammar to de-
scribe the language. As Java and C++ are two popular languages currently
in use, references [?] and [?] each demonstrate the size of the grammar with
their substantially large number of rules. I put forth to you that if this were
program code (which they are), would they be considered good examples
of coding practices as viewed from a computer science perspective — struc-
tured programming or object-oriented principles? Large grammars are hard
to understand and even harder to maintain when corrections or language
features are to be added.

2.3 Grammar Modularity and Reusability

Where are the little grammars making up a larger one? As high-level pro-
cedural languages use procedures, functions, classes, messaging, to break a
problem up into smaller pieces, so, should not grammars have the same abil-
ity? Under current practice, there is one heavy-weight grammar expressing
the language to be recognized. Can this be simplified?

Where is the re-usability of a monolithic grammar? Grammatical expres-
sions are not entities unto themselves but just phrases inside a grammar.
Somehow monolithic grammars should be broken down into smaller pieces
and assembled into a cohesive whole with all the parts participating together.
If grammars were re-useable, they could be published just as algorithms are.
For example, the grammar used to describe C++ style comments should be
an off-the-shelf piece of code that can be dropped into one’s grammar defin-
ing a new language. In fact when I first was developing yacco2’s grammar,
I used the comment grammar described in Java to implement my own C++
type comments until I rewrote it using the parallel parsing facilities to sim-
plify and make it more runtime efficient. Not to sound too pithy, reuse adds
more worth to its definition due to others not having to re-invent the same
thing: published material has many eyes and ears to proofread it — ahh
open source. . .

Modularity and re-usability go hand-in-hand. The programming of gram-
mars should follow the same refinements as high-level programming lan-
guages with their coding practices.

6



2.4 Grammar Debugging

How can one properly test out a monolithic grammar? Lots of regression
tests, but this begs the point. Monolithic grammars are too complex to
debug properly let alone to resolve when ambiguous extensions to the finite
automaton are employed. Here comes that echo again, grammars should
be small stand-alone units that can be translated into finite automaton and
tested individually before being assembled into a larger grammar environ-
ment. The assembly process should respect their stand-alone definitions.
Modern languages emit callable functions / procedures, and data sections,
that get assembled and connected by a linker. A similar process should be
applied to the finite automata.

Newer compiler / compilers are improving the resolution of ambiguous
grammars but how well are they in the actual debugging of them? By
shrinking the grammar down into a smaller comprehensible pieces of code,
not only is it easier to understand their functionality within a stand-alone
context but also easier to verify their accepted languages. Current code
debuggers as in Microsoft Visual Studio can be used to watch, trace and trap
the finite automaton’s control flow as executed by the pushdown automaton.
Pushed further, should not the grammar and its runtime environment have
tracing facilities which can be turned on / off statically or dynamically
within various contexts? This becomes more a requirement in light of the
simultaneous execution of parsing threads.

2.5 Error Signaling / Processing Not Integrated In Gram-
mars

Error processing is another dimension in the use of grammars. I am not talk-
ing about error correction and backtracking techniques used to repair the
faulty input string but the simple reporting facility to the pushdown automa-
ton. Somehow error signaling should be incorporated into the grammar’s
vocabulary and productions. C++’s ‘try’ and ‘catch’ language constructs
are variants in dealing with error processing; where are the programming
constructs to support error processing within the grammar context? Can
extensions to the grammar / pushdown automaton be made to provide this
capability?

2.6 How to Parse a Different Language Within a Language?

To illustrate, the EBNF language defining the grammar and its associated
syntax-directed code is such a situation. Other examples are assembler

7



code embedded in C++ using a #pragma facility. The question becomes
“how far does one verify the secondary language by use of a grammar?”.
This becomes a problem of how can one distinguish the boundaries between
these two languages such that the grammars used do not interfere with one
another. Boundary overflow can lead to some interesting errors. Look at
the current state of template processing and the error messages cascaded by
your C++ compiler. Verbosity and too many indirect levels of processing
leads to some interesting guesses by the programmer to resolve errors caused
by the instantiated template.

2.7 LR Tables can be Weighty

Well this situation jumped at me when I was developing a translator to
retarget Oregon Pascal to HP Pascal on VMS. Not to bog the reader down,
a complete compiler was written to accept the Pascal language with its
extensions like “loophole and ref” and inhouse pre-processing constructs.
The translator consisted of approximately 80 individual grammars. Within
the project, three things were identified that contributed to major code
bloat using C++: the dynamic runtime building of template tables, class
hierarchy, and the shift / reduce / lookahead sets.

Depending on the number of terminals defined, the lookahead sets can
get quite large. Shift tables can also contribute to the automaton’s bulk.
Shifting has a double cost: not only in the shift of the terminal but then in
the reduce that eventually follows. There are times when a wild terminal
shift facility — implicit shifting of terminals — is wanted instead of an
explicit shift. It is easier to program and it shrinks dramatically the tables
generated. This led to the following investigation:

• What means is there within the grammar where these sets can shed
their weight and allow for the fine tuning of their contents within the
LR(1) constraints.

• Where can a wild-shift facility be integrated into the grammar which
protects against the Pacman-like appetite of consuming all input to-
kens. The reduce operation must be protected from this type of shift
overrun.

3 Eureka? Source of Limitations

The source of the problem is a monolithic grammar tends to become a con-
text sensitive issue. There are just too many contexts being mixed into one

8



grammar where their boundaries overlap producing ambiguity. This overlap
becomes a scoping issue: that is, local entities — grammatical expressions
— all share in the global space of the grammar. It is this one-scope-for-all
that causes problems. So given that grammatical expressions be defined
and protected in their on local scope, how can they partake in the global
parsing environment? The requirement within the global context becomes
one of deterministically controlling the grammatical expressions under some
governance.

The multi-threading paradigm provides such an environment. To wit,
an Operating System runs processes as separate entities. It controls each
process, their resources both globally and locally; the scheduling and run-
ning of the processes are managed by the fielding of the clock’s interrupts.
Now, threads are sub-processes that run within the process? environment.
The process shares its resources across its threads. The control of threads is
done by the Operating System with special facilities like thread spawning,
semaphores, critical regions, spin locks, monitors, etc. So by mapping the
starting parse as a process and the individual grammars as threads, the prob-
lem of mixed grammatical contexts under a global roof has been eliminated.
Effectively, grammatical threads can be thought of as recursive-decent proce-
dures that run in parallel non-deterministically. What a mouthful. The non-
deterministic part is most interesting because deterministically both launch-
ing of the threads and in the arbitrating on their accepted languages must
take place. Governship is used in arbitrating between non-deterministic out-
comes. By use of predicate logic at specialized syntax-directed control points
throughout the grammar, the outcome of mutiple parsing can be controlled.

The following sub-sections introduce the ideas to be expanded upon in
future papers. The points expressed are general and are portable to other
Operating environments with similar support. In fact yacco2 is running
under VMS, NT, Sun Operating systems using different thread libraries.

3.1 How to Introduce Threads Into a Grammar

Threads provide the separate run environments needed to execute individu-
ally each grammar’s automaton: it houses their own run autonomy. Other
competing parsing threads are cocooned by the Operating System separation
of run spaces. Below outlines the requirements to support threads within a
grammar:

• A thread operator must be added to the EBNF language, which gets
incorporated into the emitted finite automaton.

9



• The EBNF language must support separate grammatical definitions
of thread entities. Each thread grammar is compiled separately and
finally assembled together using the standard language linker of the
Operating system.

• A lookahead expression must be added to the EBNF language to sup-
port the grammatical thread. This expression acts as the end-of-input
terminal(s) to the grammar. It allows the grammatical thread’s looka-
head sets to be fine tuned according to its own boundaries and context
of use.

• A syntax-directed code arbitrator construct is needed in the EBNF lan-
guage to resolve between two or more competing grammatical threads
both accepting an input phrase. Each arbitrator construct within a
grammar is associated with the individual state configuration of the
finite automaton that launches the competing threads. There can be
many arbitrator constructs within a grammar, which are deterministic
in their execution.

All language extensions must fall under the same ambiguity constraints of
a deterministic context-free grammar.

3.2 Specialized Terminals and Runtime Requirements

Constant terminals are needed to overcome the code bloat of tables, wild
terminal shift facility, calling threads, and an explicit shifting out of an
ambiguous context. They are never part of the string being recognized by
the grammar. They are internal terminal constants used by the pushdown
automata runtime library. My thesis classifies terminals into 4 groups: error
symbols, raw characters, lr constant symbols, and the normal terminals.
Some of the specialized terminals have their own grammatical phrases while
others can be mixed throughout the grammar’s phrases:

• Invisible shift terminal — used to expicitly shift out of an ambigu-
ous context(s) within a grammar. It is explicitly programmed by the
grammar writer.

• Wild shift terminal

• ‘All terminals’ terminal — represents all terminals defined in the gram-
mar’s alphabet. Used to shrink the size of a lookahead set.

10



• Parallel thread terminal — introduces the parallel thread phrase within
a grammar

For multi-threaded parsing to take place, the following concepts need
to be implemented. This support expands the normal pushdown automata
runtime environment:

• The detection of threads to-be-run in the finite automaton tables by
the pushdown automaton

• A dispatching mechanism to spawn threads by the pushdown automa-
ton

• A thread-monitor for the starting and ending of different thread ses-
sions along with the dispatching of the appropriate arbitrator module
on the accepted token queue from each session of launched threads.

• A communication protocol to support the dispensing of tokens to
the launched threads and reporting of results from the grammatical
threads to the control monitor.

• Support for nested parallel parsing. This comes about when a parsing
thread spawns its own threads which can spawn other threads. . .

• Thread support within the Operating System along with its appropri-
ate mutual exclusion locking mechanism.

• A ranking of conditional parses, if present, within the current state’s
configuration. This is expanded in subsection ??.

3.3 Arbitration Between Competing Threads

In this framework, the individual threads all participate co-operatively with
the eventual control being given back to the its launching control monitor.
But how does one resolve two or more competing grammars each successfully
parsed and reported back to their parent control monitor? Each successful
parse is just a restatement of the subset/superset problem. The solution
is quite simple — have an arbitrator judge who should win. Taking this
thought further, by adding an arbitration construct to the EBNF language,
the author of the grammar now has complete control over who wins and
losses by syntax-directed code. By extending arbitration support to the
pushdown automaton, the code gets executed within the contexts defined
by the finite automata.

11



Within this context, nested arbitration must be supported due to pars-
ing threads spawning their own threads. There are now multiple control
monitors administrating their own parse environment. Let’s look at this
situation from a high level altitude. To begin, there is a parsing process
that spawns threads. At this point, the start token boundary is fixed for
all future threads spawned by this process; it is the first of the tokens in
the to-be-parsed token stream from which the to-be-launched threads parse
from. This start position can be anywhere along the token stream. Now the
process’s parse is put on hold while waiting for its threads to report back.
Each thread is consuming the lookahead tokens at a different rate with its
concluding token boundary being possibly different than its brethren parsing
threads. Now if the spawned threads also spawns threads, the same thing
happens: the spawning thread is put on hold, launches its control monitor,
and lets its threads continue the parse at the token position within the input
stream of the launching thread.

Across this parsing spectrum, there really is only one parse going on ar-
rived at in a deterministic way to consume and judge what token sequence
wins. Each parse thread defines the viable prefix to-be-parsed from the cur-
rent token input. Each sequence accepted can be different with variable
length viable prefixes parsed. Nested threads are just part of the viable pre-
fix of its spawning thread. Threads spawning threads are also put on hold
waiting for the results from its spawned threads. Arbitration takes place
within each put-on-hold process / thread. All of this is happening simul-
taneously across the parallel processing spectrum. With these successfully
competing threads, the languages accepted range from the very general to
the most specific. To distinguish between competing accepted parses, ar-
bitration is required along with a proper re-setting of the lookahead token
boundary for the process’s pushdown automata to continue. The winning
acceptance provides the lookahead token position within the input token
stream to continue parsing.

3.4 Conditional Parsing Within the Pushdown Automata

The term conditional parsing relates to multiple attempts at parsing the
same input using a pre-established order of different parse entities: paral-
lelism, regular parsing. When one entity fails, the following parse entity will
be tried. Effectively the pushed down automaton is being extended into a
context sensitive ranking of activities. Depending on the context within the
pushdown automaton’s stack, the first activity matching the ranked condi-
tions gets run.

12



One can look at the proposed extensions into conditional parsing as a
kind of multi-tracking. It is not true ‘back’ tracking because the parse stack
is not unwound with try-to-find-a-successful stack configuration to continue
parsing with possible error correction. It is the ‘potential parsing’ of multi-
ple contexts at the singular point within the pushdown automaton’s stacked
state configuration. These potential viable prefixes get executed in a se-
quential order: parallel context followed by a regular parse with conditions
if the parallel context was parsed unsuccessfully or not present in the config-
uration state of the finite automata. The following list ranks the conditional
order of activities tested by the pushdown automaton:

• Is parallel parsing present? If so then do parallel parsing. This is a
shift operation if successful.

• Regular parse, if parallel parsing was not successful or not present:

1. Possible shift operation. This is the regular shift operation done
on the current token input.

2. Possible invisible shift operation. This is a meta-terminal defined
in the grammar’s Terminal alphabet acting as a constant symbol.
It is invisible to the input tokens. If present in the automaton’s
current configuration, it is shifted. It is used in the grammar to
resolve ambiguity.

3. Possible ‘all terminal’ shift operation. It becomes a catch all shift
facility which can also be used for error processing.

4. Possible reduce operation on the current input token. This is the
normal reduce operation of a bottom-up parser.

Is parallelism and conditional parsing really backtracking? Yes it is —
but, backtracking takes on many forms and repeated parsing ‘back and forth’
along the input stream or parse stack is definitely backtracking. Competing
threads evaluate the same input in parallel to arrive at some result; condi-
tional parsing tests the current parse configuration for internal contextual
refinements: specialized terminals. Though this is minimized backtracking,
I call it optimized forward-tracking. There is no backtracking taking place
on the pushdown automaton’s parse stack or a resetting of the token-to-
be-parsed somewhere along the input token stream. The parse stack is not
popped to determine where to restart the parsing process to produce a suc-
cessful acceptance. Parsing gets done only in a forward progression using
parallel determinism.

13



3.5 Making Parallel Parsing Efficient

As this subject is quite complex in determining runtime statistics, I will just
raise some generic optimizations needed to improve performance:

• Only run threads that have the potential to complete

• Have a thread manager that can quickly launch threads

• Support multiple readers of a mutex protected token dispenser al-
lowing multiple threads simultaneous access to fetching of their own
tokens.

• Increase the number of cpus to support true parallel processing and
possibly use compiler / cpu optimizations for enhanced multi-threading
performance

The first improvement is to publish the first set of each thread. This
allows the thread dispatcher to determine dynamically at-thread-launch time
if the thread has the potential to parse successfully where the current token is
in the thread’s first set. To achieve this, post processing on all the threads’s
first sets must be done with a specialized first-set linker; this is due to the
transient closure property of a thread calling another thread out of its first
set in a nested type environment. Finally the compiler is created using a
traditional linker to bind all its first-sets and assorted other objects into a
runable program.

The next optimization is to keep a global map of worker threads already
spawned with run type statuses: waiting for work, busy, exit. Statuses al-
lows the thread launcher to determine whether it needs to create multiple
copies of the same thread when used in a nested way: a thread can call
another thread which can eventually lead to a nested calling sequence. This
optimization creates only the threads that are needed in a just-in-time fash-
ion. It also allows for the re-cycling of their use when they have completed
their parse by optimizing out the start / run / stop cycle per called thread.

The last optimization is to take advantage of multiple cpus to run threads
in parallel. By use of multiple readers on the token fetching, each thread
can fetch its next token asynchronously. The token dispenser is globally
accessible to all threads: this eliminates the use of a single queue and its
loss of parallelism.

14



4 Conclusion

Apart from the computer languages normally associated with compiler /
compiler use, as one gets more into the Internet, its supported languages are
starting to flourish at an astounding rate. Visible are languages like HTML
and XML with its family of languages: schema grammars, style sheet lan-
guage, query language. Now look at the underlining protocols driving the
Internet: HTTP, ARP, SMTP, FTP, SOAP are just a few protocols that are
languages needing a parser. Scripting languages of various functionalities,
SQL for relational databases, report writers, code-morphing environments
to emulate machine type behavior, search engines, type setting languages
are other activities using languages. From this varied list, it becomes rather
obvious that the compiler / compiler is a necessity and not a teaching tool
of applied grammar theory. Unfortunately various compiler / compiler im-
plementations impede their general use. Recursive descent rules the roost
using hand-coded techniques.

Lets muse on 3 decades of deterministic context free grammars and their
compilers / compilers. Though I’m not intimate in the use of YACC and
LEX [?], from the literature and language interest groups, YACC’s duration
has set the bar for others to pass but so far its still leading the pack with
its look-alikes. Other compiler / compilers have improved the development
cycle but have not substantially extended the capabilities of the recognizer
or the ease in which the grammar is developed to define a language. This
says a lot for the LEX - YACC combination with its ambiguity override
facility. Published grammars like C++ and JAVA are LALR(1) ambiguous
but use YACC’s dis-ambiguity rules to generate their finite automata. Lan-
guage developers still vent their frustration in not being able to refine the
grammar(s) to their satisfaction due to the constraints of YACC or worse
due to ambiguous languages like C++. As expressed in this paper, it is the
constraints of a monolithic deterministic context free grammar that limits
the compiler writer.

To conclude, a multi-threaded parallel parsing framework was introduced
along with language extensions in the EBNF language to solve the short
failings described. The second paper in this trilogy will detail the EBNF
language, the syntax-directed code constructs, and the parallel-parsing op-
erators needed. Like culinary activities, tasting of one’s cooking tells how
well the recipe turned out. The third paper provides such a sampling of
parallel-parsings to this paper’s questions. Hopefully this series will demon-
strate to the reader that the answer to the proposed titled question is a
definite yes. Of course, everything is said in a context be it free, parallel, or

15



otherwise ;}.

References

[1] Bauer, F. L., and Eickel, J. Compiler Construction - An Advanced
Course. Springer-Verlag, New York Heidelberg Berlin, 1976. 2nd edi-
tion: J. J. Horning, LR Grammars and Analysers.

[2] Bone, D. A syntax-directed compiler/compiler emitting lr(1) object-
oriented code. Master’s thesis, Concordia University, Montreal, Que,
Canada, Sept. 1998.

[3] Cline, M. C++ faq lite. www.parashift.com. Copyright 1991 - 2003
Marshall Cline: item 37 Is there a yacc-able C++ grammar?

[4] Gosling, J., Joy, B., and Steele, G. The Javatm Language Specifi-
cation. Addison-Wesley Publishing Company, Reading, Massachusetts,
U.S.A., 1996.

[5] Johnson, S. C. Yacc - yet another compiler-compiler. Tech. rep.,
AT&T Bell Laboratories, Murray Hill, N. J., 1975. Technical Report
32.

[6] Knuth, D. E. On the translation of languages from left to right.
Information and Control 8(6) (1965), 607–639.

[7] Lesk, M. E. Lex - a lexical analyzer generator. Tech. rep., AT&T Bell
Laboratories, Murray Hill, N. J., 1975. Technical Report 39.

[8] Stroustrup, B. The C++ Programming Language. Addison-Wesley
Publishing Company, Reading, Massachusetts, U.S.A., 1997. 3rd edi-
tion.

[9] Stroustrup, B. The Design and Evolution of C++. Addison-Wesley
Publishing Company, Reading, Massachusetts, U.S.A., 1997. 3rd edi-
tion.

[10] Trott, P. Programming languages past, present, and future. ACM
Sigplan Notices 32(1) (Sept. 1997). What do you consider the most
significant contribution to compiling?

[11] Wong, R. W., and Parr, T. J. Ll and lr translators need k > 1
lookahead. ACM Sigplan Notices 31(2) (Feb. 1996).

16


