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Chapter 1

Matrix manipulation

It is convenient to represent multivariate data by means of n × p matrix such as
X. We could consider the USArrests data in this way. We follow the convention
of using n to denote the number of rows of individuals who have been observed,
and p to denote the number of columns (variables). We will formalise some some
aspects from linear algebra that will be important in understanding multivariate
analysis. These are very brief notes, there is a wealth of readable material on linear
algebra as well as material specific for statistical applications such as Healy (2000)
and Schott (1997). There is also an interesting presentation from a more geometric
perspective in Wickens (1995) which supplements more algebraic presentations of
matrix concepts.

1.1 Vectors

Consider a vector x ∈ Rp, by convention this is thought of as a column vector:

x =




x1
x2
...

xn




A row vector such as
(

x1 x2 . . . xn
)

will be denoted by xT.
A vector is a basic unit of numbers within R , but the R objects don’t entirely

conform to a formal mathematical definition (look at the way vecctor recycling
works for example) and some caution is needed. The following instruction:

> x <- c(3.289, 4.700, 10.400)

assigns the values to the object x creating the following R vector:
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x =




3.289
4.700

10.400




The default print method in R gives these in the most compact form:

> x

[1] [1] 3.289 4.700 10.400

but forcing this into a matrix object with as.matrix() confirms its dimensionality:

> as.matrix(x)

[,1]

[1,] 3.289

[2,] 4.700

[3,] 10.400

and taking the transpose of this vector using t() does produce a row vector as
expected:

> t(x)

[,1] [,2] [,3]

[1,] 3.289 4.7 10.4

1.1.1 Vector multiplication; the inner product

We first define the inner product of two vectors. For x, y ∈ Rp this gives a scalar:

〈x, y〉 = xT y =

p∑

j=1

x jy j = yTx

In other words, we find the product of corresponding elements of each vector
(the product of the first element of the row vector and the first element of the column
vector), and then find the sum of all these products:

(
x1 x2 . . . xn

)



y1
y2
. . .
yn




= x1y1 + x2y2 + . . . + xnyn︸                        ︷︷                        ︸
One number; the sum of all the individual products
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To give a simple example, with xT = (4, 1, 3, 2) and y =




1
−1

3
0




we have:

(
4 1 3 2

)
×




1
−1

3
0




= 4 × 1 + 1 × (−1) + 3 × 3 + 2 × 0︸                                  ︷︷                                  ︸ = 12

In R the inner product can be simply obtained using %*%, for example:

> x <- c(4, 1, 3, 2)

> y <- c(1, -1, 3, 0)

> t(x) %*% y

[,1]

[1,] 12

which returns the answer as a scalar. Note that using * without the enclosing %%
yields a vector of the same length of x and y where each element is the product of
the corresponding elements of x and y, and may do other unexpected things using
vector recycling.

1.1.2 Outer product

Note that if xT y is the inner product of two vectors x and y, the outer product is
given by xyT. For vectors, it can be computed by x %*% t(y); but as we will find
later, outer product operations are defined for arrays of more than one dimension
as x %o% y and outer(x,y)

1.1.3 Vector length

An important concept is the length of a vector, also known as the Euclidean norm
or the modulus. It is based on a geometric idea and expresses the distance of a
given vector from the origin:

|x| = 〈x, x〉1/2 =




p∑

j=1

x2
j




1/2

A normalised vector is one scaled to have unit length, for the vector x this can be
found by taking 1

|x|x which is trivial in R :

> z <- x / sqrt(t(x) %*% x)

> z

[1] 0.7302967 0.1825742 0.5477226 0.3651484

> t(z) %*% z ## check the length of the normalised vector
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[,1]

[1,] 1

1.1.4 Orthogonality

Two vectors x and y, of order k × 1 are orthogonal if xy = 0. Furthermore, if two
vectors x and y are orthogonal and of unit length, i.e. if xy = 0, xTx = 1 and yT y = 1
then they are orthonormal.

More formally, a set {ei} of vectors in Rp is orthonormal if

eT
i e j = δi j =

{
0, i , j
1, i = j

Where δi j is referred to as the Kronecker delta.

1.1.5 Cauchy-Schwartz Inequality

〈x, y〉 ≤ |x| |y|, for all x, y ∈ R
with equality if and only if x = λy for some λ ∈ R. Proof of this inequality is given
in many multivariate textbooks such as Bilodeau and Brenner (1999). We won’t use
this result itself, but will actually consider the extended Cauchy-Scwartz inequality
later.

1.1.6 Angle between vectors

The cosine of the angle between two vectors is given by:

cos(θ) =
〈x, y〉
|x| |y|

It can be conveniently calculated in R :

> cor(x,y)

1.2 Matrices

We now consider some basic properties of matrices, and consider some basic oper-
ations on them that will become essential as we progress. Consider the data matrix
X, containing the USArrests data, a 50 × 4 matrix, i.e. with n = 50 rows refering
to States and p = 4 columns refering to the variables measuring different arrest
rates. To indicate the order of this matrix it could be described fully as X50,4; this
convention is followed in R as a call to dim(USArrests)will confirm. Each element
in this matrix can be denoted by xi j where i denotes the particular row (here state)
and j the particular column (here arrest rate). Hence x6 3 = 38.7.
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In order to create a matrix in R the dimension has to be specified in the call to
matrix(). It should be very carefully noted that the default is to fill a matrix by
columns, as indicated here:

> mydata <- c(1,2,3,4,5,6)

> A <- matrix(mydata, 3,2)

> A

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

If this is not convenient, R can be persuaded to fill matrices by rows rather than by
columns by including the argument byrow = TRUE in the call to matrix. It is also
possible to coerce other objects (such as data frames) to a matrix using as.matrix()
and data.matrix(); the former producing a character matrix if there are any non-
numeric variables present, the latter coercing everything to a numeric format.

1.2.1 Transposing matrices

Transposing matrices simply involves turning the first column into the first row.
A transposed matrix is denoted by a superscripted T, in other words AT is the
transpose of A.

I f A =




3 1
5 6
4 4


 then AT =

(
3 5 4
1 6 4

)

As with vectors, transposing matrices in R simply requires a call to t(), the
dimensions can be checked with dim().

> Atrans <- t(A)

> Atrans

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> dim(Atrans)

[1] 2 3

1.2.2 Some special matrices

Symmetric matrices

We mention a few “special” matrix forms that will be encountered. We firstly note
that symmetric matrices are symmetric around the diagonal i = j. For matrix A, it is
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symmetric whenever ai j = a ji. The correlation matrix and the variance-covariance
matrix are the most common symmetric matrices we will encounter, we will look
at them in more detail later, for now note that we can obtain the (symmetric)
correlation matrix as follows:

> cor(USArrests)

Murder Assault UrbanPop Rape

Murder 1.00000000 0.8018733 0.06957262 0.5635788

Assault 0.80187331 1.0000000 0.25887170 0.6652412

UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412

Rape 0.56357883 0.6652412 0.41134124 1.0000000

Diagonal Matrices

Given it’s name, it is perhaps obvious that a diagonal matrix has elements on the
diagonal (where i = j) and zero elsewhere (where i , j). For example, the matrix A
given as follows:

A =




13 0 0
0 27 0
0 0 16




is a diagonal matrix. To save paper and ink, A can also be written as:

A = diag
(

13 27 16
)

It is worth noting that the diag() command in R , as shown below, lets you
both overwrite the diagonal elements of matrix and extract the diagonal elements
depending how it is used:

> mydataD <- c(13, 27, 16)

> B <- diag(mydataD)

> B

[,1] [,2] [,3]

[1,] 13 0 0

[2,] 0 27 0

[3,] 0 0 16

> diag(B)

[1] 13 27 16

It is also worth noting that when “overwriting”, the size of the matrix to be over-
written can be inferred from the dimensionality of diagonal.

Identity Matrix

One special diagonal matrix is the identity matrix, which has a value of 1 at each
position on the diagonal and 0 elsewhere. Here, all we need to know is the size. So
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I4 tells us that we have the following matrix:

I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




This can be created in a variety of ways in R , such as I4 <- diag(rep(1,4))

Ones

We also need to define a vector of ones; 1p, a p× 1 matrix containing only the value
1. There is no inbuilt function in R to create this vector, it is easily added:

> ones <- function(p){

Ones <- matrix(1,p,1)

return(Ones)

}

Zero matrix

Finally, 0 denotes the zero matrix, a matrix of zeros. Unlike the previously men-
tioned matrices this matrix can be any shape you want. So, for example:

02 3 =

(
0 0 0
0 0 0

)

1.2.3 Equality and addition

A little more care is needed in defining basic mathematical operations on matrices.
Considering the two matrices A and B, we consider their equality A = B if any only
if:

• A and B have the same size, and

• the i jth element of A is equal to the i jth element of A for all 1 ≤ i ≤ r and
1 ≤ j ≤ n

A consequence of this is that the following two matrices are equal:



138.8149 187.52 394.86
187.5200 267.00 559.00
394.8600 559.00 1200.00


 =




138.8149 187.52 394.86
187.5200 267.00 559.00
394.8600 559.00 1200.00
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(which seems like an obvious and fussy thing to say) but the following two zero
matrices are not equal: 


0 0 0
0 0 0
0 0 0


 ,

(
0 0 0
0 0 0

)

Adding and subtracting are fairly straightforward. Provided A and A have the
same size, A + B and A − B are defined by each of these operations being carried
out on individual elements of the matrix. For example:

(
1 3 5
2 4 6

)
+

(
0 2 3
−1 −2 −3

)
=

(
1 + 0 3 + 2 5 + 3

2 + −1 4 + −2 6 + −3

)
=

(
1 5 8
1 2 3

)

and (
1 3 5
2 4 6

)
−

(
0 2 3
−1 −2 −3

)
=

(
1 1 2
3 6 9

)

Addition and subtraction are straightforward enough in R :

> A <- matrix(c(1,2,3,4,5,6),2,3)

> A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> B <- matrix(c(0,-1,2,-2,3,-3),2,3)

> B

[,1] [,2] [,3]

[1,] 0 2 3

[2,] -1 -2 -3

> A + B

[,1] [,2] [,3]

[1,] 1 5 8

[2,] 1 2 3

> A - B

[,1] [,2] [,3]

[1,] 1 1 2

[2,] 3 6 9

Matrix addition follows all the normal arithmetic rules, i.e.

Commutative law A + B = B + A
Associative law A + (B + C) = (A + B) + C

Matrix multiplication however follows vector multiplication and therefore does
not follow the same rules as basic multiplication.
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1.2.4 Multiplication

A scalar is a matrix with just one row and one column, i.e. a single number. In
other words, 0.4 could be a scalar or a 1 × 1 matrix. It’s worth re-capping that
multiplication by a scalar is easy enough, we just multiply every element in the
matrix by the scalar.

So if k = 0.4, and

A =

(
1 5 8
1 2 3

)

we can calculate kA as:

kA = 0.4 ×
(

1 5 8
1 2 3

)
=

(
0.4 2 3.2
0.4 0.8 1.6

)

When multiplying two matrices, it should be noted first that they must be
conformable. The number of columns in the first matrix must match the number of
rows in the second. As matrix multiplication has been defined, the result will be a
matrix with as many rows as the first matrix and as many columns as the second.
For example, with our vectors above in section 1.1.1 , we had A1 4×B4 1 = C1 1. More
generally multiplication proceeds with matrix size as follows: Am n × Bn p = Cm p.

It may help to think about the vector operations and extend them to matrices.
There are other ways of thinking about matrix multiplication, most multivariate text
books have an appendix on matrix algebra and there are vast tomes available cover-
ing introductory linear algebra. However, one explanation of matrix multiplication
is given here. We want to find A × B where

A =




1 5
1 2
3 8


 and B =

(
1 4
3 2

)

If A is of size m × n it could be considered as consisting of a row of vectors
aT

1
,aT

1
, . . . ,aT

m, which in this case corresponds to aT
1

= (1, 5),aT
2

= (1, 2) and aT
3

=

(3, 8). Likewise, we can consider B consisting of b1 =

(
1
4

)
and b1 =

(
3
2

)
. In other

words, we are trying to multiply together:

A =




aT
1

aT
2

aT
3


 and B =

(
b1 b2

)

We can define the multiplication operation for matrices generally as:

AB =




aT
1

aT
2
. . .
aT

m




(
b1 b2 . . . bp

)
=




aT
1 b1 aT

1 b2 . . . aT
1 bp

aT
2 b1 aT

2 b2 . . . aT
1 bp

...
...

...
aT

3 b1 aT
3 b2 . . . aT

mbp
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1
,aT

1
, . . . ,aT
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1
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2
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3

=
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In other words, we need to multiply row i of A by column j of B to give element

i j of the result. For example, note that aT
1

b1 =
(

1 5
) ( 1

4

)
= 1 × 1 + 5 × 3 = 16.

Carrying out this operation on our matrices above gives:

AB =




1 5
1 2
3 8




(
1 4
3 2

)
=




16 14
7 8

27 28




In R , we only need to use the %*% operator to ensure we are getting matrix
multiplication:

> A <- matrix(c(1,1,3,5,2,8),3,2)

> A

[,1] [,2]

[1,] 1 5

[2,] 1 2

[3,] 3 8

> B <- matrix(c(1,3,4,2),2,2)

> B

[,1] [,2]

[1,] 1 4

[2,] 3 2

> A %*% B

[,1] [,2]

[1,] 16 14

[2,] 7 8

[3,] 27 28

Note that you can’t multiply non-conformable matrices; this is one place in R
where you get a clearly informative error message:

> B %*% A

Error in B %*% A : non-conformable arguments

It is particularly important to use the correct matrix multiplication argument.
Depending on the matrices you are working with (if they both have the same
dimensions), using the usual *multiplication operator will give you the Hadamard
product, the element by element product of the two matrices which is rarely what
you want:

> C <- matrix(c(1,1,3,5),2,2)

> C %*% B ## correct call for matrix multiplication

[,1] [,2]
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[1,] 10 10

[2,] 16 14

> C * B ## Hadamard Product!!!

[,1] [,2]

[1,] 1 12

[2,] 3 10

We saw earlier that matrix addition was commutative and associative. But
as you can imagine, given the need for comformability some differences may be
anticipated between conventional multiplication and matrix multiplication. Gen-
erally speaking, matrix multiplication is not commutative (you may like to think of
exceptions):

(non-commutative) A × B , B ×A
Associative law A × (B × C) = (A × B) × C

And the distributive laws of multiplication over addition apply as much to
matrix as conventional multiplication:

A × (B + C) = (A × B) + (A × C)
(A + B) × C = (A × C) + (B × C)

But there are a few pitfalls if we start working with transposes. Whilst

(A + B)T = AT + BT

note that:
(A × B)T = BT ×AT

Trace of a matrix

The trace of a matrix is the quite simply the sum of its diagonal elements. This is
an interesting concept in many ways, but it turns out in one specific context, when
applied to the covariance matrix, this has an interpretation as the total sample
variance. There is no inbuilt function in R to calculate this value, you need to use
sum(diag(X))

Note that if you have two conformable matrices A e.g.




2 5
0 7
4 3


and B e.g.

(
4 2 1
6 3 2

)
,

trace(AB) = trace(BA)
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1.3 Crossproduct matrix

Given the data matrix X, the crossproduct, sometimes more fully referred to as
the “sum of squares and crossproducts” matrix is given by XTX. The diagonals
of this matrix are clearly the sum of squares of each column. Whilst this can be
computed in R using X %*% t(X) there are some computational advantages in
using the dedicated function crossprod(X) For example, coercing the USArrests
data to a matrix we can obtain the sum of squares and crossproducts matrix for
these data as follows:

B <- crossprod(as.matrix(USArrests))

So if X is the USArrests data,

XTX =




3962.20 80756.00 25736.20 9394.32
80756.00 1798262.00 574882.00 206723.00
25736.20 574882.00 225041.00 72309.90
9394.32 206723.00 72309.90 26838.62




If we define some sample estimators as follows:

x̄ =
1
n

n∑

i=1

xi =
1
n

XT1 (1.1)

So for example we can find the sample mean for the USArrests data as:

> n <- dim(USArrests)[1] ## extract n; here 50

> one <- ones(n)

> 1/n * t(USArrests) %*% one

> mean(USArrests) ## check results against in-built function

We can use matrix algebra to obtain an unbiased estimate of the sample covari-
ance matrix S as follows:

S =
1

n − 1

n∑

i=1

(xi − x̄)T(xi − x̄)

=

n∑

i=1

xi

n∑

i=1

xT
i − x̄x̄T

=
1

n − 1
XTX − x̄x̄T

=
1

n − 1

(
XTX − 1

n
XT11TX

)
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From this, we can define the centering matrix H:

H = I − 1
n

11T

and so arrive at an alternative expression for S using this centering matrix:

S =
1

n − 1
XTHX (1.2)

Idempotent matrices

It may be noted that H is idempotent, i.e. H = HT and H = H2.
In calculating H in R it might be clearer to set the steps out in a function:

centering <- function(n){

I.mat <- diag(rep(1, n))

Right.mat <- 1/n * ones(n) %*% t(ones(n))

H.mat <- I.mat - Right.mat

return(H.mat)

}

And our matrix method for finding an estimate of the sample covariance using
this centering procedure can also be set out in a function:

S.mat <- function(X, H){

n <- dim(X)[1] ## number of rows

H.mat <- centering(n)

S <- 1/(n-1) * t(X) %*% H.mat %*% X

return(S)

}

So, to estimate the sample covariance with this function we need to make sure
our data are in the form of matrix. We also compare the results with the inbuilt
function cov():

X <- as.matrix(USArrests)

S.mat(X)

cov(USArrests)

It may be worth clarifying the information contained in the matrix we have just
obtained. The covariance matrix (more fully referred to as the variance-covariance
matrix) contains information on the variance of each of the variables as well as infor-
mation on pairwise covariance. We will formalise our understanding of estimators
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later, but for now note that it could be considered as an estimate of:

Σ = V




X1
X2
X3
X4




=




var(X1) cov(X1,X2) cov(X1,X3) cov(X1,X4)
cov(X2,X1) var(X2) cov(X2,X3) cov(X2,X4)
cov(X3,X1) cov(X3,X2) var(X3) cov(X3,X4)
cov(X4,X1) cov(X4,X2) cov(X4,X3) var(X4)




For the US Arrests data, as we have seen:

S =




18.97 291.06 4.39 22.99
291.06 6945.17 312.28 519.27

4.39 312.28 209.52 55.77
22.99 519.27 55.77 87.73




1.3.1 Powers of matrices

We set out some definitions of matrix powers as they will come in useful later.For
all matrices, we define A0 = I, the identity matrix and A1 = A. We will next define
A2 = AA (if you think about it a bit you could see that A must be a square matrix,
otherwise we couldn’t carry out this multiplication). Using these definitions for
matrix powers means that all the normal power arithmetic applies. For example,
Am ×An = An ×Am = Am+n. If you look closely, you can also see that the powers
of a matrix are commutative which means that we can do fairly standard algebraic
factorisation. For example:

I −A2 = (I + A)(I −A)

which is a result we can use later.

1.3.2 Determinants

The determinant of a square p×p matrix A is denoted as |A|. Finding the determinant
of a 2 × 2 matrix is easy:

|A| = det
(

a11 a21
a12 a22

)
= a11a22 − a12a21

For matrices of order > 2, partitioning the matrix into “minors” and “cofactors”
is necessary. Consider the following 3 × 3 matrix.

A =




a11 a12 a13
a21 a22 a23
a31 a32 a13




Any element ai j of this matrix has a corresponding square matrix formed by
eliminating the row (i) and column ( j) containing ai j. So if we were considering a11,

we would be interested in the square matrix A−11 =

(
a22 a23
a32 a13

)
. The determinant
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of this reduced matrix, |A−11| is called the minor of a11, and the product ci j =

(−1)i+ j|A−i j| = −11+1|A−11| = |A11| is called the cofactor of a11. The determinant of A
can be expressed as the sum of minors and cofactors of any row or column of A.

Thus:
|A| = Σ

p
j=1ai jci j

and as can be seen, this can get terribly recursive if you’re working by hand!
Working an example through:

IfA =




3 4 6
1 2 3
5 7 9




Then |A|= ai1ci1 + ai2ci2 + ai3ci3. If i = 1 then:

c11 = (−1)1+1
∣∣∣∣∣

2 3
7 9

∣∣∣∣∣ = (18 − 21) = −3

c11 = (−1)1+2
∣∣∣∣∣

1 3
5 9

∣∣∣∣∣ = −(9 − 15) = 6

c11 = (−1)1+1
∣∣∣∣∣

1 2
5 7

∣∣∣∣∣ = (7 − 10) = −3

So |A| = 3(−3) + 4(6) + 6(−3) = −3.
In R , det() tries to find the determinant of a matrix.

> D <- matrix(c(5,3,9,6),2,2)

> D

[,1] [,2]

[1,] 5 9

[2,] 3 6

> det(D)

[1] 3

> E <- matrix(c(1,2,3,6),2,2)

> E

[,1] [,2]

[1,] 1 3

[2,] 2 6

> det(E)

[1] 0

Some useful properties of determinants:

• The determinant of a diagonal matrix (or a triangular matrix for that matter)
is the product of the diagonal elements. (Why?).
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• For any scalar k, |kA| = kn|A|, where A has size n × n.

• If two rows or columns of a matrix are interchanged, the sign of the determi-
nant changes.

• If two rows or columns are equal or proportional (see material on rank later),
the determinant is zero.

• The determinant is unchanged by adding a multiple of some column (row) to
any other column (row).

• If all the elements or a column / row are zero then the determinant is zero.

• If two n × n matrices are denoted by A and B, then |AB| = |A|.|B|.
The determinant of a variance-covariance has a rather challenging interpretation

as the generalised variance.

1.3.3 Rank of a matrix

Rank denotes the number of linearly independent rows or columns. For example:



1 1 1
2 5 −1
0 1 −1




This matrix has dimension 3×3, but only has rank 2. The second column a2 can
be found from the other two columns as a2 = 2a1 − a3.

If all the rows and columns of a square matrix A are linearly independent it is
said to be of full rank and non-singular.

If A is singular, then |A| = 0.

1.4 Matrix inversion

If A is a non-singular p × p matrix, then there is a unique matrix B such that
AB = BA = I, where I is the identity matrix given earlier. In this case, B is the
inverse of A, and denoted A−1.

Inversion is quite straightforward for a 2 × 2 matrix.

If A =

(
a11 a12
a21 a22

)
then A−1 =

1
|A|

(
a22 −a12
−a21 a11

)

More generally for a matrix of order n × n, the (j,k)th entry of A−1 is given by:

[ |A− jk|
|A|

](−1) j+k

,

where A− jk is the matrix formed by deleting the jth row and kth column of A. Note
that a singular matrix has no inverse since its determinant is 0.
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In R , we use solve() to invert a matrix (or solve a system of equations if
you have a second matrix in the function call, if we don’t specify a second matrix
R assumes we want to solve against the identity matrix, which mean finding the
inverse).

> D <- matrix(c(5,3,9,6),2,2)

> solve(D)

[,1] [,2]

[1,] 2 -3.000000

[2,] -1 1.666667

Some properties of inverses:

• The inverse of a symmetric matrix is also symmetric.

• The inverse of the transpose of A is the transpose of A−1.

• The inverse of the product of several square matrices is a little more subtle:
(ABC)−1 = C−1B−1A−1. If c is a non-zero scalar then (cA)−1 = c−1A−1.

• The inverse of a diagonal matrix is really easy - the reciprocals of the original
elements.

1.5 Eigen values and eigen vectors

These decompositions will form the core of at least half our multivariate methods
(although we need to mention at some point that we actually tend to use the
singular value decomposition as a means of getting to these values). If A is a square
p × p matrix, the eigenvalues (latent roots, characteristic roots) are the roots of the
equation:

|A − λI| = 0

This (characteristic) equation is a polynomial of degree p in λ. The roots, the
eigenvalues of A are denoted by λ1, λ2, . . . , λp. For each eigen value λi there is a
corresponding eigen vector ei which can be found by solving:

(A − λiI)ei = 0

There are many solutions for ei. For our (statistical) purposes, we usually set it
to have length 1, i.e. we obtain a normalised eigenvector for λi by ai = ei√

eiTei

We pause to mention a couple of results that will be explored in much more
detail later:

(a) trace(A) = Σ
p
i=1λi

(b) |A| = ∏p
i=1 λi
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Also, if A is symmetric:

(c) The normalised eigenvectors corresponding to unequal eigenvalues are or-
thonormal (this is a bit of circular definition, if the eigenvalues are equal
the corresponding eigenvectors are not unique, and one “fix” is to choose
orthonormal eigenvectors).

(d) Correlation and covariance matrices: are symmetric positive definite (or semi-
definite). If such a matrix is of full rank p then all the eigen values are positive.
If the matrix is of rank m < p then there will be m positive eigenvalues and
p −m zero eigenvalues.

We will look at the eigen() function in R to carry out these decompositions
later.

1.6 Singular Value Decomposition

To be added.

1.7 Extended Cauchy-Schwarz Inequality

We met the rather amazing Cauchy Schwartz inequality earlier in section 1.1.5.
Beautiful as this result may be, we actually need to use the extended Cauchy Schwartz
inequality. For any non-zero vectors x ∈ R and y ∈ R, with any positive definite
p × p matrix S:

〈x, y〉2 ≤ (xTSx)(yTS−1y), for all x, y ∈ R
with equality if and only if x = λSy for some λ ∈ R. Proofs are available for this
result (Flury, 1997, page 291). We will use this result when developing methods for
discriminant analysis.

1.8 Partitioning

Finally, note that we can partition a large matrix into smaller ones:



2 5 4
0 7 8
4 3 4




So we could work with submatrices such as
(

0 7
4 3

)
.

e.g. If X was partitioned as
(

X1
X2

)
and

(
Y1 Y2 Y3

)
then:

XY =

(
X1Y1 X1Y2 X1Y3
X2Y1 X2Y2 X2Y3

)
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1.9 Exercises

1. Which of the following are orthogonal to each other:

x =




1
−2

3
−4




y =




6
7
1
−2




z =




5
−4

5
7




Normalise each of the two orthogonal vectors.

2. Find vectors which are orthogonal to:

u =

(
1
3

)
v =




2
4
−1

2




3. Find vectors which are orthonormal to:

x =




1√
2
0

− 1√
2




y =




1
2
1
6
1
6
5
6




4. What are the determinants of:

(a)
(

1 3
6 4

)
(b)




3 1 6
7 4 5
2 −7 1




5. Invert the following matrices:

(a)




3 0 0
0 4 0
0 0 9


 (b)

(
2 3
1 5

)
(c)




3 2 −1
1 4 7
0 4 2


 (d)




1 1 1
2 5 −1
3 1 −1




6. Find eigenvalues and corresponding eigen vectors for the following matrices:

a =

(
1 4
2 3

)
b =

(
1 2
3 2

)
c =

(
2 −2
−2 5

)
d =

(
2 2
2 5

)

e =




1 4 0
4 1 0
0 0 1


 f =




4 0 0
0 9 0
0 0 1


 g =




13 −4 2
−4 13 −2

2 −2 10
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7. Convert the following covariance matrix (you’ve seen it earlier) to a corre-
lation matrix, calculate the eigenvalues and eigenvectors and verify that the
eigen vectors are orthogonal.

g =




13 −4 2
−4 13 −2

2 −2 10
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