%%% ==================================================================== %%% @LaTeX-style-file{ %%% filename = "dialogl.dtx", %%% version = "1.99a", %%% date = "2013/01/24", %%% author = "Michael Downes", %%% copyright = "This file is part of the dialogl package, released %%% under the LPPL; see dialogl.ins for details." %%% keywords = "TeX, dialog", %%% supported = "no", %%% abstract = "This file provides macros for writing %%% messages and menus on screen, and reading user responses. It %%% can be used with LaTeX as a documentstyle option, or in %%% other forms of TeX by a standard \input statement.", %%% } %%% ==================================================================== % % \iffalse %<*driver> \input{dia-driv.tex} % % \fi % % \section{History} % This file, \fn{dialog.sty}, was born out of a utility called % \fn{listout.tex} that I wrote for my personal use. The purpose of % \fn{listout.tex} was to facilitate printing out plain text % files\Dash electronic mail, program source files in various % programming languages, and, foremost, \tex/ macro files and log % files. An important part of my \tex/ programming practice is to % print out a macro file on paper and read it through, marking % corrections along the way, then use the marked copy as a script % for editing the file. (For one thing, this allows me to analyze % and mark corrections while riding the bus to work, or % sitting out in the back yard to supervise the kids.) The output I % normally desired was two `pages' per sheet of U.S. letter-size % paper printed landscape, in order to conserve paper. % % Once created, \fn{listout.tex} quickly became my favorite means % of printing out plain text files, not to mention an indispensable % tool in my debugging toolbox: I turn on \cw{tracingmacros} and % \cw{tracingcommands}, then print out the resulting log file so % that I can see several hundred lines of the log at once (by % spreading out two or three pages on my desk with 100+ lines per % page); then I trace through, cross things out, label other % things, draw arrows, and so forth. % % I soon added a filename prompting loop to make it convenient to % print multiple files in a single run. In the process of % perfecting this simple prompting routine\Dash over two or three % years\Dash and adding the ability to optionally specify things like % number of columns at run time, eventually I wrote so much % dialog-related macro code that it became clear this code should % be moved out of \fn{listout.tex} into its own module. The result % was \fn{dialog.sty}. % % Before getting into the macro definitions and technical % commentary, here are descriptions from the user's % perspective of the functions defined in this file. % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Message-sending functions} % %\begin{usage} %\mesj{} %\end{usage} % Sends the message verbatim: category 12 for all special % characters except braces, tab characters, and carriage returns: % %^^V { } ^^I ^^M % % Naturally, the catcode changes are effective only if \cw{mesj} is % used directly, not inside a macro argument or definition % replacement text. % % Multiple spaces in the argument of \cw{mesj} print as multiple % spaces on screen. A tab character produces always eight spaces; % `smart' handling of tabs is more complicated than I would care to % attempt. % % Line breaks in the argument of \cw{mesj} will produce line breaks % on screen. That is, you don't need to enter a special sequence % such as \ctrl{J}\qc{\%} to get line breaks. See the technical % commentary for \cw{mesjsetup} for details. Even though curly % braces are left with their normal catcodes, they can be printed % in a message without any problem, if they occur in balanced % pairs. If not, the message should be sent using \cw{xmesj} % instead of \cw{mesj}. % % Because of its careful handling of the message text, \cw{mesj} is % extremely easy to use. The only thing you have to worry about is % having properly matched braces. Beyond that, you simply type % everything exactly as you want it to appear on screen. % %\begin{usage} %\xmesj{} %\end{usage} % This is like \cw{mesj} but expands embedded control sequences % instead of printing them verbatim. All special characters have % category 12 except backslash, percent, braces, tab, return, and % ampersand: % %^^V \ % { } ^^I ^^M & % % The first four have normal \tex/ catcodes to make it possible to % use most normal \tex/ commands, and comments, in the message % text. \ctrl{I} and \ctrl{M} are catcode 13 and behave as % described for \cw{mesj}. The \qc{\&} is a special convenience, an % abbreviation for \cw{noexpand}, to use for controlling expansion % inside the message text. % % Doubled backslash \cs{\\} in the argument will produce a single % category 12 backslash character\Dash thus, \verb'\\xxx' can be used % instead of \cw{string}\cw{xxx} or \cw{noexpand}\cw{xxx} (notice % that this works even for outer things like \cw{bye} or % \cw{newif}). Similarly \cs{\%}, \cs{\{}, \cs{\}} and \cs{\&} % produce the corresponding single characters. % % Category 12 space means that you cannot write something like % %^^V \ifvmode h\else v\fi rule % % in the argument of \cw{xmesj} without getting a space after the % \cw{ifvmode}, \cw{else}, and \cw{fi}.%^^A %^^A %\footnote{Well, actually, you could replace each space by %\qc{\%}\meta{newline} to get rid of it. But that makes the message %text harder to read for the programmer.} %^^A % Since occasionally this may be troublesome, \cs{\.} is defined % inside the argument of \cw{xmesj} to be a `control word % terminator': If the expansion of \cw{foo} is \verb'abc', then % \verb'\foo\.xyz' produces \verb'abcxyz' on screen (as opposed to % \verb'\foo xyz' which would produce \verb'abc xyz'). Thus the % above conditional could be written as % %^^V \ifvmode\.h\else\.v\fi\.rule % % Even though the catcode changes done by \cw{xmesj} setup have no % effect if \cw{xmesj} is used inside an argument or definition % replacement text, I find it convenient occasionally to use % \cw{xmesj} in those contexts, in order to get other aspects of the % \cw{xmesj} setup. For instance, if you need to embed a message % that contains a percent sign inside a definition, you can write % %^^V \def\foo{... %^^V \xmesj{... this is a percent %^^V sign: \% (sans backslash) ...} %^^V ...} % % To further support such uses of \cw{xmesj}, the following changes % are also done by \cw{xmesj} setup: the backslash-space control % symbol {\tt\bslash\char32} is made equivalent to \cw{space}; % \cs{\^^J} and \cs{\^^M} are defined to produce a \cw{newlinechar}; % and active tilde \qc{\~} will produce a category-12 tilde. % % Among other things, this setup makes it easier to obtain % newlines and multiple spaces in an embedded message. For example, % in the following definition the message will have a line break on % screen for each backslash at the end of a line, and the third % line will be indented four spaces. % %^^V \def\bar{... %^^V \xmesj{First line\ %^^V Second line\ %^^V \ \ \ \ Indented line\ %^^V Last line}% %^^V ...} % % The alternative of defining a separate message function % \cw{barfoo} with \cw{f[x]mesj} and calling \cw{barfoo} inside of % \cw{bar} would allow more natural entry of the newlines and the % multiple spaces, but would be slightly more expensive in string % pool and hash table usage. % %\begin{usage} %\promptmesj{} %\promptxmesj{} %\end{usage} % These are like \cw{mesj}, \cw{xmesj} but use \cw{message} rather % than \cw{immediate}\cw{write}\verb'16' internally, thus if the % following operation is a \cw{read}, the user will see the cursor % on screen at the end of the last line, as may be desired when % prompting for a short reply, rather than at the beginning of the % next line. The character \qc{\!} is preempted internally for % newlinechar, for these two functions only, % which means that it cannot be actually printed in % the message text. Use of a visible character such as \qc{\!}, % rather than the normal \cw{newlinechar} \ctrl{J}, is necessary % for robustness because of the fact that the \cw{message} % primitive was unable to use an `invisible' character (outside the % range 32--126) for newlines up until \tex/ version 3.1415, which % some users do not yet have (at the time of this writing\Dash July % 1994). % %\begin{usage} %\storemesj\foo{} %\storexmesj\foo{} %\end{usage} % These functions are similar to \cw{mesj}, \cw{xmesj} but store the % given text in the control sequence \cw{foo} instead of immediately % sending the message. Standard \tex/ parameter syntax can be used % to make \cw{foo} a function with arguments, e.g. after % %^^V \storemesj\foo#1{...#1...} % % then you can later write % %^^V \message{\foo{\the\hsize}} % % and get the current value of \cw{hsize} into the middle of the % message text. Consequently also in the x-version \cw{storexmesj} a % category-12 \qc{\#} character can be obtained with \cs{\#}. % %\begin{usage} %\fmesj\foobar#1#2...{...#1...#2...} %\end{usage} % Defines \cw{foobar} as a function that will take the given % arguments, sow them into the message text \verb"{...}", and send % the message. In the message text all special characters are % category 12 except for braces, \qc{\#}, tab, and carriage return. % % If an unmatched brace or a \qc{\#} must be printed in the message % text \cw{fxmesj} must be used instead. (\arg{#} could be used to % insert a single category-6 \qc{\#} token into the message text, and % \tex/ would print it without an error, but both \cw{message} and % \cw{write} would print it as two \arg{#} characters, even though % it's only a single token internally.) % %\begin{usage} %\fxmesj\foobar#1#2...{...#1...#2...} %\end{usage} % Combination of \cw{xmesj} and \cw{fmesj}. Defines \cw{foobar} like % \cw{fmesj}, but with full expansion of the replacement text and % with normal category codes for backslash, percent, braces, and hash % \qc{\#}. The control symbols \cs{\\} \cs{\%} \cs{\{} \cs{\}} % \cs{\&} and \cs{\.} can be used as in \cw{xmesj}, with also \cs{\#} % for printing a \qc{\#} character of category 12. % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Reading functions} % %\begin{usage} %\readline{}\answer %\end{usage} % This reads a line of input from the user into the macro % \cw{answer}. (The macro name can be anything chosen by the % programmer, not just \cw{answer}.) Before reading, all special % characters are deactivated, so that the primitive \cw{read} will % not choke if the user happens to enter something like \cw{newif} % or {\sc control-l} or \qc{\}}. Depending on the operating % system, certain characters\Dash e.g., {\sc control-c}, {\sc % control-z}, {\sc control-d}, {\sc control-h}\Dash might have % special effects instead of being entered into the replacement % text of \cw{answer}, regardless of the catcode changes. To % take the most obvious example, under most % operating systems, typing {\sc control-h} (the Rubout or % Backward-Delete key) will delete the previous character from the % user's response, instead of entering an \ascii/ character 8 % into \cw{answer}. % % There is one significant exception from the catcode changes that % are done for \cw{readline}: spaces and tabs retain their normal % catcode of 10, so that multiple spaces in an answer will be % reduced to a single space, and macros with normal space-delimited % arguments will work when applied to the answer. (I can't think of % any likely scenario where category 12 for spaces would be % useful.) Also, the catcode of \ctrl{M} is set to 9 (ignore) so % that an empty line\Dash meaning that the user just pressed the % carriage return/enter key\Dash will result in an empty \cw{answer}. % If the answer is empty, the given default string will be % substituted. The default string can be empty. % %\begin{usage} %\xreadline{}\answer %\end{usage} % Like \cw{readline} but the answer is read as executable tokens; % the usual catcodes of the \tex/ special characters remain in % effect while reading the answer. A few common outer things % (\cw{bye}, \cs{\+}, \cw{newif}, \ctrl{L}, among others) are % neutralized before the \cw{read} is done, but the user can still % cause problems by entering some other outer control sequence or % unbalanced braces. I doubt there's any bulletproof solution, if % the tokens are to remain executable, short of the usual last % resort: reading the answer using \cw{readline}, writing it to a % file, then inputting the file. % %\begin{usage} %\readchar{}\answer %\end{usage} % This is like \cw{readline} but it reduces the answer to its first % character. \meta{default} is either a single character or empty. % %\begin{usage} %\readChar{}\answer %\end{usage} % This is like \cw{readchar} and also uppercases the answer. % %\begin{usage} %\changecase\uppercase\answer %\end{usage} % The function \cw{changecase} redefines its second argument, which % must be a macro, to contain the same text as before, but % uppercased or lowercased according to the first argument. Thus % \cw{readChar}\verb'{Q}'\cw{answer} is equivalent to % %^^V \readchar{q}\answer %^^V \changecase\uppercase\answer % % It might sometimes be desirable to force lower case before using % a file name given by the user, for example. % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Checking functions} % %\begin{usage} %\checkinteger\reply\tempcount %\end{usage} % To read in and check an answer that is supposed to be an integer, % use \cw{readline}{}\cw{reply} and then apply \cw{checkinteger} to % the \cw{reply}, supplying a count register, not necessarily named % \cw{tempcount}, wherein \cw{checkinteger} will leave the validated % integer. If \cw{reply} does not contain a valid integer the % returned value will be \verb'-'\cw{maxdimen}. % % At the present time only decimal digits are handled; % some valid \tex/ numbers such as \verb'"AB', \verb'`\@', % \cw{number}\cw{prevgraf}, or a count register name, will not be % recognized by \cw{checkinteger}. There seems to be no bulletproof % way to allow these possibilities. % % Tests that hide \cw{checkinteger} under the hood, such as a % \cw{nonnegativeinteger} test, are not provided because as often as % not the number being prompted for will have to be tested to see if % it falls inside a more specific range, such as 0\dash 255 for an % 8-bit number or 1\dash 31 for a date, and it seems common sense to % omit overhead if it would usually be redundant. It's easy enough to % define such a test for yourself, if you want one. % %\begin{usage} %\checkdimen\reply\tempdim %\end{usage} % Analog of \cw{checkinteger} for dimension values. If \cw{reply} % does not contain a valid dimension the value returned in % \cw{tempdim} will be \verb'-'\cw{maxdimen}. % % Only explicit dimensions with decimal digits, optional decimal % point and more decimal digits, followed by explicit units % \verb'pt' \verb'cm' \verb'in' or whatever are checked for; some % valid \tex/ dimensions such as \cw{parindent}, % \verb'.3'\cw{baselineskip}, or \cw{fontdimen}\verb'5'\cw{font} % will not be recognized by \cw{checkdimen}. % % \subsection*{What good is all this?} % What good is all this stuff, practically speaking?\Dash you may % ask. Well, a typical application might be something like: At the % beginning of a document, prompt interactively to find out if the % user wants to print on A4 or US letter-size paper, or change the % top or left margin. Such a query could be done like this: % %^^V \promptxmesj{ %^^V Do you want to print on A4 or US letter paper? %^^V Enter u or U for US letter, anything else for A4: } %^^V \readChar{A}\reply % default = A4 %^^V \if U\reply \textheight=11in \textwidth=8.5in %^^V \else \textheight=297mm \textwidth=210mm \fi %^^V % Subtract space for 1-inch margins %^^V \addtolength{\textheight}{-2in} %^^V \addtolength{\textwidth}{-2in} %^^V %^^V \promptxmesj{ %^^V Left margin setting? [Return = keep current value, %^^V \the\oddsidemargin]: } %^^V \readline{\the\oddsidemargin}\reply %^^V \checkdimen\reply{\dimen0} %^^V \ifdim\dimen0>-\maxdimen %^^V \setlength\oddsidemargin{\dimen0}% %^^V \xmesj{OK, using new left margin of % %^^V \the\oddsidemargin.} %^^V \else %^^V \xmesj{Sorry, I don't understand % %^^V that reply: `\reply'.\ %^^V Using default value: \the\oddsidemargin.} %^^V \fi % % Although \latex/'s \cw{typeout} and \cw{typein} functions can % be used for this same task, they are rather more awkward, and % checking the margin value for validity would be quite difficult. % % \StopEventually{} % % \section{Implementation} % Standard package identification: % \begin{macrocode} %<*2e> \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{dialog}[1994/11/08 v0.9y] % % \end{macrocode} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Preliminaries} % % \begin{macrocode} %<*2e> \RequirePackage{grabhedr} % % \end{macrocode} % % If \fn{grabhedr.sty} is not already loaded, load it now. The % \cw{trap.input} function is explained in \fn{grabhedr.doc}. % \begin{macrocode} %<*209> \csname trap.input\endcsname \input grabhedr.sty \relax \fileversiondate{dialog.sty}{0.9y}{1994/11/08}% % % \end{macrocode} % % The functions \cw{localcatcodes} and \cw{restore\-catcodes} are % defined in \fn{grabhedr.sty}. We use them to save and restore % catcodes of any special characters needed in this file whose % current catcodes might not be what we want them to be. Saving and % restoring catcode of at-sign \qc{\@} makes this file work equally % well as a \latex/ documentstyle option or as a simple input file in % other contexts. The double quote character \qc{\"} might be active % for German and other languages. Saving and restoring tilde \qc{\~}, % hash \qc{\#}, caret \qc{\^}, and left quote \qc{\`} catcodes is % normally redundant but reduces the number of assumptions we must % rely on. (The following catcodes are assumed: \qc{\\} 0, \qc{\{} 1, % \qc{\}} 2, \qc{\%} 14, {\tt a}\dash {\tt z} {\tt A}\dash {\tt Z} % 11, {\tt 0}\dash {\tt 9} \qc{\.} \qc{\-} 12. Also note that % \cw{endlinechar} is assumed to have a non-null value.) % \begin{macrocode} %% The line break is significant here: \localcatcodes{\@{11}\ {10}\ {5}\~{13}\"{12}\#{6}\^{7}\`{12}} % \end{macrocode} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Definitions} % % \begin{macro}{\otherchars} % % For deactivating characters with special catcodes during % \cw{readline} we use, instead of \cw{dospecials}, a more % bulletproof (albeit slower) combination of \cw{otherchars}, % \cw{controlchars}, and \cw{highchars} that covers all characters in % the range 0\dash 255 except letters and digits. Handling the % characters above 127 triples the overhead done for each read % operation or message definition but seems mandatory for maximum % robustness.^^A %^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \footnote{If you are using \fn{dialog.sty} functions on a slow % computer, you might want to try setting \cw{highchars} = empty to % see if that helps the speed.} %^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % \cw{otherchars} includes the thirty-three nonalphanumeric visible % characters (counting space as visible). It is intended as an % executable list like \cw{dospecials} but, as an exercise in % memory conservation, it is constructed without the \cw{do}s. For % the usual application of changing catcodes, the list can still be % executed nicely as shown below. Also, if we arrange to % make sure that each character token gets category 12, it's not % necessary to use control symbols such as \cs{\%} in place of % those few special characters that would otherwise be difficult to % place inside of a definition. This avoids a problem that would % otherwise arise if we included \cs{\+} in the list and tried to % process the list with a typical definition of \cs{do}: \cs{\+} is % `outer' in plain \tex/ and would cause an error message when % \cw{do} attempted to read it as an argument. (As a matter of fact % the catcode changes below show a different way around that % problem, but a list of category-12 character tokens is a fun % thing to have around anyway.) % % \begin{macrocode} \begingroup % \end{macrocode} % First we start a group to localize \cw{catcode} changes. Then we % change all relevant catcodes to 12 except for backslash, open % brace, and close brace, which can be handled by judicious % application of \cw{escapechar}, \cw{string}, \cw{edef}, and % \cw{xdef}. By defining \cw{do} in a slightly backward way, so that % it doesn't take an argument, we don't need to worry about the % presence of \cs{\+} in the list of control symbols. Notice the % absence of \cs{\`} from the list of control symbols; it was already % catcoded to 12 in the \cw{localcatcodes} declaration at the % beginning of this file\Dash otherwise it would be troublesome to % make the definition of \cw{do} bulletproof (consider the % possibilities that \qc{\`} might have catcode 0, 5, 9, or 14). % % \begin{macrocode} \def\do{12 \catcode`} \catcode`\~\do\!\do\@\do\#\do\$\do\^\do\& \do\*\do\(\do\)\do\-\do\_\do\=\do\[\do\] \do\;\do\:\do\'\do\"\do\<\do\>\do\,\do\. \do\/\do\?\do\|12\relax % \end{macrocode} % To handle backslash and braces, we define \cs{\\}, % \cs{\{}, and \cs{\}} to produce the corresponding category-12 % character tokens. Setting \cw{escapechar} to $-1$ means that % \cw{string} will omit the leading backslash that it would % otherwise produce when applied to a control sequence. % \begin{macrocode} \escapechar -1 \edef\\{\string\\} \edef\{{\string\{}\edef\}{\string\}} % \end{macrocode} % Space and percent are done last. Then, with almost all the % special characters now category 12, it's rather easy to define % \cw{otherchars}. % \begin{macrocode} \catcode`\ =12\catcode`\%=12 \xdef\otherchars { !"#$%&'()*+,-./:;<=>?[\\]^_`\{|\}~} \endgroup % ^ ^ ^ % \end{macrocode} % \end{macro} % % \begin{macro}{\controlchars} % % \cw{controlchars} is another list for the control characters % \ascii/ 0\dash 31 and 127. The construction of this list is similar % to the construction of \cw{otherchars}. We need to turn off % \cw{endlinechar} because the catcode of \ctrl{M} is going to be % changed. The \ctrl{L} inside the \cw{gdef} is not a problem (as it % might have been, due to the usual outerness of \ctrl{L}) because % the catcode is changed from 13 to 12 before that point. % % \begin{macrocode} \begingroup \endlinechar = -1 \def\do{12 \catcode`} \catcode`\^^@\do\^^A\do\^^B\do\^^C \do\^^D\do\^^E\do\^^F\do\^^G\do\^^H\do\^^I \do\^^J\do\^^K\do\^^L\do\^^M\do\^^N\do\^^O \do\^^P\do\^^Q\do\^^R\do\^^S\do\^^T\do\^^U \do\^^V\do\^^W\do\^^X\do\^^Y\do\^^Z\do\^^[ \do\^^\\do\^^]\do\^^^\do\^^_\do\^^? 12\relax % \gdef\controlchars{^^@^^A^^B^^C^^D^^E^^F^^G ^^H^^I^^J^^K^^L^^M^^N^^O^^P^^Q^^R^^S^^T ^^U^^V^^W^^X^^Y^^Z^^[^^\^^]^^^^^_^^?} \endgroup % \end{macrocode} % \end{macro} % % \begin{macro}{\highchars} % And finally, the list \cw{highchars} contains characters % 128\dash 255, the ones that have the eighth bit set. % % \begin{macrocode} \begingroup \def\do{12 \catcode`} \catcode`\^^80\do\^^81\do\^^82\do\^^83\do\^^84 \do\^^85\do\^^86\do\^^87\do\^^88\do\^^89\do\^^8a \do\^^8b\do\^^8c\do\^^8d\do\^^8e\do\^^8f \do\^^90\do\^^91\do\^^92\do\^^93\do\^^94\do\^^95 % \end{macrocode} %\verbdots\iffalse \do\^^96\do\^^97\do\^^98\do\^^99\do\^^9a\do\^^9b \do\^^9c\do\^^9d\do\^^9e\do\^^9f \do\^^a0\do\^^a1\do\^^a2\do\^^a3\do\^^a4\do\^^a5 \do\^^a6\do\^^a7\do\^^a8\do\^^a9\do\^^aa\do\^^ab \do\^^ac\do\^^ad\do\^^ae\do\^^af \do\^^b0\do\^^b1\do\^^b2\do\^^b3\do\^^b4\do\^^b5 \do\^^b6\do\^^b7\do\^^b8\do\^^b9\do\^^ba\do\^^bb \do\^^bc\do\^^bd\do\^^be\do\^^bf \do\^^c0\do\^^c1\do\^^c2\do\^^c3\do\^^c4\do\^^c5 \do\^^c6\do\^^c7\do\^^c8\do\^^c9\do\^^ca\do\^^cb \do\^^cc\do\^^cd\do\^^ce\do\^^cf \do\^^d0\do\^^d1\do\^^d2\do\^^d3\do\^^d4\do\^^d5 \do\^^d6\do\^^d7\do\^^d8\do\^^d9\do\^^da\do\^^db \do\^^dc\do\^^dd\do\^^de\do\^^df \do\^^e0\do\^^e1\do\^^e2\do\^^e3\do\^^e4\do\^^e5 \do\^^e6\do\^^e7\do\^^e8\do\^^e9\do\^^ea\do\^^eb \do\^^ec\do\^^ed\do\^^ee\do\^^ef \do\^^f0\do\^^f1\do\^^f2\do\^^f3\do\^^f4\do\^^f5 \do\^^f6\do\^^f7\do\^^f8\do\^^f9\do\^^fa\do\^^fb %\fi % \begin{macrocode} \do\^^fc\do\^^fd\do\^^fe\do\^^ff 12\relax % \gdef\highchars{% ^^80^^81^^82^^83^^84^^85^^86^^87^^88% ^^89^^8a^^8b^^8c^^8d^^8e^^8f% ^^90^^91^^92^^93^^94^^95^^96^^97^^98% % \end{macrocode} %\verbdots\iffalse ^^99^^9a^^9b^^9c^^9d^^9e^^9f% ^^a0^^a1^^a2^^a3^^a4^^a5^^a6^^a7^^a8% ^^a9^^aa^^ab^^ac^^ad^^ae^^af% ^^b0^^b1^^b2^^b3^^b4^^b5^^b6^^b7^^b8% ^^b9^^ba^^bb^^bc^^bd^^be^^bf% ^^c0^^c1^^c2^^c3^^c4^^c5^^c6^^c7^^c8% ^^c9^^ca^^cb^^cc^^cd^^ce^^cf% ^^d0^^d1^^d2^^d3^^d4^^d5^^d6^^d7^^d8% ^^d9^^da^^db^^dc^^dd^^de^^df% ^^e0^^e1^^e2^^e3^^e4^^e5^^e6^^e7^^e8% ^^e9^^ea^^eb^^ec^^ed^^ee^^ef% ^^f0^^f1^^f2^^f3^^f4^^f5^^f6^^f7^^f8% %\fi % \begin{macrocode} ^^f9^^fa^^fb^^fc^^fd^^fe^^ff} \endgroup % \end{macrocode} % \end{macro} % % \begin{macro}{\actively} % % The function \cw{actively} makes a given character active and % carries out the assignment given as the first argument. The % assignment can be embedded in the replacement text of a macro % definition without requiring any special setup to produce an active % character in the replacement text. The argument should be a control % symbol, e.g. \cw{@} or \cs{\#} or \cs{\^^M}, rather than a single % character. (Except that \qc{\+} is safer than \cs{\+} in % \plaintex/.) If the assignment is a definition (\cw{def}, % \cw{edef}, \cw{gdef}, \cw{xdef}) it is allowed to take arguments in % the normal \tex/ way. Prefixes such as \cw{global}, \cw{long}, or % \cw{outer} must go inside the first argument rather than before % \cw{actively}. % % Usage: %\begin{usage} %\actively\def\?{} %\actively\def\%#1#2{} %\actively{\global\let}\^^@=\space %\end{usage} % One place where this function can be put to good use is in % making \ctrl{M} active in order to get special action at the end % of each line of input. The usual way of going about this would be % to write % %^^V \def\par{something}\obeylines % % \noindent which is a puzzling construction to the \tex/ novice % who doesn't know what \cw{obeylines} does with \cw{par}. The same % effect could be gotten a little more transparently with % %^^V \actively\def\^^M{something} % % In the definition of \cw{actively} we use the unique properties % of \cw{lowercase} to create an active character with the right % character code, overlapping with a \cw{begingroup} \cw{endgroup} % structure that localizes the necessary lc-code change. % \begin{macrocode} \def\actively#1#2{\catcode`#2\active \begingroup \lccode`\~=`#2\relax \lowercase{\endgroup#1~}} % \end{macrocode} % \end{macro} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % \begin{macro}{\mesjsetup} % % The \cw{mesjsetup} function starts a group to localize catcode % changes. The group will be closed eventually by a separate % function that does the actual sending or stores the message text % for later retrieval. % % We want to change the catcode of each character in the three % lists \cw{otherchars}, \cw{controlchars}, and \cw{highchars} to % 12. After giving \cw{do} a recursive definition, we apply it to % each of the three lists, adding a suitable element at the end of % the list to make the recursion stop there. This allows % leaving out the \cw{do} tokens from the character lists, without % incurring the cost of an if test at each recursion step. % \begin{macrocode} \def\mesjsetup{\begingroup \count@=12 \def\do##1{\catcode`##1\count@ \do}% % \end{macrocode} % The abbreviation \cw{xp@} = \cw{expandafter} is from % \fn{grabhedr.sty}. % \begin{macrocode} \xp@\do\otherchars{a11 \@gobbletwo}% \xp@\do\controlchars{a11 \@gobbletwo}% \xp@\do\highchars{a11 \@gobbletwo}% % \end{macrocode} % Make the tab character produce eight spaces: % \begin{macrocode} \actively\edef\^^I{ \space\space\space \space\space\space\space}% % \end{macrocode} % The convenient treatment of newlines in the argument of \cw{mesj} % (every line break produces a line break on screen) is achieved by % making the \ctrl{M} character active and defining it to produce a % category-12 \ctrl{J} character. Although for \cw{mesj} it would % have sufficed to make \ctrl{M} category 12 and locally set % \cw{newlinechar} = \ctrl{M} while sending the message, it turns out % to be useful for other functions to have the \ctrl{M} character % active, so that it can be remapped to an arbitrary function for % handling new lines (e.g., perhaps adding extra spaces at the % beginning of each line). And if \cw{mesj} treats \ctrl{M} the same, % we can arrange for it to share the setup routines needed for the % other functions. % \begin{macrocode} \endlinechar=`\^^M\actively\let\^^M=\relax \catcode`\{=1 \catcode`\}=2 } % \end{macrocode} % \end{macro} % % \begin{macro}{\sendmesj} % % In \cw{sendmesj} we go to a little extra trouble to make sure % \ctrl{M} produces a newline character, no matter what the value of % \cw{newlinechar} might be in the surrounding environment. The % impending \cw{endgroup} will restore \cw{newlinechar} to its % previous value. One reason for using \ctrl{J} (instead of, say, % \ctrl{M} directly) is to allow e.g. \cw{mesj}\verb'{xxx^^Jxxxx}' to % be written inside a definition, as is sometimes convenient. This % would be difficult with \ctrl{M} instead of \ctrl{J} because of % catcodes. % % \begin{macrocode} \def\sendmesj{\newlinechar`\^^J% \actively\def\^^M{^^J}% \immediate\write\sixt@@n{\mesjtext}\endgroup} % \end{macrocode} % \end{macro} % % \begin{macro}{\mesj} % % Given the support functions defined above, the definition of % \cw{mesj} is easy: Use \cw{mesjsetup} to clear all special % catcodes, then set up \cw{sendmesj} to be triggered by the next % assignment, then read the following balanced-braces group into % \cw{mesjtext}. As soon as the definition is completed, \tex/ will % execute \cw{sendmesj}, which will send the text and close the % group that was started in \cw{mesjsetup} to localize the catcode % changes. % % \begin{macrocode} \def\mesj{\mesjsetup \afterassignment\sendmesj \def\mesjtext} % \end{macrocode} % \end{macro} % % \begin{macro}{\sendprompt} % % The \cw{sendprompt} function is just like \cw{sendmesj} except % that it uses \cw{message} instead of \cw{write}, as might be % desired when prompting for user input, so that the on-screen % cursor stays on the same line as the prompt instead of hopping % down to the beginning of the next line. In order for newlines to % work with \cw{message} we must use a visible character instead of % \ctrl{J}. When everyone has \tex/ version 3.1415 or later this % will no longer be true. The choice of \qc{\!} might be construed % (if you wish) as editorial comment that \qc{\!} should not be % shouted at the user in a prompt. % % \begin{macrocode} \def\sendprompt{% \newlinechar`\!\relax \actively\def\^^M{!}% \message{\mesjtext}\endgroup} % \end{macrocode} % \end{macro} % % \begin{macro}{\promptmesj} % % This function is like \cw{mesj} but uses \cw{sendprompt} instead of % \cw{sendmesj}. % % \begin{macrocode} \def\promptmesj{\mesjsetup \afterassignment\sendprompt \def\mesjtext} % \end{macrocode} % \end{macro} % % \begin{macro}{\storemesj} % % Arg \arg{1} of \cw{storemesj} is the control sequence under which % the message text is to be stored. % \begin{macrocode} \def\storemesj#1{\mesjsetup \catcode`\#=6 % to allow arguments if needed \afterassignment\endgroup \long\gdef#1} % \end{macrocode} % \end{macro} % % \begin{macro}{\fmesj} % % While \cw{storemesj}\cw{foo}\verb"{...}" is more or less the % same as \cw{def}\cw{foo}\verb"{...}" with special catcode % changes, \cw{fmesj}\cw{foo}\verb"{...}" corresponds to % \cw{def}\cw{foo}\qc{\{}\cw{mesj}\verb"{...}}", that is, after % \cw{fmesj}\cw{foo} the function \cw{foo} can be executed directly % to send the message. Thus \cw{storemesj} is typically used for % storing pieces of messages, while \cw{fmesj} is used for storing % entire messages. % % To read the parameter text \arg{2}, we use the peculiar % \verb'#{' feature of \tex/ to read everything up to the opening % brace. % \begin{macrocode} \def\fmesj#1#2#{\mesjsetup \catcode`\#=6 % restore to normal % \end{macrocode} % The parameter text \arg{2} must be stored in a token register % rather than a macro to avoid problems with \qc{\#} characters. % The \cw{long} prefix is just to admit the (unlikely) possibility % of using \cw{fmesj} to define something such as an error message % saying `You can't use \arg{1} here' where one of the % possibilities for \arg{1} is \cw{string}\cw{par}. % \begin{macrocode} \toks@{\long\gdef#1#2}% % \end{macrocode} % Define \cw{@tempa} to put together the first two arguments and % [pseudo]argument \arg{3} and make the definition of \arg{1}. % \begin{macrocode} \def\@tempa{% \edef\@tempa{% \the\toks@{% % \end{macrocode} % The abbreviation \cw{nx@} = \cw{noexpand} is from % \fn{grabhedr.sty}. % \begin{macrocode} \begingroup\def\nx@\mesjtext{\the\toks2 }% \nx@\sendmesj}% }% \@tempa \endgroup % Turn off the \mesjsetup catcodes }% \afterassignment\@tempa \toks2=} % \end{macrocode} % \end{macro} % % \begin{macro}{\xmesjsetup} % % \cw{xmesjsetup} is like \cw{mesjsetup} except it prepares to allow % control sequence tokens and normal comments in the message text. % For \tex/nicians' convenience certain other features are % thrown in. % % Here, unlike the setup for \cw{xreadline}, I don't bother to % remove the outerness of \cw{bye}, \cw{newif}, etc., because I % presume the arguments of \cw{xmesj}, \cw{fxmesj}, % \cw{storexmesj}, \cw{fxmenu}, etc.\ are more likely to be written % by a \tex/nician than by an average end user, whereas % \cw{xreadline} is designed to handle arbitrary input from % arbitrary users. % % \begin{macrocode} \def\xmesjsetup{\mesjsetup % \end{macrocode} % Throw in pseudo braces just in case we are inside an \cw{halign} % with \cs{\\} let equal to \cw{cr} at the time when \cw{xmesjsetup} % is called. (As might happen in \amstex/.) % \begin{macrocode} \iffalse{\fi \catcode`\\=0 \catcode`\%=14 % \end{macrocode} % Define {\def~{\spacefactor1500 \space}% % \cs{\%}~\cs{\\}~\cs{\{}~\cs{\}}~\cs{\&}} to produce the % corresponding single characters, category 12. The \cw{lowercase} % trick here allows these definitions to be nonglobal. % \begin{macrocode} \begingroup \lccode`\0=`\\\lccode`\1=`\{% \lccode`\2=`\}\lccode`\3=`\%% \lowercase{\endgroup \def\\{0}\def\{{1}% \def\}{2}\def\%{3}}% \iffalse}\fi \edef\&{\string &}% % \end{macrocode} % Let \qc{\&} \qc{\=} \cw{noexpand} for expansion control inside the % argument text; let active \ctrl{M} \qc{\=} \cw{relax} so that % newlines will remain inert during the expansion. % \begin{macrocode} \actively\let\&=\noexpand \actively\let\^^M=\relax % \end{macrocode} % Define \cs{\.} to be a noop, for terminating a control word when % it is followed by letters and no space is wanted. % \begin{macrocode} \def\.{}% % \end{macrocode} % Support for use of \cw{xmesj} inside a definition replacement % text or macro argument: control-space % \verb*"\ " = \cw{space}, tilde \qc{\~} prints as itself, % \cs{\^^M} (i.e., a lone backslash at the end of a line) will % produce a newline, also \cs{\^^J}, while finally \cw{par} \qc{\=} % blank line translates to two newlines. % \begin{macrocode} \def\ { }\edef~{\string ~}% % \end{macrocode} % Define \cs{\^^M} to produce an active \ctrl{M} character, which (we % hope) will be suitably defined to produce a newline or whatever. % \begin{macrocode} \begingroup \lccode`\~=`\^^M% \lowercase{\endgroup \def\^^M{~}}% \let\^^J\^^M \def\par{\^^M\^^M}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\xmesj} % % \cw{xmesj} uses \cw{xmesjsetup} and \cw{edef}. % \begin{macrocode} \def\xmesj{\xmesjsetup \afterassignment\sendmesj \edef\mesjtext} % \end{macrocode} % \end{macro} % % \begin{macro}{\promptxmesj} % % \cw{promptxmesj} is analogous to \cw{promptmesj}, but with % expansion. % \begin{macrocode} \def\promptxmesj{\xmesjsetup \afterassignment\sendprompt \edef\mesjtext} % \end{macrocode} % \end{macro} % % \begin{macro}{\storexmesj} % % And \cw{storexmesj} is like \cw{storemesj}, with expansion. Since % we allow arguments for the function being defined, we also must % define \cs{\#} to produce a single category-12 \qc{\#} character so % that there will be a way to print \qc{\#} in the message text. % \begin{macrocode} \def\storexmesj#1#2#{\xmesjsetup \catcode`\#=6 % to allow arguments if needed \edef\#{\string##}% \afterassignment\endgroup \long\xdef#1#2} % \end{macrocode} % \end{macro} % % \begin{macro}{\fxmesj} % % And \cw{fxmesj} is the expansive analog of \cw{fmesj}. % \begin{macrocode} \def\fxmesj#1#2#{\xmesjsetup \catcode`\#=6 % restore to normal \edef\#{\string##}% \toks@{\long\xdef#1#2}% \def\@tempa{% \edef\@tempa{% \the\toks@{\begingroup \def\nx@\nx@\nx@\mesjtext{\the\toks\tw@}% \nx@\nx@\nx@\sendmesj}}% \@tempa % execute the constructed xdef \endgroup % restore normal catcodes }% \afterassignment\@tempa \toks\tw@=} % \end{macrocode} % \end{macro} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \section{Reading functions} % % \begin{macro}{\readline} % The \cw{readline} function gets one line of input from the user. % Arguments are: \arg{1} default to be used if the user response is % empty (i.e., if the user just pressed the return/enter key), % \arg{2} macro to receive the input. % % \begin{macrocode} \def\readline#1#2{% \begingroup \count@ 12 % \def\do##1{\catcode`##1\count@ \do}% \xp@\do\otherchars{a11 \@gobbletwo}% \xp@\do\controlchars{a11 \@gobbletwo}% \xp@\do\highchars{a11 \@gobbletwo}% % \end{macrocode} % Make spaces and tabs normal instead of category 12. % \begin{macrocode} \catcode`\ =10 \catcode`\^^I=10 % \catcode`\^^M=9 % ignore % \end{macrocode} % Reset end-of-line char to normal, just in case. % \begin{macrocode} \endlinechar`\^^M % \end{macrocode} % We go to a little trouble to avoid \cw{gdef}-ing \arg{2}, in order % to prevent save stack buildup if the user of \cw{readline} carries % on unaware doing local redefinitions of \arg{2} after the initial % read. % \begin{macrocode} \read\m@ne to#2% \edef#2{\def\nx@#2{#2}}% \xp@\endgroup #2% \ifx\@empty#2\def#2{#1}\fi } % \end{macrocode} % \end{macro} % % \begin{macro}{\xreadline} % % \cw{xreadline} is like \cw{readline} except that it leaves almost % all catcodes unchanged so that the return value is executable % tokens instead of strictly character tokens of category 11 or 12. % \begin{macrocode} \def\xreadline#1#2{% \begingroup % \end{macrocode} % Render some outer control sequences innocuous. % \begin{macrocode} \xp@\let\csname bye\endcsname\relax \xp@\let\csname newif\endcsname\relax \xp@\let\csname newcount\endcsname\relax \xp@\let\csname newdimen\endcsname\relax \xp@\let\csname newskip\endcsname\relax \xp@\let\csname newmuskip\endcsname\relax \xp@\let\csname newtoks\endcsname\relax \xp@\let\csname newbox\endcsname\relax \xp@\let\csname newinsert\endcsname\relax \xp@\let\csname +\endcsname\relax \actively\let\^^L\relax \catcode`\^^M=9 % ignore \endlinechar`\^^M% reset to normal \read\m@ne to#2% \toks@\xp@{#2}% \edef\@tempa{\def\nx@#2{\the\toks@}}% \xp@\endgroup \@tempa \ifx\@empty#2\def#2{#1}\fi } % \end{macrocode} % \end{macro} % % \begin{macro}{\readchar} % % \cw{readchar} reduces the user response to a single character. % \begin{macrocode} \def\readchar#1#2{% \readline{#1}#2% % \end{macrocode} % If the user's response and the default response are both empty, % we need something after \arg{1} to keep \cw{@car} from running % away, so we add an empty pair of braces. % \begin{macrocode} \edef#2{\xp@\@car#2#1{}\@nil}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\readChar} % % \cw{readChar} reduces the user response to a single uppercase % character. (This is useful to simplify testing the response % later with \cw{if}.) % % \begin{macrocode} \def\readChar#1#2{% \readline{#1}#2% \changecase\uppercase#2% % \end{macrocode} % Reduce \arg{2} to its first character, or the first character of % \arg{1}, if \arg{2} is empty. The extra braces \verb'{}' are to % prevent a runaway argument error from \cw{@car} if \arg{2} and % \arg{1} are both empty. % \begin{macrocode} \edef#2{\xp@\@car #2#1{}\@nil}% } % \end{macrocode} % \end{macro} % % \begin{macro}{\changecase} % The function \cw{changecase} uppercases or lowercases the % replacement text of its second argument, which % must be a macro. The first argument should be \cw{uppercase} or % \cw{lowercase}. % \begin{macrocode} \def\changecase#1#2{\@casetoks\xp@{#2}% \edef#2{#1{\def\nx@#2{\the\@casetoks}}}#2} % \end{macrocode} % \end{macro} % % \begin{macro}{\@casetoks} % We allocate a token register just for the use of \cw{changecase} % because it might be used at a low level internally where we don't % want to interfere with other uses of the scratch token registers % 0\dash 9. % \begin{macrocode} \newtoks\@casetoks % \end{macrocode} % \end{macro} % % A common task in reading user input is to verify, when an answer % of a certain kind was requested, that the response has indeed the % desired form\Dash for example, if a nonnegative integer is required % for subsequent processing, it behooves us to verify that we have % a nonnegative integer in hand before doing anything that might % lead to inconvenient error messages. However, it's not easy to % decide how best to handle such verification. One possibility % might be to have a function % %^^V \readnonnegativeinteger\foo % % to do all the work of going out and fetching a number from the % user and leaving it in the macro \cw{foo}. Another possibility % would be to read the response using \cw{readline} and then apply % a separate function that can be used in combination with \cw{if}, % for example % %^^V \readline{}\reply %^^V \if\validnumber\reply ... \else ... \fi % % For maximum flexibility, a slightly lower-level approach is % chosen here. The target syntax is % %^^V \readline{}\reply %^^V \checkinteger\reply\tempcount % % where \cw{tempcount} will be set to \verb'-'\cw{maxdimen} if % \cw{reply} does {\em not\/} contain a valid integer. (Negative % integers are allowed, as long as they are greater than % \verb'-'\cw{maxdimen}.) Then the function that calls % \cw{checkinteger} is free to make additional checks on the range % of the reply and give error messages tailored to the % circumstances. And the handling of an empty \cw{reply} can be % arbitrarily customized, something that would tend to be % inconvenient for the first method mentioned. % % The first and second approaches can be built on top of the third % if desired, e.g.\ (for the second approach) % %^^V \def\validnumber#1{TT\fi %^^V \checkinteger#1\tempcount% %^^V \ifnum\tempcount>-\maxdimen } % % The curious \verb'TT\fi'\verbdots\cw{ifnum} construction is from % \TeXhax{} 1989, no.~20 and no.~38 (a suggestion of D. E. Knuth in % reply to a query by S. von Bechtolsheim). % % \begin{macro}{\checkinteger} % % The arguments of \cw{checkinteger}'s are: \arg{2}, a count register % to hold the result; \arg{1}, a macro holding zero or more arbitrary % characters of category 11 or 12. % % \begin{macrocode} \def\checkinteger#1#2{\let\scansign@\@empty \def\scanresult@{#2}% \xp@\scanint#1x\endscan} % \end{macrocode} % \end{macro} % % \begin{macro}{\scanint} % % To validate a number, the function \cw{scanint} must first scan % away leading \qc{\+} or \qc{\-} signs (keeping track in % \cw{scansign@}), then look at the first token after that: if it's % a digit, fine, scan that digit and any succeeding digits into the % given count register (\cw{scanresult@}), ending with \cw{endscan} % to get rid of any following garbage tokens that might just % possibly show up. % % Typical usage of \cw{scanint} includes initializing \cw{scansign@} % to empty, as in the definition of \cw{checkinteger}. %\begin{usage} %\let\scansign@\@empty %\def\scanresult@{\tempcount}% %\xp@\scanint\reply x\endscan %\end{usage} % Assumption: \cw{reply} is either empty or contains only category % 11 or 12 characters (which it will if you used \cw{readline}!). If % a separate check is done earlier to trap the case where \cw{reply} % is empty\Dash for example, by using a nonempty default for % \cw{readline}\Dash then the \verb'x' before \cw{endscan} is % superfluous. % % Arg \arg{1} = next character from the string being tested. % The test whether \arg{1} is a decimal digit is similar in spirit % to the test \verb'\if!#1!' to see if an argument is empty % (\TB, Appendix~D, p.~376). % \begin{macrocode} \def\scanint#1{% \ifodd 0#11 % % \end{macrocode} % Is \arg{1} a decimal digit? If so read all digits into % \cw{scanresult@} with the sign prefix. % \begin{macrocode} \def\@tempa{\afterassignment\endscan \scanresult@=\scansign@#1}% \else \if -#1\relax % \end{macrocode} % Here we flipflop the sign; watch closely. % \begin{macrocode} \edef\scansign@{% \ifx\@empty\scansign@ -\fi}% \def\@tempa{\scanint}% \else % \end{macrocode} % A plus sign can just be ignored. % \begin{macrocode} \if +#1\relax \def\@tempa{\scanint}% \else % not a valid number \def\@tempa{% \scanresult@=-\maxdimen\endscan}% \fi\fi\fi \@tempa } % \end{macrocode} % \end{macro} % % \begin{macro}{\endscan} % The \cw{endscan} function just gobbles any remaining garbage. It % uses its own name as the argument delimiter. % \begin{macrocode} \def\endscan#1\endscan{} % \end{macrocode} % \end{macro} % % \begin{macro}{\dimenfirstpart} % \begin{macro}{\dimentoks} % \cw{dimenfirstpart}, a count register, receives the digits, if % any, preceding the decimal point. \cw{dimentoks}, a token % register, receives any digits after the decimal point. % \begin{macrocode} \newcount\dimenfirstpart \newtoks\dimentoks % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\scandimen} % % \cw{scandimen} is similar to \cw{scanint} but has to call some % auxiliary functions to scan the various subcomponents of a % dimension (leading digits, decimal point, fractional part, and % units, with optional {\tt true}, in addition to the sign). The % minimum requirements of \tex/'s syntax for dimensions are a digit % or decimal point \qc{\+} the units; all the other components are % optional (\TB, Exercise~10.3, p.~58). % % When scanning for the digits of a fractional part, we can't throw % away leading zeros; therefore we don't read the fractional part % into a count register as we did for the digits before the decimal % point; instead we read the digits one by one and store them in % \cw{dimentoks}. % % The function that calls \cw{scandimen} should initialize % \cw{scansign@} to \cw{@empty}, \cw{dimenfirstpart} to \cw{z@}, % \cw{dimentoks} to empty \verb'{}', and \cw{dimentrue@} to % \cw{@empty}. % % Test values: {\tt 0pt}, {\tt 1.1in}, {\tt -2cm}, {\tt .3mm}, {\tt % 0.4dd}, {\tt 5.cc}, {\tt.10000000009pc}, \cw{hsize}, {\tt em}. % % \begin{macrocode} \def\scandimen#1{% \ifodd 0#11 \def\@tempa{\def\@tempa{\scandimenb}% \afterassignment\@tempa \dimenfirstpart#1}% \else % \end{macrocode} % % The following test resolves to true if \arg{1} is either a period % or a comma (both recognized by \tex/ as decimal point % characters). % % \begin{macrocode} \if \if,#1.\else#1\fi.% \def\@tempa{\scandimenc}% \else \if -#1% then flipflop the sign \edef\scansign@{% \ifx\@empty\scansign@ -\fi}% \def\@tempa{\scandimen}% \else \if +#1% then ignore it \def\@tempa{\scandimen}% \else % not a valid dimen \def\@tempa{% \scanresult@=-\maxdimen\endscan}% \fi\fi\fi\fi \@tempa } % \end{macrocode} % \end{macro} % % \begin{macro}{\scandimenb} % % Scan for an optional decimal point. % % \begin{macrocode} \def\scandimenb#1{% \if \if,#1.\else#1\fi.% \def\@tempa{\scandimenc}% \else % \end{macrocode} % If the decimal point is absent, we need to put back \arg{2} and % rescan it to see if it is the first letter of the units. % \begin{macrocode} \def\@tempa{\scanunitsa#1}% \fi \@tempa } % \end{macrocode} % \end{macro} % % \begin{macro}{\scandimenc} % % Scan for the fractional part: digits after the decimal point. % % \begin{macrocode} \def\scandimenc#1{% % \end{macrocode} % If \arg{1} is a digit, add it to \cw{dimentoks}. % \begin{macrocode} \ifodd 0#11 \dimentoks\xp@{% \the\dimentoks#1}% \def\@tempa{\scandimenc}% \else % \end{macrocode} % Otherwise rescan \arg{1}, presumably the first letter of the % units. % \begin{macrocode} \def\@tempa{\scanunitsa#1}% \fi \@tempa } % \end{macrocode} % \end{macro} % % \begin{macro}{\scanunitsa} % % \begin{macrocode} \def\scanunitsa#1\endscan{% % \end{macrocode} % Check for \verb'true' qualifier. % \begin{macrocode} \def\@tempa##1true##2##3\@tempa{##2}% % \end{macrocode} % % The peculiar nature of \cw{lowercase} is evident here as we are % able to apply it to only the test part of the conditional without % running into brace-matching problems. (Compare the braces in this % example to something like \cw{message}\qc{\{}\cw{iffalse} % \verb"A}"\cw{else} \verb"B}"\cw{fi}.) % % \begin{macrocode} \lowercase{% \xp@\ifx\xp@\end \@tempa#1true\end\@tempa }% % \end{macrocode} % No \verb'true' was found: % \begin{macrocode} \let\dimentrue@\@empty \def\@tempa{\scanunitsb#1\endscan}% \else \def\dimentrue@{true}% \def\@tempa##1true##2\@tempa{% \def\@tempa{##1}% \ifx\@tempa\@empty \def\@tempa{\scanunitsb##2\endscan}% \else \def\@tempa{\scanunitsb xx\endscan}% \fi}% \@tempa#1\@tempa \fi \@tempa } % \end{macrocode} % \end{macro} % % \begin{macro}{\scanunitsb} % % Scan for the name of the units and complete the assignment of the % scanned value to \cw{scanresult@}. Notice that, because of the way % \cw{scanunitsb} picks up \arg{1} and \arg{2} as macro arguments, % \verb"p t" is allowed as a variation of \verb"pt". Eliminating % this permissiveness doesn't seem worth the speed penalty % that would be incurred in \cw{scanunitsb}. % % The method for detecting a valid units string is to define the % scratch function \cw{@tempa} to apply \tex/'s parameter-matching % abilities to a special string that will yield a boolean value % of true if and only if the given string is a valid \tex/ unit. % \begin{macrocode} \def\scanunitsb#1#2{% \def\@tempa##1#1#2##2##3\@nil{##2}% \def\@tempb##1{T\@tempa pcTptTcmTccTemTexTinTmmTddTspT##1F\@nil}% % \end{macrocode} % Force lowercase just in case the units were entered with % uppercase letters (accepted by \tex/, so we had better accept % uppercase also). % \begin{macrocode} \lowercase{% \if\@tempb{#1#2}% }% \scanresult@=\scansign@ \number\dimenfirstpart.\the\dimentoks \dimentrue@#1#2\relax \else \scanresult@=-\maxdimen \fi % \end{macrocode} % Call \cw{endscan} to gobble garbage tokens, if any. % \begin{macrocode} \endscan } % \end{macrocode} % \end{macro} % % \begin{macro}{\checkdimen} % % Argument \arg{2} must be a dimen register; \arg{1} is expected to % be a macro holding zero or more arbitrary characters of category 11 % or 12. % \begin{macrocode} \def\checkdimen#1#2{% \let\scansign@\@empty \def\scanresult@{#2}% \let\dimentrue@\@empty \dimenfirstpart\z@ \dimentoks{}% \xp@\scandimen#1xx\endscan } % \end{macrocode} % \end{macro} % % Finish up. % \begin{macrocode} \restorecatcodes \endinput % \end{macrocode} % % \CheckSum{858} % \Finale