1. Copyright.

Copyright © Dave Bone 1998-2015
2. first_set_rules grammar.

Create a rule's first set by building a closure-only state. The terminals within this state are its first set. Each rule's first set within the grammar is built this way including the "start rule" of the grammar and possibly rules used only in a "parallel-la-boundary" expression.

The difference between this first set calculation and the one described in "The Theory of Parsing, Translation, and Compiling Volume 1: Parsing" by Aho and Ullman on Page 300 is mine only evaluates the terminal(s) within the state while theirs "derives" the terminal string with all their substitutions to arrive at a set of terminals. Theirs is correct as i did not completely walk the rule's subsubrules when evaluating a partially epsiloned string at follow set calculation - it assumed that the rule's first set was already calculated: α string is made up of an epsiloned rule Ra_{ϵ} followed by β string of rules or terminals. The first set was not filled in properly composed of $\operatorname{FS}(\alpha)$ and $\operatorname{FS}(\beta)$ but only the first string $\operatorname{FS}(\alpha)$. When the follow set was calculated, it did not explode the follow set string into its symbol composites. Boy i'm dumb. Lets look at the short of it: the original first set calculation was for efficiency at the expense (when viewed now) to explode per follow string its composite first sets. What a dumb idea - as all mistakes are! So now its a closure only state with interior symbols added due to epsilon rules. The first set view is all the terminals brought in from the rule's subrules. As other rules can be brought in due to closure, their subrules are added to the state. Now epsilon rules that start the subrule's symbol string are the camillions. They add their own teminals to the first set but also disappear and allow their next right symbol to be included in the state. This is recursive as these partially consumed subrules are then evaluated as above.

Below is my then thought process and its assumptions:
So what's the difference on $\mathrm{k}=1$ symbol lookahead? Epsilon rules. I do not pursue the lookahead terminal string that would be derived. For the record, this gets done when the follow set of a symbol string is calculated. The First set of a rule is used with an epsilon check to determine whether the next symbol in the string should be followed. Why advance if it is an epsilon rule? Epsilon is like a window where u see past the rule into its neighbour's setting; one can view it another way, an epsilon rule plays 2 parts: it provides its first set and provides its to-its-right string. When the follow set calculation hits the end-of-the-string - i call this right-bounded condition, the remaining follow set is found from the Follow set of its spawning rule(s). This is transitive as the spawning rule's follow set calculation could also hit the end-of-string condition. Now where are these follow set strings found? - in the state that spawned them. Each state contains the rule's follow set graph.

Definition of First set:
Terminals that start all substrings generated by the rule's productions. The grammar tree is walked in prefix formation accepting only "rule-def" followed by its "subrule-def" terminals. Each rule within the grammar follows this pattern: ie, the start-rule is the first to be evaluated. Though it is never referenced in a subrule i still create its first set.

The Algorithm.

The grammar reads each individual rule-def and all its subrule-def(s). Using its bottom-up recognition, Rsubrule_def adds the 1st element of the subrule into the f_{-}list_. Rrule processes the $f_{-} l i s t_{-}$as a closureonly state generating the rule's first set. In generating the first set, the elements in fs_list_ are consumed as they are evaluated by removal from the list. Referenced terminals are added to the rule's first set. For 1 st time referenced rules, their subrules are added at the end of $f s_{-} l i s t_{-}$for eventual consumption. The neat thing about this algorithm is the 1st element in the fs_list_ is only visited! It's a singular point of evaluation that is thrown out to be replaced by its next in line element: ahh the bank queue and the teller.

Due to cweave irregularities in formatting $\mathrm{C}++$ code of this grammar, please see o2externs documentation where the routines GEN_FS_OF_RULE is coded an external to overcome this deficiency.

3. Fsm Cfirst_set_rules class.

4. Cfirst_set_rules op directive.

\langle Cfirst_set_rules op directive 4$\rangle \equiv$ rule_def_ $=0$;
5. Cfirst_set_rules user-declaration directive.
\langle Cfirst_set_rules user-declaration directive 5$\rangle \equiv$
public: rule_def * rule_def_;
6. Cfirst_set_rules user-prefix-declaration directive.
\langle Cfirst_set_rules user-prefix-declaration directive 6〉 \equiv
\#include "o2_externs.h"
7. Rfirst_set_rules rule.

Rfirst_set_rules

8. Rrules rule.

Rrules

9. Rrule rule.

Rrule

\langle Rrule subrule 1 op directive 9$\rangle \equiv$
Cfirst_set_rules $* f s m=($ Cfirst_set_rules $*)$ rule_info_-.parser_--fsm_tbl_-; GEN_FS_OF_RULE $\left(f s m \rightarrow r u l e _d e f _\right)$;
10. Rrule_def rule.

Rrule_def

Initialize for its subrule findings.
\langle Rrule_def subrule 1 op directive 10$\rangle \equiv$
Cfirst_set_rules $*$ fsm $=($ Cfirst_set_rules $*)$ rule_info_-. parser_-- $_{-} f_{s m_{-}} t b l_{--}$;
$f s m \rightarrow r u l e_{-} d e f_{-}=s f \rightarrow p 1_{--} ;$
11. First Set Language for $O_{2}^{\text {linker }}$.

```
/*
    File: first_set_rules.fsc
    Date and Time: Fri Jan 2 15:33:36 2015
*/
transitive n
grammar-name "first_set_rules"
name-space "NS_first_set_rules"
thread-name "Cfirst_set_rules"
monolithic y
file-name "first_set_rules.fsc"
no-of-T 569
list-of-native-first-set-terminals 1
    rule_def
end-list-of-native-first-set-terminals
list-of-transitive-threads 0
end-list-of-transitive-threads
list-of-used-threads 0
end-list-of-used-threads
fsm-comments
"Determine first set per rule."
```


12. Lr1 State Network.

\Rightarrow					
	$\leftarrow \quad$ rule	R\#	sr\#	Po	\leftarrow
c Rrule_def	4	1	1	rule-def	
c Rfirst_set_rules	1	1	1	Rrules $\overline{\text { eog }}$	
C Rrules	2	2	1	Rrules $\underline{\text { Rrule }}$	
c Rrules	2	1	1	Rrule	
c Rrule	3	1	1	Rrule_def	

State: 1 state type: ${ }^{s}$ subrule element

\rightarrow	Brn	Gto	Red LA
1	2	2	
1	3	4	
1	3	5	
1	7	7	
1	6	6	

$$
\begin{array}{cllll}
\Rightarrow \begin{array}{lll}
\text { rule-def } \\
& & \\
\text { rule } & \rightarrow & \text { R\# } \\
\stackrel{\text { sr\# Po }}{ } & \leftarrow \\
\text { t Rrule_def }
\end{array} & 4 & 1 & 2
\end{array}
$$

State: 2 state type: ${ }^{r}$ subrule element

$$
\begin{array}{lllll}
\rightarrow & \text { Brn } & \text { Gto } & \text { Red } & \text { LA } \\
1 & 0 & 2 & 1
\end{array}
$$

\Rightarrow Rrules					
	\leftarrow	rule	R\#	sr\#	Po
t	\leftarrow				
t Rfirst_set_rules		1	1	2	eog
c Rrule_def		4	1	1	rule-def
t Rrules	2	2	2	Rrule	
c Rrule		3	1	1	Rrule_def

State: 3 state type: ${ }^{s}$ subrule element

$$
\begin{array}{llll}
\rightarrow & \text { Brn } & \text { Gto } & \text { Red LA } \\
1 & 4 & 4 \\
3 & 2 & 2 \\
1 & 5 & 5 \\
3 & 6 & 6
\end{array}
$$

State: 4 state type: ${ }^{r}$ subrule element

$$
\begin{array}{lllll}
\rightarrow & \text { Brn } & \text { Gto } & \text { Red } & \text { LA } \\
1 & 0 & 4 & 2
\end{array}
$$

$$
\begin{array}{ccccc}
\Rightarrow \begin{array}{lll}
\text { Rrule } & & \\
\text { R } & & \\
\leftarrow & \text { rule } & \rightarrow \\
\text { R } \# & \text { sr\# } & \text { Po } \\
2 & 2 & 3
\end{array} & \leftarrow
\end{array}
$$

State: 5 state type: ${ }^{r}$ subrule element

$$
\rightarrow \text { Brn Gto Red LA }
$$

$$
\begin{array}{llll}
1 & 0 & 5 & 1
\end{array}
$$

State: 6 state type: ${ }^{r}$

$$
\begin{array}{ccccc}
\Rightarrow \begin{array}{lll}
\text { Rrule } \\
\leftarrow & \text { rule } & \rightarrow \\
\text { R\# } & \text { sr\# Po } & \leftarrow \\
\text { t Rrules } & & 1
\end{array} 2
\end{array}
$$

subrule element

State: 7 state type: ${ }^{r}$ subrule element
\rightarrow Brn Gto Red LA $3 \quad 0 \quad 6 \quad 1$
\rightarrow Brn Gto Red LA
$\begin{array}{llll}1 & 0 & 7 & 1\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow \begin{array}{l}
\text { Rrule_def } \\
\leftarrow
\end{array} \text { rule } \quad \rightarrow \text { R\# sr\# Po } \leftarrow
\end{array} \\
& \text { t Rrule } \quad 3 \quad 1 \quad 2
\end{aligned}
$$

13. Index.

Cfirst_set_rules: 9, 10.
cweave: 2.
eog: 7.
first_set_rules: 2.
fs_list_: 2.
fsm: 9, 10.
fsm_tbl_-: 9, 10 .
GEN_FS_OF_RULE: 2, 9.
o2externs: 2.
parser_-: 9, 10.
p1_-: 10.
Rfirst_set_rules: 7 .
Rrule: 8.
Rrule: 2, 9 .
Rrule_def: 9.
Rrule_def: 10.
Rrules: 7, 8.
Rrules: 8 .
Rsubrule_def: 2.
rule-def: 10.
rule_def: 5.
rule_def_: 4, 5, 9, 10.
rule_info_-: 9, 10.
sf: 10.
＜Cfirst＿set＿rules op directive 4〉
〈Cfirst＿set＿rules user－declaration directive 5〉
〈Cfirst＿set＿rules user－prefix－declaration directive 6〉
〈Rrule subrule 1 op directive 9〉
\langle Rrule＿def subrule 1 op directive 10\rangle

first_set_rules Grammar
 Date: January 2, 2015 at 15:35
 File: first_set_rules.lex
 Ns: NS_first_set_rules

Version: 1.0 Debug: false
Grammar Comments: Type: Monolithic

Determine first set per rule.
Section Page
Copyright 1 1
first_set_rules grammar 2
Fsm Cfirst_set_rules class 2
Cfirst_set_rules op directive 3
Cfirst_set_rules user-declaration directive 3
Cfirst_set_rules user-prefix-declaration directive 3
Rfirst_set_rules rule 3
Rrules rule 3
Rrule rule 3
Rrule_def rule 3
First Set Language for $O_{2}^{\text {linker }}$ 4
Lr1 State Network 5
Index 13 6

