
An easier interface to insert figures, tables and

other objects in LATEX

Erik Zöllner

December 20, 2020
easyfloats v1.0.0

Abstract

In standard LATEX inserting objects like figures or tables requires too
much knowledge for beginners and too much typing effort and hardcoding
for people like me. This package aims to make insertion of figures and tables
easier for both beginners and experts. Despite the term floats in it’s name
it also allows to disable floating of such objects.

https://gitlab.com/erzo/latex-easyfloats

https://gitlab.com/erzo/latex-easyfloats

Contents

1 Examples 3
1.1 Table . 3
1.2 Graphic . 3
1.3 Subobjects . 4
1.4 Longtable . 5
1.5 Local definitions in tables . 7
1.6 New object style / tikzobject . 9
1.7 Nonfloating objects . 10

2 Names 10

3 Documentation 10
3.1 Options . 10

3.1.1 Initial vs default values . 11
3.1.2 Options scope . 11
3.1.3 Special characters in options 11
3.1.4 Key patterns . 11
3.1.5 Key name vs key path . 12
3.1.6 Key types . 12
3.1.7 Styles . 12
3.1.8 Style groups . 13
3.1.9 Options processing order . 13

3.2 Environments . 13
3.2.1 object environment . 13
3.2.2 figureobject environment 21
3.2.3 tableobject environment 21
3.2.4 subobject environment . 21

3.3 Commands . 25
3.3.1 \includegraphicobject command 26
3.3.2 \includegraphicsubobject command 27
3.3.3 Setting options globally . 27
3.3.4 New object styles and types 28
3.3.5 New object style groups . 29
3.3.6 Hooks . 29

3.4 Initialization . 30
3.5 Package options . 30
3.6 Help . 31

4 Installation 32

5 Bug reports and contributions 32

6 License 33

A Motivation 33

B Used packages 40

C Other packages 41

D References 42

2

1 Examples

Let’s start with a few examples. Environments, commands and keys defined by
this package are links (both in the code and in the text). Klicking on them will
get you to their explanation in section 3.

Appendix A gives a motivation why this package is useful. There is a list of
related packages in appendices B and C. Package names link to the rather short
description in that list.

1.1 Table

Use the tableobject environment for inserting tables. Pass caption and label as
keyword arguments. You can’t mess up the order of caption and label and you get
a warning if you forget to specify them. You don’t need two environments (one
for the float, one for the table—tableobject can do both). booktabs (and array)
are loaded automatically (if not disabled, see section 3.5).

\documentclass{article}

\usepackage{easyfloats}
\objectset{warn no label=false}

\begin{document}
\begin{tableobject}{caption=Some catcodes, env=tabular}{cl}

\toprule

Catcode & Meaning \\

\midrule

0 & Escape Character \\

1 & Begin Group \\

2 & End Group \\

\vdots & \quad \vdots \\

\bottomrule

\end{tableobject}
\end{document}

You can reduce typing effort even further by using the table head key, see sec-
tion 1.4.

1.2 Graphic

Use the \includegraphicobject command to insert a graphic. It is a wrapper
around graphicx’ \includegraphics command taking the same arguments. No
need for a surrounding figure environment. I have extended the allowed optional
keyword argument to also accept caption, label and more. details are appended
to the caption below the figure but not in the list of figures. Select with the
graphicx or graphbox package options whether you want to use the commonly
used graphicx package or it’s extension graphbox.

\documentclass{article}

\usepackage{easyfloats}
\usepackage{hyperref}

3

\objectset[figure]{graphic width=.8\linewidth}

\begin{document}
\includegraphicobject[%

label = lion,

caption = CTAN lion drawing by Duane Bibby,

details = Thanks to \href

↪→ {https://ctan.org/lion/files}{www.ctan.org}.,

]{graphics/ctan_lion}

\listoffigures

\end{document}

If you omit caption or label the file name is used. See auto label, auto caption,
auto label strip path and auto caption strip path.

1.3 Subobjects

Use the subobject environment to combine two (or more) subobjects to one big
object. The contains subobjects option causes the env option to be applied to the
subobjects instead of the containing object. Changing the subobject linewidth is
usually not necessary but in this example the tables fill only a small part of the
width so they are too far apart from each other if each is centered on .5\linewidth.
Pay attention to not insert an empty line between the subobjects, otherwise they
will be placed below each other instead of side by side. If you want them to be
placed below each other you can use the ver option.

\captionsetup is explained in the caption package documentation [1].

\documentclass{article}

\usepackage{easyfloats}

\objectset[table]{env=tabular}
\captionsetup[sub]{list=true}

\begin{document}
\begin{tableobject}{contains subobjects,

caption = Two test tables,

label = tabs abc 123,

subobject linewidth = .25\linewidth,

}
\begin{subobject}{caption=Abc \& 123}{rl}

\toprule

abc & 123 \\

de & 45 \\

f & 6 \\

\bottomrule

\end{subobject}
\begin{subobject}{caption=123 \& abc}{lr}

\toprule

4

123 & abc \\

45 & de \\

6 & f \\

\bottomrule

\end{subobject}
\end{tableobject}
\end{document}

1.4 Longtable

If you are undecided whether to use floating tabulars or longtables which can
break across pages you can use the following approach. Changing between them
is as easy as changing env=longtable to env=tabular once. The table head and
foot are set by the key table head and are by default formatted with the booktabs
package. (If you don’t like this you can change the definition of table head with
table head style.) The column specification cannot be given as a separate ar-
gument (like in the example above) but must be set with the arg key because
otherwise the column specification would be after the table head.

\documentclass{article}

\usepackage[longtable]{easyfloats}
\usepackage{siunitx}

\newcommand\pminfty{\multicolumn1r{$\pm\infty $}}

\objectset[table]{env=longtable}

\begin{document}
\begin{tableobject}{%

caption = Trigonometric functions,

label = trifun,

arg = {

S[table-format=2.0, table-space-text-post=\si{\degree}]

↪→ <{\si{\degree}} !\quad

*2{S[table-format=+1.2]}

S[table-format=+4.2]

},

table head = \multicolumn1{c!\quad}{$x $} & $\sin x $

↪→ & $\cos x $ & $\tan x $,

}

0 & 0.00 & 1.00 & 0.00 \\

5 & 0.09 & 1.00 & 0.09 \\

10 & 0.17 & 0.98 & 0.18 \\

15 & 0.26 & 0.97 & 0.27 \\

20 & 0.34 & 0.94 & 0.36 \\

25 & 0.42 & 0.91 & 0.47 \\

30 & 0.50 & 0.87 & 0.58 \\

35 & 0.57 & 0.82 & 0.70 \\

5

40 & 0.64 & 0.77 & 0.84 \\

45 & 0.71 & 0.71 & 1.00 \\

50 & 0.77 & 0.64 & 1.19 \\

55 & 0.82 & 0.57 & 1.43 \\

60 & 0.87 & 0.50 & 1.73 \\

65 & 0.91 & 0.42 & 2.14 \\

70 & 0.94 & 0.34 & 2.75 \\

75 & 0.97 & 0.26 & 3.73 \\

80 & 0.98 & 0.17 & 5.67 \\

85 & 1.00 & 0.09 & 11.43 \\

90 & 1.00 & 0.00 & \pminfty \\

\end{tableobject}
\begin{tableobject}{%

caption = Squared trigonometric functions,

label = trifun2,

arg = {

S[table-format=2.0, table-space-text-post=\si{\degree}]

↪→ <{\si{\degree}} !\quad

*2{S[table-format=+1.2]}

S[table-format=+4.2]

},

table head = \multicolumn1{c!\quad}{$x $} & {$\sin^2 x $}

↪→ & {$\cos^2 x $} & {$\tan^2 x $},

}

0 & 0.00 & 1.00 & 0.00 \\

5 & 0.01 & 0.99 & 0.01 \\

10 & 0.03 & 0.97 & 0.03 \\

15 & 0.07 & 0.93 & 0.07 \\

20 & 0.12 & 0.88 & 0.13 \\

25 & 0.18 & 0.82 & 0.22 \\

30 & 0.25 & 0.75 & 0.33 \\

35 & 0.33 & 0.67 & 0.49 \\

40 & 0.41 & 0.59 & 0.70 \\

45 & 0.50 & 0.50 & 1.00 \\

50 & 0.59 & 0.41 & 1.42 \\

55 & 0.67 & 0.33 & 2.04 \\

60 & 0.75 & 0.25 & 3.00 \\

65 & 0.82 & 0.18 & 4.60 \\

70 & 0.88 & 0.12 & 7.55 \\

75 & 0.93 & 0.07 & 13.93 \\

80 & 0.97 & 0.03 & 32.16 \\

85 & 0.99 & 0.01 & 130.65 \\

90 & 1.00 & 0.00 & \pminfty \\

\end{tableobject}
\begin{tableobject}{%

caption = Cubed trigonometric functions,

label = trifun3,

arg = {

6

S[table-format=2.0, table-space-text-post=\si{\degree}]

↪→ <{\si{\degree}} !\quad

*2{S[table-format=+1.2]}

S[table-format=+4.2]

},

table head = \multicolumn1{c!\quad}{$x $} & {$\sin^3 x $}

↪→ & {$\cos^3 x $} & {$\tan^3 x $},

}

0 & 0.00 & 1.00 & 0.00 \\

5 & 0.00 & 0.99 & 0.00 \\

10 & 0.01 & 0.96 & 0.01 \\

15 & 0.02 & 0.90 & 0.02 \\

20 & 0.04 & 0.83 & 0.05 \\

25 & 0.08 & 0.74 & 0.10 \\

30 & 0.12 & 0.65 & 0.19 \\

35 & 0.19 & 0.55 & 0.34 \\

40 & 0.27 & 0.45 & 0.59 \\

45 & 0.35 & 0.35 & 1.00 \\

50 & 0.45 & 0.27 & 1.69 \\

55 & 0.55 & 0.19 & 2.91 \\

60 & 0.65 & 0.13 & 5.20 \\

65 & 0.74 & 0.08 & 9.86 \\

70 & 0.83 & 0.04 & 20.74 \\

75 & 0.90 & 0.02 & 51.98 \\

80 & 0.96 & 0.01 & 182.41 \\

85 & 0.99 & 0.00 & 1493.29 \\

90 & 1.00 & 0.00 & \pminfty \\

\end{tableobject}
\end{document}

1.5 Local definitions in tables

If you want to define a command locally for one table you cannot put it’s definition
in the first cell because each cell is a separate group (meaning that the definition
will be forgotten at the end of the cell). Instead I provide the exec key whose value
is executed inside of the object but before env. If you want to tinker around with
catcodes keep in mind that arguments are always read entirely before expansion
and execution. The ε-TEX primitive \scantokens can be useful to define active
characters. If you are unfamiliar with how TEX processes a file you can read up
on it in TEX by Topic [2, section 1].

\documentclass{article}

\usepackage{easyfloats}
\usepackage[table]{xcolor}

% avoid Warning: Font shape `OMS/cmtt/m/n' undefined

\usepackage[T1]{fontenc}
% fontenc T1 causes unclean/pixelated font on some systems

7

https://ctan.org/pkg/etex

% and trouble with copying ligatures from pdf => change font

% lmodern is relatively close to the default font but unmaintained

\usepackage{lmodern}

\colorlet{rowbg}{gray!50}

\newcommand\charsym[1]{\texttt{#1}}

\newcommand\charname[1]{$\langle $#1$\rangle $}

\begin{document}
\begin{tableobject}{%

caption = Category Codes,

details = Highlighted catcodes have no tokens.,

label = catcodes,

env = tabular,

arg = cll,

table head = Catcode & Meaning & Characters,

exec = {%

\catcode`* = \active

\scantokens{\def*{\rowcolor{rowbg}}}%

\catcode`= = \the\catcode`&%
\catcode`, = \the\catcode`&%

},

}
* 0 = Escape character, \charsym\textbackslash \\

1 = Begin grouping, \charsym\{ \\

2 = End grouping, \charsym\} \\

3 = Math shift, \charsym\$ \\

4 = Alignment tab, \charsym\& \\

* 5 = End of line, \charname{return} \\

6 = Parameter, \charsym\# \\

7 = Superscript, \charsym\^ \\

8 = Subscript, \charsym_ \\

* 9 = Ignored character, \charname{null} \\

10 = Space, \charname{space} and

\charname{tab} \\

11 = Letter, \charsym{a}--\charsym{z} and

\charsym{A}--\charsym{Z} \\

12 = Other, other characters \\

% "In plain TeX this is only the tie character ~"

% TeX by Topic, page 30

13 = Active character, \charsym{\string~} \\

* 14 = Comment character, \charsym\% \\

* 15 = Invalid character, \charname{delete} \\

\end{tableobject}
\end{document}

8

1.6 New object style / tikzobject

You can easily define new object environments. For more information see sec-
tion 3.3.4.

\documentclass{article}

\usepackage{easyfloats}
\usepackage{tikz}

\NewObjectStyle{tikz}{type=figure, env=tikzpicture}
% I am not using `arg=[3D]` so that I can still pass an optional

↪→ argument to tikz3dobject

\NewObjectStyle{tikz3d}{type=figure, env=tikzpicture,

↪→ exec=\tikzset{3D}}

\tikzset{

3D/.style = {

x = {(-3.85mm, -3.85mm)},

y = {(1cm, 0cm)},

z = {(0cm, 1cm)},

},

}

\objectset{warn no label=false}

\begin{document}
\begin{tikzobject}{caption=2D coordinate system}

\newcommand\n{5}

\newcommand\w{.075}

\draw[->] (0,0) -- ++(\n,0);

\draw[->] (0,0) -- ++(0,\n);

\foreach \i in {1,...,\n-1} {

\draw (\i,0) +(0,\w) -- +(0,-\w);

\draw (0,\i) +(\w,0) -- +(-\w,0);

}

\end{tikzobject}
\begin{tikz3dobject}{caption=3D coordinate system}

\newcommand\n{5}

\newcommand\w{.075}

\draw[->] (0,0,0) -- ++(\n,0,0);

\draw[->] (0,0,0) -- ++(0,\n,0);

\draw[->] (0,0,0) -- ++(0,0,\n);

\foreach \i in {1,...,\n-1} {

\draw (\i,0,0) +(0,\w,0) -- +(0,-\w,0);

\draw (0,\i,0) +(\w,0,0) -- +(-\w,0,0);

\draw (0,0,\i) +(0,\w,0) -- +(0,-\w,0);

}

\end{tikz3dobject}
\end{document}

9

1.7 Nonfloating objects

If your professor absolutely won’t allow floating objects you can easily disable
them globally (for all objects based on the object environment defined by this
package which is internally used by tableobject and \includegraphicobject).

\objectset{placement=H}

2 Names

You have probably heard the term floating object or float for short. That is
mainly what this package is about. However, I intended to avoid the term floating
in the name of this package because this package also allows to globally disable
the floating of those objects. Therefore I decided to name this package objects.

This name, however, has been rejected by TEX Live as being too generic. And they
are right, especially for people with an object oriented programming background
that name might be misleading. TEX Live has informed me that floating objects
are still called floats even if they are technically not floating. Therefore I have
decided to rename this package to easyfloats.

I have not changed the user interface because the package has already been online
for more than half a year on my gitlab repository and I don’t know how many
people are using the package already. Therefore all commands and environments
defined by this package still carry the old name object in them.

3 Documentation

This section contains the documentation on how to use this package.

Section 3.1 gives general information on options which environments and com-
mands defined by this package may take. The options themselves are explained
in sections 3.2 and 3.3 where the environments and commands defined by this
package are explained.

Section 3.4 describes what is happening when loading this package. Section 3.5
describes the options which can be passed to \usepackage when loading this pack-
age.

Section 3.6 explains a few features which may help you to get a better understand-
ing about what is going on. This might be useful if you run into unexpected errors
or this package behaves different than you expected.

3.1 Options

The environments and commands defined by this package take options (imple-
mented with the pgfkeys package). Options are a comma separated list of 〈key〉s
or 〈key〉=〈value〉 pairs.

Which keys are allowed for which environment/command and which values are
allowed for which key is specified in sections 3.2 and 3.3 where the environments

10

and commands are documented. This section gives general information about
these options.

This section does not apply to the package options which are explained in sec-
tion 3.5.

3.1.1 Initial vs default values

I am using the words initial value and default value like they are used in the
TikZ & PGF Manual [3].

The initial value of an option is the value which is used if the key is not given.

The default value of an option is the value which is used if the key is given without
a value. Most keys don’t have a default value, i.e. if you use the key you must
explicitly give it a value.

3.1.2 Options scope

Setting an option always applies until the end of the current group. For the
argument of an environment this is the corresponding \end command. For the
argument of the \includegraphicobject command this is the end of this command.
For the argument of \objectset this may be the end of the document.

If you are not familiar with the concept of groups in TEX TEX by Topic [2, chap-
ter 10] is one possible place to read up on it.

3.1.3 Special characters in options

If a value contains a comma or an equals sign it must be wrapped in curly braces.

Spaces before and after a comma (separating an option) and before or after an
equals sign (separating key and value) are ignored. However, a space after the
opening brace is not ignored. So if you put the first key on the next line make
sure to comment out the linebreak. If a leading or trailing space in a value is
desired wrap the value in curly braces.

\par (aka an empty line) is forbidden in keys but allowed in values.

3.1.4 Key patterns

Sometimes I am talking about entire groups of keys instead of individual keys. I
specify those groups with a pattern which matches the keys that I am referring to.
In these patterns parenthesis stand for something optional and angular brackets
for wildcards.

For example the pattern (〈env〉) arg(s) matches the keys tabular* arg and args

(and many more) but not env arg because env is not an existing environment.

If a key has a version which ends on a + to append a value instead of replacing it
the space in front of the + is optional.

11

3.1.5 Key name vs key path

pgfkeys organizes all keys “in a large tree that is reminiscent of the Unix file tree.”
[3, page 954] The keys of this package are located in the three paths /object,
/subobject and /graphicobject.

In error messages thrown by the pgfkeys package the full path of a key is shown.

When setting keys, however, you need not and should not specify the full path.
The commands and environments of this package set the path automatically. Using
full paths does not directly cause an error or a warning but trying to set options
for a style or style group with \objectset causes undefined behavior.

Therefore, error messages thrown directly by this package omit the path and show
the name of the key only.

3.1.6 Key types

In pgfkeys there are different types of keys. Which type a key belongs to is relevant
for debugging if you want to check the value of a key, see section 3.6.

(sto) storing key : Keys of this type are like a variable. They store the given value.
This value can be showed using the .show value handler (see section 3.6).

(exe) executed key : Keys of this type are like a function. They execute some
predefined code and possibly take a value as argument.

(bool) boolean key : is a special case of an executed key which sets a plain TEX
if command. This if command and it’s meaning can be showed with the
.show boolean handler (which is not contained in pgfkeys, I have defined it
in this package).

The allowed values for a key of this type are true and false. The default
value (i.e. the value which is assumed if the key is given without a value) is
true.

(fwd) forwarding key : is a special case of an executed key which calls another key.

(hdl) handler : Keys defined in the path /handlers. They can be applied to other
keys by appending them to the path. For users of this package they can be
helpful for debugging. For example \objectset{env/.show value} shows the
value of the key env.

The pgfkeys package also defines handlers which expand the value. I haven’t
come up with an example where this might be useful in the context of this
package but e.g. tabular arg/.expand once=\colspec, works as expected.

(unk) unknown key handler : is a special key which is called if a given key does
not exist and it’s name is not a handler. I am using this to implement key
patterns.

3.1.7 Styles

This package defines two styles, one for figures and one for tables.

You can think of these styles as an extension of the float package’s float styles.

12

These styles are somewhat inspired by the pgfkeys styles but are different. They
are neither set nor applied in the same way.

A style is a list of options which is not set immediately but locally for each object
belonging to that style.

The options of a style can be set by passing the name of the style as an op-
tional argument to the \objectset command, e.g. \objectset[figure]{〈options〉}
or \objectset[table]{〈options〉}.

A style is applied by using the corresponding environment (e.g. figureobject or
tableobject) or \graphicobjectstyle{〈style〉} for \includegraphicobject.

New styles can be defined with \NewObjectStyle as explained in section 3.3.4.

3.1.8 Style groups

This package defines one group of styles called all which contains all defined
styles.

When setting options one can use a group name instead of a style name. In that
case the options are set for all styles in the group.

3.1.9 Options processing order

1. Options set with \objectset{〈options〉} have the lowest priority.

2. Options set for a specific style with \objectset[〈styles〉]{〈options〉} take
precedence because they are set later (at the object, not the \objectset

command).

3. Options passed directly to the object have the highest priority.

For example:

\objectset[figure]{placement=p}
\objectset{placement=H}
\objectset[table]{placement=htbp}

Given the above preamble both figure- and tableobjects are floating. Tableobjects
are allowed to be placed where they are specified in the source code. Figureobjects
are put on a separate float page. The second line (which would disable floating)
has no effect (unless you define a custom style) because it is overridden not only
by the third but also the first line.

3.2 Environments

This package defines the following environments. Each of them takes exactly one
mandatory argument, options as a comma separated key=value list.

3.2.1 object environment

The object environment is used internally by figureobject and tableobject.Env object

Don’t use this directly. You can define more environments like figureobject or
tableobject with \NewObjectStyle if needed.

13

This environment redefines the \caption and \label commands to set the caption/
label option so that you can use them as usual except you cannot create several
labels. If you really need several labels for the same object put the additional
\label command(s) inside of the caption argument, there \label has it’s original
meaning. The location or the order of \caption and \label inside of the object
environment is not relevant. Nevertheless I recommend to always put the \label

after the \caption as it is usually required in order to get the references right (if
you choose to use these commands instead of the options). Where the caption is
typeset (above or below the object) is determined by the float style.

This environment takes the following options:

• type = 〈type〉 (sto)

The floating environment to use, e.g. figure or table.

• float style = plain | plaintop | ruled | boxed | 〈empty〉 (sto)

Initial value: empty.

How the object is supposed to look like, most importantly whether the cap-
tion is supposed to be above or below the object. See the float package for
more information.

If the value is empty the float type is not restyled before the/each object.
However, this package restyles table to plaintop and figure to plain when
it is loaded. The reasoning is explained in [4].

• caption = 〈text〉 (sto)

The caption to place above or below the float.

The appearance of the caption can be configured using \captionsetup defined
by the caption package. The caption package is loaded automatically by this
package.

• list caption = 〈text〉 (sto)

The caption to place in the list of 〈type〉s. If this is not given, the value of
caption is used instead.

• details = 〈text〉 (sto)

This is appended to the caption which is placed above or below the object
but not to the list of 〈type〉s.

caption=CTAN lion drawing by Duane Bibby,

details=Thanks to \url{www.ctan.org}.

is equivalent to

list caption=CTAN lion drawing by Duane Bibby,

caption=CTAN lion drawing by Duane Bibby.

↪→ Thanks to \url{www.ctan.org}.

14

• details sep = 〈text〉 (sto)

Initial value: a full stop followed by a space.

The separator to be placed between caption and details if details are given.

• label = 〈label〉 (sto)

Defines a label to reference this object.

• add label = 〈label〉 (sto)

Defines an additional label which can be used synonymously to label. If this
key is given several times, only the last one will have an effect.

• placement = [htbp]+!? | H | 〈empty〉 (sto)

Initial value: empty.

The optional argument passed to the floating environment. Allowed values:

– any combination of the letters htbp (where no letter is occuring more
than once), optionally combined with an exclamation mark. This means
that the object will be a floating object. The order of the letters makes
no difference. They have the following meanings:

∗ h: LATEX is allowed to place the object here, where it is defined.

∗ t: LATEX is allowed to place the object at the top of a page.

∗ b: LATEX is allowed to place the object at the bottom of a page.

∗ p: LATEX is allowed to place the object on a separate page only for
floats.

∗ !: “LATEX ignores the restrictions on both the number of floats that
can appear and the relative amounts of float and non-float text on
the page.” [5, page 27]

– H: LATEX places the object exactly here, no matter how unfitting that
may be. In contrast to a single h or h! where the object is still a floating
object which may float somewhere else if it does not fit here, H means
here and nowhere else. H is defined by the float package which is loaded
by this package automatically.

– empty: do not pass the optional argument. In this case the place-
ment of the float can be changed using the \floatplacement command
of the float package. I have defined this key instead of advertising
\floatplacement because \floatplacement does not allow the value H.

• align = 〈code〉 (sto)

Initial value: \centering.

TEX code which is inserted at the beginning of the 〈type〉 environment.

• exec = 〈code〉 (sto) / exec += 〈code〉 (exe)

Initial value: empty.

TEX code which is inserted at the beginning of the 〈type〉 environment before
align. Can be used to define a command for this object, see section 1.5.

15

• graphic 〈option〉 = 〈value〉 (unk)

Is applied to \includegraphicobject and \includegraphicsubobject. Is ig-
nored for other objects.

〈option〉 can be any key which is unique to one of these two commands and
any key allowed by the \includegraphics command (see graphicx/graphbox
package). Unlike \setkeys{Gin}{〈options〉} this works with all keys (compare
graphicx documentation [6, section 4.6], unfortunately it’s not getting more
specific than “Most of the keyval keys”).

I am checking if the key is existing immediately but I cannot check the value
(only whether it is required). Therefore if you pass a wrong value the error
message will not appear where you set this option but at the object where
it is applied.

If you set graphic width globally and want to override it locally you can use
graphic width=!. This is a feature of the graphicx package but it is not well
documented in it’s documentation [6]. (Which is why I am mentioning it
here.) The exclamation mark is mentioned for the \resizebox command.

• env = 〈env〉 (sto)

Initial value: empty.

The name of an additional inner environment in which the body is wrapped,
e.g. tabular, tabularx, tikzpicture. If empty the body is not wrapped in
another environment (additional to object).

Please note that using this option can lead to difficult to find errors with
confusing error messages if you forget that you used it or it has a different
value than you think it has. In this case show env args may help you.

Please note that due to the way how environments are implemented in
LATEX2 (this will change in LATEX3 [7]) it is not possible to check whether
a given name is an environment or a command. But if you pass something
that is not defined you will get an error.

If you have loaded the longtable package (either with the package option
longtable or with a \usepackage{longtable}) you can set the value of this
key to longtable. In that case the necessary changes are performed so that
the content of this object environment is set in a longtable environment and
does not float but can span across page breaks. In this case type, placement
and align are ignored.

• 〈env〉 arg = 〈value〉 (unk)

The value is wrapped in braces and passed as argument to the additional
inner environment if the value of env is not empty and 〈env〉 equals the value
of env. Arguments to this environment can be given as an argument to the
*object environment as well but this key provides the possibility to pass
arguments on a global level (or to override a globally passed argument). For
example this can be used to give all tabularx-tables a consistent width:

16

% in preamble

\objectset[table]{tabularx arg=.8\linewidth}

% in document

\begin{tableobject}{caption=Test Table, label=tab1,

↪→ env=tabularx}{XX}
...

\end{tableobject}

• 〈env〉 args = 〈value〉 (unk)

Same like 〈env〉 arg except that the value is not wrapped in braces. This
can be used to pass several arguments or an optional argument. Please
not that this key cannot be used to pass exactly one undelimited argument
consisting of more (or less) than one token because \pgfkeys (which I am
using internally) strips several levels of braces.

• arg = 〈value〉 (unk)

If env has a non-empty value this is an abbreviation of 〈env〉 arg where 〈env〉
is the value of env.

Please note that because this key depends on the value of another key the
order in which these two keys are given is important.

The value of env is considered when this key is evaluated. If you use
\objectset[〈styles〉]{〈options〉} (with it’s optional argument) the processing
of the keys is delayed but it makes some basic error handling already so
that the line numbers are as fitting as possible. For this error handling only
the options passed to this call of the command are considered. (Trying to
consider previously set values correctly would make things more difficult be-
cause you might be applying these options to several styles at once where
one might have env set and another not.) Therefore the following causes an
error message:

\objectset[table]{env=tabularx}
\objectset[table]{arg=.8\linewidth}

While this would not:

\objectset{env=tabularx}
\objectset{arg=.8\linewidth}

Anyway, I recommend to always use this option directly after env (if you
intend to use it). env and it’s args belong together:

\objectset{env=tabularx, arg=.8\linewidth}

• args = 〈value〉 (unk)

If env has a non-empty value this is an abbreviation of 〈env〉 args where
〈env〉 is the value of env. The notes on error handling of the arg key apply
to this key as well.

17

• (〈env〉) arg(s) += 〈value〉 (unk)

A plus sign can be appended to the key (patterns) 〈env〉 arg, 〈env〉 args,
args and arg. In that case a possibly previously passed argument is not
overridden but this value is appended to it. For example the following pat-
tern allows to easily switch between tabular and tabularx tables on a global
level:

% in preamble

\objectset[table]{tabularx arg=.8\linewidth, env=tabularx}
\newcolumntype{Y}{>{\raggedleft\arraybackslash}X}

% in document

\begin{tableobject}{caption=Test Table, label=tab1,

↪→ tabular arg=lr, tabularx arg+=XY}
...

\end{tableobject}

• first head = 〈code〉 (sto)

Is inserted at the beginning of the object (if env is non-empty: inside of the
inner environment and after possibly specified (〈env〉) arg(s)). If this is not
given, head is used instead.

• last foot = 〈code〉 (sto)

Is inserted at the end of the object (if env is non-empty: inside of the inner
environment). If this is not given, foot is used instead.

• head = 〈code〉 (sto)

Initial value: empty.

This value is used for first head if first head is not given. If env=longtable
this is the head after a pagebreak inside of the table.

• foot (sto)

Initial value: empty.

This value is used for last foot if last foot is not given. If env=longtable

this is the foot before a pagebreak inside of the table.

• table head = 〈code〉 (exe)

This is a convenience key which sets first head, last foot, head and foot.
The value is the column headers without rules/lines and without the trailing
\\.

• table break text = 〈text〉 (sto)

A text put in the foot by table head.

• table head style = 〈code〉 (exe)

Defines how table head fills out first head, last foot, head and foot.

Initial value:

18

{%

first head =

\toprule

#1 \\

\midrule,

head =

#1 \\

\midrule,

foot =

\midrule

\ifx\object@tableBreakText\@empty

\else

\multicolumn{\the\LT@cols}{r@\relax}

↪→ {\object@tableBreakText}%

\fi,

last foot =

\bottomrule,

}

(Note the curly braces which are required because the value contains commas
and equal signs, see section 3.1.3. \the\LT@cols is the number of columns of
the longtable and \object@tableBreakText is the value of table break text.
Commands containing an @ in their name are internal commands and can
only be used between \makeatletter and \makeatother, see also [8].)

• show env args = true | false (bool)

Default value: true. Initial value: false.

Show the code which is assembled from the env and (〈env〉) arg(s) (+)

keys before executing it. See section 3.6. Please note that arguments
may be given as additional arguments and not as (〈env〉) arg(s) (+) like
in \begin{tableobject}{env=tabular}{cl}. Such arguments are not shown
by this key. This key applies to subobjects as well.

• warn no caption = true | false (bool)

Default value: true. Initial value: true.

Give a warning if caption is not given.

• warn no label = true | false (bool)

Default value: true. Initial value: true.

Give a warning if label is not given.

• warn other env = true | false (bool)

Default value: true. Initial value: false.

Give a warning when 〈env〉 args is given if env does not have the value 〈env〉
and the value of env is not empty. This applies to subobjects as well.

The \objectset command if used with it’s optional argument does not set
the options immediately but stores them in different macros for different
object styles. Therefore if you change this value for certain styles this change

19

does not affect following \objectset commands. Without the optional style
argument, however, the change takes effect immediately.

In order to avoid duplicates this warning is printed only where the key is
passed by the user and not where it is applied implicitly because of a previous
\objectset[〈styles〉]{〈options〉}.

• contains subobjects = true | false (bool) / sub = true | false (fwd)

Default value: true. Initial value: false.

Specifies that this object contains subobjects, see section 3.2.4. Is relevant
only if env is set. The value of env is applied to the subobjects instead of
this object. This is not executed immediately but only after all options have
been processed so that you do not need to pay special attention to pass env

before contains subobjects.

If this is not given (or more precisely: if this is false) and the value of env is
not empty I look ahead whether the object contains a subobject. If I find a
subobject I pretend you had passed this option and print a warning. I insist
on you explicitly passing this option because the lookahead does not work
in all situations. It ignores space and \par tokens but if there is any other
token before the subobject, for example a \small to fit two tables side by
side which are a little too wide (which may not be the best solution but an
easy quick fix) or a \typeout for debugging, the lookahead does not find the
subobject (possibly) resulting in unpredictable errors. For example if you set
env=tabular it will most likely complain about an “Illegal pream-token”
or about a “Missing number, treated as zero” with env=tabular* be-
cause the required arguments are missing.

All (〈env〉) arg(s) (+) options apply to subobjects as well.

Additionally the following options are passed through to the corresponding options
of all subobjects inside of this object, they are all forwarding keys. See subobject

environment.

• subobject linewidth = 〈dimen〉 (fwd)

• subobject sep = 〈code〉 (fwd)

• subobject hor = 〈code〉 (fwd)

• subobject hor sep (+)= 〈code〉 (fwd)

• subobject ver = 〈code〉 (fwd)

• subobject ver sep (+)= 〈code〉 (fwd)

• subobject exec (+)= 〈code〉 (fwd)

• subobject env = 〈env〉 (fwd)

• subcaptionbox (fwd)

• subcaptionbox inner pos = c | l | r | s | 〈empty〉 (fwd)

• subpage (fwd)

• subpage outer pos = c | t | b | T | B | auto | Auto | 〈empty〉 (fwd)

20

• subpage height = 〈dimen〉 (fwd)

• subpage inner pos = c | t | b | s | 〈empty〉 (fwd)

• subpage align = 〈code〉 (fwd)

• subobject warn no caption = true | false (fwd)

• subobject warn no label = true | false (fwd)

3.2.2 figureobject environment

Is used for inserting figures. Takes the same options like the object environment.Env figureobject

It differs in the following initial values:

• type=figure

3.2.3 tableobject environment

Is used for inserting tables. Takes the same options like the object environment.Env tableobject

It differs in the following initial values:

• type=table

3.2.4 subobject environment

To be used inside of an *object environment if you want to place several images/Env subobject

tables/whatever together. See also \includegraphicsubobject.

I recommend to not put anything between the subobjects manually so that you can
control their positioning with the hor and ver options. (Spaces after a subobject
are ignored but empty lines are not.)

Unlike the object environment, \caption and \label cannot be used inside of the
subobject environment. Use the caption and label options instead.

There are two different backends available, both provided by the subcaption pack-
age. See the subcaptionbox and subpage keys.

The subobject environment has exactly one mandatory argument, a comma sep-
arated list of the following options.

The following options correspond to those of an object. See section 3.2.1.

• label = 〈label〉 (sto)

• caption = 〈text〉 (sto)

• list caption = 〈text〉 (sto)

(The subcaption package disables subcaptions in the list of figures/tables/
whatever by default. To enable them use \captionsetup[sub]{list=true}.)

• details = 〈text〉 (sto)

• details sep = 〈text〉 (sto)

• exec = 〈code〉 (sto) / exec += 〈code〉 (exe)

21

• graphic 〈option〉 = 〈value〉 (unk)

(This key is completely useless. It only has a meaning in the context of
\includegraphicsubobject but there these options can be used directly with-
out the prefix graphic. I am allowing it anyway in order to support the same
key like in \objectset which is supported by \includegraphicobject as well.)

• env = 〈env〉 (sto)

(See also the contains subobjects option of the object environment.)

• (〈env〉) arg(s) (+) = 〈value〉 (unk)

(All values passed to the corresponding keys of the object environment apply
to this option, too.)

• warn no caption = true | false (bool)

• warn no label = true | false (bool)

• warn other env = true | false (fwd)

• show env args = true | false (fwd)

The following options are unique for the subobject environment:

• linewidth = 〈dimen〉 (sto)

Initial value: .5\linewidth.

The horizontal space available for the subobject. The content of the sub-
object is centered within this width. If two subobjects displayed side by
side have a small width they may appear too far apart from each other
with the initial value. Then you can decrease this value so that they come
closer together. (With subcaptionbox this value may be empty. In that case
the subobject takes as much space as it needs and \linewidth inside of the
subobject is the same like in the parent object.)

If you want to place more than two subobjects side by side you must decrease
this value accordingly. Keep in mind that you need to consider the width of
hor sep as well if you changed it.

Dimensions can be given relative to other dimensions or in numbers. Aside
from absolute units like pt or cm TEX also recognizes units relative to the
current font size: em and ex. For more information on dimensions see The
TEXbook [9, chapter 10] or TEX by Topic [2, chapter 8].

• sep = 〈code〉 (sto)

A separator which is inserted before each subobject except for the first sub-
object inside of the current parent object.

• hor = 〈code〉 (exe)

Default value: empty.

Set the value of sep to the value of hor sep so that the subobjects are
placed side by side. If you pass a value the value will be appended to sep

after setting it to hor sep.

22

Please note that options are only valid until the end of a group. Therefore
if you use this inside of a subobject it does not apply for the following
subobject. Instead use subobject hor on the parent object.

• hor sep = 〈code〉 (sto) / hor sep += 〈code〉 (exe)

Initial value: empty.

The separator to be used if the subobjects are suppossed to be placed side
by side.

Please note that hor must be used after setting this key, otherwise this
option will not take effect.

• ver = 〈code〉 (exe)

Default value: empty.

Set the value of sep to the value of ver sep so that the subobjects are placed
below each other. If you pass a value the value will be appended to sep after
setting it to ver sep.

Please note that options are only valid until the end of a group. Therefore
if you use this inside of a subobject it does not apply for the following
subobject. Instead use subobject ver on the parent object.

• ver sep = 〈code〉 (sto) / ver sep += 〈code〉 (exe)

Initial value: \par\bigskip.

The separator to be used if the subobjects are suppossed to be placed below
each other.

Please note that ver must be used after setting this key, otherwise this
option will not take effect.

• subcaptionbox (exe)

The subcaption package provides several possibilities to insert subobjects.
This option tells the subobject environment to use the \subcaptionbox com-
mand instead of the subfigure or subtable environment, see option subpage.
(This key does not take a value.)

This option allows to pass an empty value to linewidth. It can be useful if
you have subobjects with a small width so that you don’t need to try different
subobject linewidths. The example in section 1.3 could be rewritten as
following:

\documentclass{article}

\usepackage{easyfloats}

\objectset[table]{%
env = tabular,

subcaptionbox,

subobject linewidth =,

subobject hor = \qquad,

}
\captionsetup[sub]{list=true}

23

\begin{document}
\begin{tableobject}{contains subobjects,

caption = Two test tables,

label = tabs abc 123,

}
\begin{subobject}{caption=Abc \& 123, arg=rl}

\toprule

abc & 123 \\

de & 45 \\

f & 6 \\

\bottomrule

\end{subobject}
\begin{subobject}{caption=123 \& abc, arg=lr}

\toprule

123 & abc \\

45 & de \\

6 & f \\

\bottomrule

\end{subobject}
\end{tableobject}
\end{document}

Note that this works only if the subobject captions are very short. If they
are wider than the subobjects the line breaks which looks ugly.

If you want to use this option with env=tabular (or similar) you must pass the
column specification with the option arg=lr (instead of as a separate argu-
ment). Otherwise you will get the error message “Package array Error:

Illegal pream-token (\BODY): ‘c’ used.”

This option is not compatible with env=tabularx and does not allow verbatim
content inside of the subobject.

• subcaptionbox inner pos = c | l | r | s | 〈empty〉 (sto)

The horizontal position of the content in the box. Also allowed is any jus-
tification defined with \DeclareCaptionJustification (see the caption pack-
age documentation). An empty value means that this optional argument is
not passed to the \subcaptionbox command. This option has no effect if
linewidth is empty. I discourage using this option because it destroys the
alignment of (sub)object and (sub)caption.

• subpage (exe)

This is (after subcaptionbox) the second and nowadays initial backend for
the subobject environment. It uses the subfigure/subtable environment
defined by the subcaption package. (This key does not take a value.)

The subfigure and subtable environments are minipages and take the
same arguments which can be set with linewidth, subpage outer pos,
subpage height and subpage inner pos.

24

• subpage outer pos = c | t | b | T | B | auto | Auto | 〈empty〉 (sto)

Initial value: auto.

The vertical position of the minipage on the baseline.

Additionally to the values t, c and b supported by the minipage environment
the subcaption package v1.2 adds the allowed values T and B and this key
also allows the values auto, Auto and empty.

While t and b align the top/bottom baseline of the content T and B align
the very top/bottom of the content.

c aligns the center of the content.

auto means t if the caption is displayed at the top or b if the caption is
displayed at the bottom so that the captions are aligned (same behavior like
subcaptionbox).

If a subobject has neither caption nor label auto may not work as expected.
Instead Auto can be used which is based on T and B instead of t and b. Note
that Auto requires version 1.2 or newer of the subcaption package.

Empty is equivalent to c.

Invalid values are silently ignored and are equivalent to c.

• subpage height = 〈dimen〉 (sto)

Initial value: empty.

The height of the minipage. An empty value means that this optional argu-
ment is not passed to the subfigure/subtable environment.

Dimensions can be given relative to other dimensions or in numbers. Aside
from absolute units like pt or cm TEX also recognizes units relative to the
current font size: em and ex. For more information on dimensions see The
TEXbook [9, chapter 10] or TEX by Topic [2, chapter 8].

• subpage inner pos = c | t | b | s | 〈empty〉 (sto)

Initial value: empty.

The vertical position of the content on the minipage. Empty means that this
optional argument is not passed to the subfigure/subtable environment.
This option has no effect if subpage height is empty.

• subpage align = 〈code〉 (sto)

Initial value: \centering.

TEX code which is inserted at the beginning of the subfigure/subtable en-
vironment.

If you want to change the numbering of subobjects please refer to the subcaption
package documentation [10, section 5 The \DeclareCaptionSubType command].
The subcaption package is loaded automatically by this package.

3.3 Commands

In this section I am describing the commands defined by this package.

25

3.3.1 \includegraphicobject command

\includegraphicobject{〈filename〉}\includegraphicobject

\includegraphicobject[〈options〉]{〈filename〉}
\includegraphicobject[〈style〉][〈options〉]{〈filename〉}

Is used for inserting graphics from a different file. It is very similar to graphicx’
\includegraphics command, except that the graphic is automatically set in a
figureobject environment. You can change this by setting the object style with
\graphicobjectstyle or an additional optional argument given before the usual
optional argument. The mandatory argument is the same: The name of the
graphics file to include without the file extension. The optional argument accepts—
aside from all the options defined by graphicx/graphbox—also all options of the
figureobject environment. Additionally there are the following unique options:

• auto caption = true | false (bool)

Default value: true. Initial value: true.

If no caption is given the file name is used as caption. All underscores in
the file name are replaced by \textunderscore. This option is intended to be
used on a global level but works in the optional argument of this command
as well.

• auto caption strip path = true | false (bool)

Default value: true. Initial value: false.

If auto caption is true and the file name is used as caption a possibly leading
path is stripped (everything before and including the last slash in 〈filename〉).
This is initially false because I am assuming that in most cases where the
path should not be displayed \graphicspath{{path/}} would be used.

• auto label = true | false (bool)

Default value: true. Initial value: true.

If no label is given the file name is used as label. This option is intended to
be used on a global level but works in the optional argument of this command
as well.

• auto label strip path = true | false (bool)

Default value: true. Initial value: false.

If auto label is true and the file name is used as label a possibly leading
path is stripped (everything before and including the last slash in 〈filename〉).
This is initially false because I am assuming that in most cases where the
filename without path is unique \graphicspath{{path/}} would be used.

• warn env = true | false (bool)

Default value: true. Initial value: true.

Give a warning if env is not empty.

• no env = true | false (bool)

Default value: true. Initial value: true.

Reset env to an empty value. This happens after evaluating warn env.

26

You may not use this command inside of an *object environment. Otherwise
you will get an “object environment may not be nested” error. See also
\includegraphicsubobject.

3.3.2 \includegraphicsubobject command

\includegraphicsubobject{〈filename〉}\includegraphicsubobject

\includegraphicsubobject[〈options〉]{〈filename〉}

To be used if you want to place several graphics from different files in one object.

It takes the same options like \includegraphicobject except that it takes options
for the subobject environment instead of options for the object environment. Also
it does not take the optional 〈style〉 argument.

You may not use this command outside of an *object environment. Other-
wise you will get a “subobject environment may not be used outside of an

object” error. See also \includegraphicobject.

3.3.3 Setting options globally

\objectset{〈options〉}\objectset

\objectset[〈styles〉]{〈options〉}

Sets the passed options for all following objects until the end of the current group.
All options of the object environment are allowed.

A comma separated list of styles or style groups can be given in an optional
argument. In that case the options are not set immediately but appended to
the specified style(s). The options are set locally for any following object of the
specified style(s) in the same group. Although setting the options is delayed the
options are checked immediately so that error messages and warnings point to
the line where the option is specified in the code, not where it is technically set.
(In order for that to work properly it is important that options are specified with
the key name only and not with the full path, see section 3.1.5.) However, the
value can usually not be checked immediately, only whether it is required or not.
Therefore if you pass a wrong value the error message will not appear where you
set this option but at the object where it is applied. An exception is the key env

where the value is checked immediately for plausibility whether it might be the
name of an environment.

If 〈styles〉 is empty or an empty group the options are not applied. No error or
warning is printed.

There is a style group called all which all styles belong to. \objectset{〈options〉}
and \objectset[all]{〈options〉} are mostly equivalent except that the former
(without optional argument) is more efficient because it sets the options immedi-
ately and the latter (with the optional argument given) is able to override options
set for a style.

\graphicobjectstyle{〈style〉} can be used to change the object style used by\graphicobjectstyle

\includegraphicobject. For example, if you have a single table in a file called
catcodes.pdf you can insert it as following. Alternatively, you can use the optional
〈style〉 argument.

27

\begingroup

\graphicobjectstyle{table}

\includegraphicobject[caption=Catcodes]{catcodes}

\endgroup

\graphicspath{{path/}}: see graphicx package documentation [6, section 4.5].\graphicspath

3.3.4 New object styles and types

This section explains how to define a new object 〈style〉 in the sense of section 3.1.7.
It is not about how to define a new 〈floatstyle〉 which can be used as value for the
float style key.

\NewObjectStyle{〈style〉}{〈options〉} defines a new environment called 〈style〉object\NewObjectStyle

analogous to figureobject and tableobject. 〈options〉 are set for the new object
style as if you had used \objectset[〈style〉]{〈options〉}. You must always specify
the type. If this package is loaded without allowstandardfloats the float envi-
ronment which is passed to type is redefined to issue a warning that 〈style〉object
should be used instead. This warning should not influence the environment’s usual
behavior. If the float environment was already passed as type to a previous call
of \NewObjectStyle it is not redefined again but 〈style〉object is appended to the
list of replacement suggestions.

If you define a new object style you may also want to define a new float type. The
float package (which is automatically loaded by this package) defines the following
command for doing so:

\newfloat{〈type〉}{〈placement〉}{〈ext〉}[〈within〉]\newfloat

• 〈type〉 is the floating environment to be defined. This value is also used
as the float name which is displayed in front of the caption, therefore
it should be capitalized. Alternatively the name can be changed using
\floatname{〈type〉}{〈name〉}.

• 〈placement〉 is the value to be used if the placement key is not given (or has
an empty value). This is initially tbp for the standard float types.

• 〈ext〉 is the extension of a file used to save the list of 〈type〉s. This is lof

(list of figures) for type=figure and lot (list of tables) for type=table. This
file extension should be unique.

• 〈within〉 is a counter whose value is prepended to the 〈type〉 counter. The
〈type〉 counter is reset every time the 〈within〉 counter is incremented.

• Make sure an appropriate default float style is active when using \newfloat.
The default float style can be activated using \floatstyle{〈floatstyle〉}, see
the float package documentation [11]. It should be plain for something like
an image or plaintop for something like a table. The reasoning is explained
in [4]. Alternatively you can specify the float style using the float style

key in the 〈options〉 of \NewObjectStyle.

\NewObjectStyle automatically defines the corresponding environment needed for
subobject if possible, i.e. if the caption package is new enough. If the caption
package is older than August 30, 2020 and you want to use subobjects you need

28

to define the subtype manually by putting the following line before loading this
package [12]:

\AtBeginDocument{\DeclareCaptionSubType{〈type〉}}

The trivfloat package provides the \trivfloat{〈type〉} command which is an eas-\trivfloat

ier alternative to \newfloat. If you use it you should be aware that it does
not define the new float type environment immediately but at \begin{document}.
This does not affect \NewObjectStyle (you can still use it directly afterwards)
but it means that the float style active at \begin{document} is applied and
not the float style active at \trivfloat. Therefore I recommend to pass the
float style option to \NewObjectStyle, then it does not matter which float style
was active when the float type was defined because it is restyled before each
use of an object where this option applies. \trivfloat must be used before
\AtBeginDocument{\DeclareCaptionSubType{〈type〉}}.

The newfloat package provides the \DeclareFloatingEnvironment[〈options〉]{〈type〉}\DeclareFloatingEnvironment

command which is a newer alternative to \newfloat and \trivfloat. With it’s
key=value options it is more intuitive than \newfloat and more flexible than
\trivfloat. Unlike \newfloat and \trivfloat it automatically capitalizes 〈type〉
before using it as float name. It seems to ignore \floatstyle so you need to specify
that in the options. The newfloat package is written by the same author like the
subcaption package so you don’t need to worry about defining subtypes manually.

3.3.5 New object style groups

Several object styles can be combined to a group. You can set options for all styles
contained in a group using \objectset[〈group〉]{〈options〉}.

\NewObjectStyleGroup{〈group〉}{〈styles* 〉} defines a new style group consisting of\NewObjectStyleGroup

the styles 〈styles* 〉. 〈styles* 〉 is a comma separated list of styles. In contrast to
〈styles〉 it may not contain style groups.

\AddObjectStyleToGroup{〈group〉}{〈style〉} adds an existing style to an existing\AddObjectStyleToGroup

group.

3.3.6 Hooks

This package provides several commands similar to \AtBeginDocument which take
one argument, TEX code which is executed at a later point in time.

\AtBeginObject{〈code〉} runs 〈code〉 every time at the begin of an object envi-\AtBeginObject

ronment (including figureobject, tableobject and \includegraphicobject). This
hook is inside of the group but before any options are processed.

\AtBeginSubobject{〈code〉} runs 〈code〉 every time at the begin of a subobject\AtBeginSubobject

environment (including \includegraphicsubobject). This hook is inside of the
group but before any options are processed.

\AtBeginGraphicObject{〈code〉} runs 〈code〉 every time in \includegraphicobject\AtBeginGraphicObject

and \includegraphicsubobject. This hook is after the object/subobject hook but
before any options are processed.

29

3.4 Initialization

This package uses the float package to restyle table to plaintop and figure to
plain so that captions of tables appear always above the table and captions of
figures always below the figure. The reasoning is explained in [4]. If you really
want to place captions differently you can do that with \restylefloat (see float
package documentation [11]) or by setting the float style option. However, I
would advice to rethink why you would want to do that.

Unless this package is loaded with the allowstandardfloats option it redefines
the table and figure environments to issue a warning if they are used directly.
This warning should not influence their usual behavior, though. Instead of table/
figure you should use tableobject/figureobject or \includegraphicobject, oth-
erwise this package cannot help you.

Unless this package is loaded with the nographic option it loads the graphicx
package in order to include graphics. It also guarantees that the paper size of the
generated pdf matches LATEX’ point of view (instead of depending on the system
settings).

Unless this package is loaded with the noarray option it loads the array package
which defines additional column specification features like >{〈prefix 〉}, <{〈suffix 〉}
and !{〈addcolsep〉} and the \newcolumntype{〈col〉}[〈args〉]{〈spec〉} command. It
also changes the implementation of how lines (rules) are drawn but that is irrel-
evant if you use the recommendations given in the booktabs package documen-
tation [13, section 2 The layout of formal tables]. Loading the array package is
merely for convenience. This package does not use any of it’s features.

Unless this package is loaded with the nobooktabs option it loads the booktabs
package which defines commands for formatting tables, most importantly \toprule,
\midrule and \bottomrule. These are used by the table head key unless you re-
define it using table head style.

Other packages loaded by this package are listed in appendix B.

3.5 Package options

The package options are implemented using the standard LATEX package options
handling functionality as described in [14]. Therefore they do not take any values
but consist of keys only. Instead I usually provide two separate keys, one which
enables an option and another which disables the option. The keys with a are
active by default and the keys with a are inactive by default.

graphicx use the graphicx package as backend for \includegraphicobject.

graphbox use the graphbox package as backend for \includegraphicobject.

nographic do not load graphicx or graphbox. If you use this option
\includegraphicobject and \includegraphicsubobject are not defined.

Warning: Without driver specific packages like graphicx, geometry or hyperref
the paper size of the resulting pdf depends on the system settings, indepen-
dent of what you set in LATEX. [15]

30

array load the array package. There is no difference between using this
package option or a separate \usepackage{array}.

noarray do not load the array package.

booktabs load the booktabs package. There is no difference between using
this package option or a separate \usepackage{booktabs}.

nobooktabs do not load the booktabs package. Please note that the
table head key initially relies on the booktabs package. If you want to use
it with this package option you need to redefine it with table head style.

longtable load the longtable package. There is no difference between using
this package option or a separate \usepackage{longtable}.

nolongtable do not load the longtable package.

allowstandardfloats do not redefine the table and figure environments.
Without this option they are redefined to issue a warning if they are
used directly. This warning should not influence their usual behav-
ior. Instead of table/figure you should use tableobject/figureobject or
\includegraphicobject, otherwise this package cannot help you.

3.6 Help

If you get an error message and don’t understand where it comes from or the
output is different from what you expected the following features may give you a
better understanding of what this package is doing. These features are based on
the TEX primitive \show.

\show shows (among other information) the parameter text and the replacement\show

text of a macro on the terminal and in the log file. If you use one of the following
features you most likely want to know the replacement text which is the part
between -> and the last . on the line. In errorstopmode mode (i.e. without
--interaction=nonstopmode which most IDEs pass by default) TEX stops after
\show and waits until you confirm that you have read the information and it may
proceed by pressing enter. For more information see TEX by Topic [2, section 34.1].

The .show value handler can be used to show the value of a storing key (see pgfkeysHandler .show value

documentation [3, section 87.4.9 Handlers for Key Inspection]). For example:

\includegraphicsubobject[sep/.show value]{〈filename〉}

This package also defines a new handler called .show boolean which can be usedHandler .show boolean

to show the value of a boolean key. For example:

\objectset{warn other env/.show boolean}

\ShowObjectStylesInGroup{〈group〉} shows all object styles which are contained in\ShowObjectStylesInGroup

the given group. The styles are wrapped in curly braces so that I can iterate over
them with the LATEX command \@tfor.

\ShowObjectStyleOptions{〈style〉} shows the options set for a specific style. Please\ShowObjectStyleOptions

31

note that this does not show directly set options (i.e. options set by \objectset

without the optional argument and options in the options argument of the object).

See also the show env args key of the object and subobject environments.Key show env args

4 Installation

This package is still very new. If it is not yet contained in your TEX distribution
just download the sty-file and put it next to your main document.

5 Bug reports and contributions

If you find a bug please open an issue for it on https://gitlab.com/erzo/

latex-easyfloats/-/issues including a minimal example where the bug oc-
curs, an explanation of what you expected to happen and the version of LATEX
and the packages you are using (which are included in the log file). Issues which
are not reproducible will be closed.

If you have a feature request please open an issue for it on https://gitlab.

com/erzo/latex-easyfloats/-/issues including a minimal example which you
would like to work, an explanation of what it should do and a use case explaining
why this would be useful.

Before opening an issue please check that there is not yet an issue for it already.

If you want to resolve an issue yourself please create a merge request. Make the
changes in easyfloats.dtx. You can generate the sty file with tex easyfloats.ins

but you do not need to do that manually because test/autotest.py does that auto-
matically for you. Before creating a merge request please make sure that the au-
tomated tests still pass. Run the python3 script test/autotest.py from the project
root or test directory without arguments. While running the tests it shows a
progress bar in square brackets. A dot stands for a successful test, an F for a
failed test and an E for an error in the test script. Merge requests where a test
prints F will most likely be rejected. If you get an E please create a bug report
issue.

Please use tabs for indentation.

A merge request should include:

• The changes to easyfloats.dtx

• The automatically generated easyfloats.sty

• Additions to the documentation

• Automated tests in the test directory to make sure the new feature or bug
fix does not break in the future

• A link in the merge request description to the issue which it is supposed to
close

32

https://gitlab.com/erzo/latex-easyfloats/-/issues
https://gitlab.com/erzo/latex-easyfloats/-/issues
https://gitlab.com/erzo/latex-easyfloats/-/issues
https://gitlab.com/erzo/latex-easyfloats/-/issues

6 License

This package and it’s documentation are distributed under the LATEX Project Pub-
lic License, version 1.3 or later. See license.txt. The preamble of the documenta-
tion may alternatively, at your choice, be reused under the terms of the WTFPL,
version 2 or later.

Additionally to the rights granted by the LATEX Project Public License you have
permission to freely distribute unmodified copies of the files easyfloats.sty and
doc/easyfloats.pdf without other files of this work. The other files of this work can
be found at: https://gitlab.com/erzo/latex-easyfloats

The examples and tests are distributed under the WTFPL, version 2 or later. See
test/license.txt.

A Motivation

In this section I will explain how to insert figures and tables in standard LATEX
without this package and how this package can improve that. If you are only
interested in how to use this package not why, see section 1 for examples and
section 3 for an explanation of the commands, environments and options defined
by this package.

A.1 Graphics

Inserting a graphic without using this package requires 6 lines of code (graphicx
or graphbox must be loaded for \includegraphics):

1 \begin{figure}
2 \centering

3 \includegraphics[graphic width=.8\linewidth]{ctan_lion}

4 \caption{CTAN lion drawing by Duane Bibby}

5 \label{ctan_lion}

6 \end{figure}

Lines 1 and 6 open/close a floating environment. The content of this environ-
ment can float around so that it won’t cause a bad page break. You don’t
need this if you really just want to insert a graphic exactly here (like a logo
in a header) but a graphic cannot break across pages so if it is too large for
the end of the current page it will move to the next page leaving the end
of this page empty. This is a waste of paper and may confuse a reader by
suggesting this might be the end of a chapter. A floating environment can
help you by putting the figure where it fits best.

The placement determines where a float is allowed to be placed. Initially
that’s the top or bottom of a text page or a separate page just for floats.
The placement can be specified for a single floating object by passing an
optional argument to the floating environment or for all floating objects using
the \floatplacement command defined by the float package. (The floating
environments figure and table are standard LATEX and do not require the
float package.) The allowed values for the placement are described in the
description of the object environment’s placement key.

33

https://www.latex-project.org/lppl/
https://www.latex-project.org/lppl/
http://www.wtfpl.net/
https://gitlab.com/erzo/latex-easyfloats
http://www.wtfpl.net/

There are people who are concerned that a figure not sitting at the exact
position might confuse a reader. However, a graphic naturally attracts the
reader’s attention. Therefore it does not matter where it is located on the
double page. The reader will see it.

Of course the author must ensure that the figure does not float too far
away. If that is the case changing the size of this or another graphic,
\usepackage[section]{placeins}, \FloatBarrier (defined by the placeins
package), moving this block of lines in the code, changing the placement
or tweaking the parameters which govern the placing of floats [5, page 28]
can help.

Line 2 centers the graphic horizontally on the line.

The \centering command is used instead of the center environment because
the latter would insert additional vertical space.

\begin{center}
...

\end{center}

is in LATEX21 (somewhat simplified2) equivalent to

\begingroup

\center

...

\endcenter

\endgroup

This means that if you accidentally try to use \centering as an environment
instead of a command you will not get an error. You might expect to get
an error at least for \endcentering not being defined but the TEX primitive
\csname which is used to produce the \endcentering token instead defines it
to \relax, a no operation.

The output, however, will not be as desired: the group is closed before the
end of the paragraph and \centering is forgotten before it can take effect.

Line 3 inserts the graphic. This requires the graphicx or graphbox package.

If you want all graphics to have the same width you can set the width globally
with \setkeys{Gin}{width=〈dimen〉}. However, that does not work with all
options. Unfortunately the graphicx package documentation [6, section 4.6]
is not getting more specific than that this works with “Most of the keyval
keys”.

Line 4 inserts the caption.

Captions for a figure should be placed below the figure. Captions for a table
should be placed above the table. [4]

1This will change in LATEX3 [7].
2\begin checks that it’s argument is defined, \end checks that it’s argument matches that of

\begin and deals with \ignorespacesafterend and \@endparenv. Since 2019/10/01 \begin and \end

are robust. Since 2020/10/01 they include hooks. [16, section ltmiscen.dtx]

34

\caption can be used inside of a floating environment only. If you need a cap-
tion for a non-floating object you can either use \captionof{〈type〉}{〈caption〉}
defined by the capt-of or caption package or use a floating environment with
the placement H defined by the float package. Although the placement can
usually be set globally with \floatplacement that does not work with H.

Line 5 defines a label. This is not visible in the output but can be referenced
using \ref{〈label〉} or \pageref{〈label〉}. You might want to consider using
the cleveref package for references.

The label must be set inside of or after the caption. A label always refers to
the last \refstepcounter inside of the current group. [16, section ltxref.dtx]
\refstepcounter is used for example by \caption and \section. Therefore if
you use \label after the caption it refers to the caption. If you use it before
the caption it refers to the current section/subsection/subsubsection.

There are many things that a beginner can do wrong without even getting a
warning. Three out of this six lines are always the same (lines 1, 2 and 6). I don’t
want to always write them out. There is no way to easily switch floating on or off
globally.

* * *

This package reduces these six lines to a single command and loads graphicx au-
tomatically (unless this package is loaded with the nographic option).

\includegraphicobject[%

caption = CTAN lion drawing by Duane Bibby,

graphic width = .8\linewidth,

]{ctan_lion}

The floating environment is applied automatically. It can be changed using the
type key but I discourage doing so manually. Instead I recommend to use the
separate optional 〈style〉 argument if necessary. If you do not want the object to
float you can pass placement=H. This works also globally with \objectset.

\centering is applied automatically. It can be changed using the align key.

You can set any of the options passed to the \includegraphics command globally
using:

\objectset[figure]{graphic width=.8\linewidth}

Caption and label can be passed as options. Which one is specified first makes
no difference. I recommend to stick with caption first in case you ever need to
work without this package and to not confuse other people who are not familiar
with this package. If you omit one of them the file name is used. See auto label,
auto caption, auto label strip path and auto caption strip path.

Whether the caption is put above or below the object is specified by the
float style.

35

A.2 Tables

Inserting a table is similar to inserting a graphic except that you replace the
\includegraphics command with an environment which creates a table, place the
caption above the table not below it and use another floating environment, namely
table instead of figure.

The following example (not using this package) requires the booktabs package for
the horizontal rules and the caption package to have an appropriate space below
the caption.

1 \begin{table}
2 \centering

3 \caption{Some catcodes}

4 \label{catcodes}

5 \begin{tabular}{cl}
6 \toprule

7 Catcode & Meaning \\

8 \midrule

9 0 & Escape Character \\

10 1 & Begin Group \\

11 2 & End Group \\

12 \vdots & \quad \vdots \\

13 \bottomrule

14 \end{tabular}
15 \end{table}

What I have said about floating environments, \centering, \caption and \label

in appendix A.1 is also valid for tables. New are lines 5–14. We now have two
environments nested inside of each other. The outer environment (lines 1 and 15)
is the floating environment. The inner environment (lines 5–14) is the environ-
ment which creates the table. The inner environment takes a column specification
telling LATEX how many columns the table has and how they are supposed to be
aligned. In this case that is cl: Two columns, the first centered, the second left
aligned. For more information about column specifications see the array package
documentation [17, section 1].

\toprule, \midrule and \bottomrule (defined by the booktabs package) produce
horizontal lines. They differ in the width of the line and/or spacing around them.
In contrast to the standard LATEX \hline command they have proper spacing
around them.

& separates columns, \\ separates rows. Indentation and spaces at the beginning
and end of a cell are ignored.

* * *

Using this package we don’t need two environments and we don’t even need to
type out the rule commands if we use table head. The packages caption, booktabs
and array are loaded automatically (unless you load this package with nobooktabs

or noarray).

36

\begin{tableobject}{%
caption = Some catcodes,

label = catcodes,

env = tabular,

arg = cl,

table head = Catcode & Meaning,

}
0 & Escape Character \\

1 & Begin Group \\

2 & End Group \\

\vdots & \quad \vdots \\

\end{tableobject}

Also we gain the possibility to easily switch between different tabular-like envi-
ronments, see section 1.4 and the example given for the (〈env〉) arg(s) + key in
section 3.2.1.

A.3 Subobjects

There are several packages to combine several figures/tables into a single floating
environment. Das LATEX 2ε-Sündenregister [18] recommends using subcaption over
subfig and the long deprecated subfigure.

The subcaption package provides several ways to do this. The first one is using
the \subcaptionbox command.

1 \begin{table}
2 \centering

3 \caption{Category and character codes}

4 \label{codes}

5 \subcaptionbox{Category codes\label{catcodes}}{%

6 \begin{tabular}{cl}
7 \toprule

8 Catcode & Category \\

9 \midrule

10 0 & Escape Character \\

11 1 & Begin Group \\

12 2 & End Group \\

13 \vdots & \quad \vdots \\

14 \bottomrule

15 \end{tabular}%
16 }%

17 \qquad

18 \subcaptionbox{Character codes\label{charcodes}}{%

19 \begin{tabular}{cr<{\hspace{1.3em}}}
20 \toprule

21 Character & \multicolumn1c{Charcode} \\

22 \midrule

23 \textbackslash & \number`\\ \\

24 \{ & \number`\{ \\

25 \} & \number`\} \\

37

26 \vdots & \vdots \\

27 \bottomrule

28 \end{tabular}%
29 }%

30 \end{table}

As the subobjects are inside of an argument they cannot contain code which relies
on changing catcodes e.g. \verb. Aside from that it just doesn’t seem elegant to
put an environment inside of an argument.

If you accidentally put the label in the second argument of \subcaptionbox instead
of in the first it refers to the parent object instead of the subobject and you won’t
get an error or a warning for that.

Note how I have commented out line breaks in order to avoid undesired spaces.

The second way is to use the subfigure/subtable environment. Because the sub-
object is not inside of an argument it is possible to use \verb.

1 \begin{table}
2 \caption{Category and character codes}

3 \label{codes}

4 \begin{subtable}{.5\linewidth}
5 \centering

6 \caption{Category codes}

7 \label{catcodes}

8 \begin{tabular}{cl}
9 \toprule

10 Catcode & Category \\

11 \midrule

12 0 & Escape Character \\

13 1 & Begin Group \\

14 2 & End Group \\

15 \vdots & \quad \vdots \\

16 \bottomrule

17 \end{tabular}%
18 \end{subtable}%
19 \begin{subtable}{.5\linewidth}
20 \centering

21 \caption{Character codes}

22 \label{charcodes}

23 \begin{tabular}{cr<{\hspace{1.3em}}}
24 \toprule

25 Character & \multicolumn1c{Charcode} \\

26 \midrule

27 \verb|\| & \number`\\ \\

28 \verb|{| & \number`\{ \\

29 \verb|}| & \number`\} \\

30 \vdots & \vdots \\

31 \bottomrule

32 \end{tabular}%
33 \end{subtable}%

38

34 \end{table}

But why having different environments for subfigures and subtables? The floating
environment specifies the type already.

These environments are based on a minipage and require you to always explicitly
specify the width of this minipage. On the one hand I don’t want to always type
that out. On the other hand I want to be able to change the width once for all
subobjects for easier consistency.

Caption and label must be placed correctly, see appendix A.1. Even if you restyle
the floating environment to always put the caption at the top or bottom using the
float package this does not apply to subobjects.

It is important to comment out line breaks because the widths of the two minipages
add up to the line width, a space between them would cause an overfull hbox or
a line break.

We need two \centerings, one for each subobject. Remember what I said about
\centering and center in appendix A.1.

* * *

This package defines an environment called subobject which is a unified wrapper
around \subcaptionbox and subfigure/subtable. Which of these two backends
should be used can be specified with the subcaptionbox and subpage options.
subpage is used by default so that you can usually use \verb in the content.

subobject can be used inside of any *object environment. If you define a new
object environment with \NewObjectStyle it defines a corresponding subpage en-
vironment like subfigure/subtable if it does not exist already and if the caption
package is new enough. If the caption package is older than August 30, 2020 you
need to define the subtype manually by putting the following line before loading
this package [12]:

\AtBeginDocument{\DeclareCaptionSubType{〈type〉}}

You don’t need to write out the width, .5\linewidth is used automatically. You
can change this value for all subobjects using

\objectset{subobject linewidth=〈dimen〉}

Caption and label are given as options like for tableobject. Their order does
not matter. They are placed above or below the subobject based on the internal
command \caption@iftop defined by the caption package.

Spaces after \begin{subobject} and before and after \end{subobject} are ignored
so you don’t need to comment out the line breaks.3 Just make sure you don’t have
an empty line between the subobject environments. That would not be ignored.

\centering is inserted automatically. It can be changed with subpage align.

3Actually, spaces after \begin{subobject} and before \end{subobject} are ignored only if env is
empty. But if env is not empty I am expecting it to be a tabular-like environment where spaces
are ignored at the beginning and end of a cell or a tikzpicture where spaces are ignored as well.
Spaces after \end{subobject} are ignored regardless of env.

39

\begin{tableobject}{caption=Category and character codes,

↪→ label=codes, env=tabular, sub}
\begin{subobject}{caption=Category codes, label=catcodes}{cl}

\toprule

Catcode & Category \\

\midrule

0 & Escape Character \\

1 & Begin Group \\

2 & End Group \\

\vdots & \quad \vdots \\

\bottomrule

\end{subobject}
\begin{subobject}{caption=Character codes, label=charcodes}
↪→ {cr<{\hspace{1.3em}}}

\toprule

Character & \multicolumn1c{Charcode} \\

\midrule

\verb|\| & \number`\\ \\

\verb|{| & \number`\{ \\

\verb|}| & \number`\} \\

\vdots & \vdots \\

\bottomrule

\end{subobject}
\end{tableobject}

A separator for the subobjects could be defined globally using sep, see also hor

and ver.

For including a graphic from an external file this package defines a wrapper com-
mand around subobject and \includegraphics in order to reduce the typing effort:

\begin{figureobject}{caption=Two lions, label=lions, sub}
\includegraphicsubobject[caption=A lion]{lion-1}

\includegraphicsubobject[caption=Another lion]{lion-2}

\end{figureobject}

B Used packages

This package uses the following packages (but depending on the package options
it may load more or less packages, see section 3.5):

• float for placement=H and float style. It also gives you the possibility to
define new float types.

• caption In the standard document classes there is no distance at all between
a table and it’s caption above. The caption package fixes this. It also defines
the \phantomcaption command which I am using in case that no caption is
given. (The documentation of \phantomcaption is in the subcaption package.)
It also gives you the possibility to customize the layout of captions but I am
not changing the default layout. And it is a dependency of the subcaption

40

https://ctan.org/pkg/float
https://ctan.org/pkg/caption

package.

• subcaption for subobjects

• graphicx/graphbox for inserting graphics (see \includegraphicobject)

• pgfkeys for parsing key=value lists

• etoolbox is a collection of small helpers for programming.

• environ to define environments which save their content in a macro. I am
using this for the subcaptionbox backend of the subobject environment.

C Other packages

Other useful packages for dealing with figures or tables:

• placeins When loaded with the section package option it prevents floats from
floating to another section. It provides the \FloatBarrier command which
prevents floats from floating past a certain point.

• flafter ensures that floats are not placed before their inclusion in the source
code. (With the placement=t it is possible that they are placed on the top
of the same page.)

• booktabs for formatting tables

• xcolor When loaded with the package option table it provides commands for
coloring tables.

\rowcolor{〈color〉} sets a background color for a single row. See section 1.5.

\rowcolors{〈firstrow〉}{〈oddcolor〉}{〈evencolor〉} can be used with the exec

key and sets alternating row colors for the entire table.

• array extends the column specification syntax and defines the \newcolumntype

command to define custom column types. Also changes the approach how
rules are drawn but that is irrelevant if you apply booktabs’ guidelines [13,
section 2 The layout of formal tables].

• siunitx for typesetting numbers and units. It provides the S column to align
numbers at their decimal separator.

• tabularx A table where the columns adapt to the width of the table, not the
other way around. Unlike tabular* the space goes into the columns, not
between the columns.

• longtable provides tables where a pagebreak is allowed, see section 1.4

• hyperref automatically creates links in the pdf document for example from
references to floating objects. With the package option pdfusetitle it auto-
matically sets the pdf title and author based on \title and \author.

• cleveref to reference an object. In contrast to the standard \ref and
\pageref, \cref and \cpageref automatically detect the type of object and
can handle multiple references at once. With the nameinlink package option
the object type in front of the number becomes part of the link created by

41

https://ctan.org/pkg/subcaption
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/graphbox
https://ctan.org/pkg/pgfkeys
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/environ
https://ctan.org/pkg/placeins
https://tex.stackexchange.com/questions/15706/force-floats-to-be-typeset-after-their-occurrence-in-the-source-text
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/xcolor
https://ctan.org/pkg/array
https://ctan.org/pkg/siunitx
https://ctan.org/pkg/tabularx
https://ctan.org/pkg/longtable
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/cleveref

hyperref (i.e. the link is “figure 1” instead of “1” and “figure ” being be-
fore the link.) With the noabbrev option references are not abbreviated (by
default references are abbreviated but only the lower case variants, not the
upper case variants which seems inconsistent to me. Abbreviating at the
beginning of a sentence is considered bad style [19].)

• biblatex If you input graphics you need to specify the source. Biblatex creates
an entire bibliography for you.

• tikz is an amazingly powerful package to create your own graphics in LATEX.

• newfloat provides a more modern command to define new floating environ-
ments than the float package.

For more information about floats see https://latexref.xyz/Floats.html (it
seems this is an html version of the above quoted pdf [5]).

D References

Works cited in this documentation (ordered by appearance in this document, if
there are several versions on CTAN I am referring to the English pdf):

[1] Axel Sommerfeldt. Customizing captions of floating environments. Sept. 12,
2020. url: https://ctan.org/pkg/caption.

[2] Victor Eijkhout. TEX by Topic. 2007. url: https://ctan.org/pkg/texby
topic.

[3] Till Tantau. TikZ & PGF Manual. May 9, 2019. url: https://ctan.org/
pkg/pgf.

[4] Why should a table caption be placed above the table? url: https://tex.
stackexchange.com/questions/3243/why-should-a-table-caption-

be-placed-above-the-table (visited on 07/17/2020).
[5] LATEX 2ε: An unofficial reference manual. Oct. 2018. url: https://ctan.

org/pkg/latex2e-help-texinfo.
[6] D. P. Carlisle. Packages in the ‘graphics’ bundle. June 1, 2017. url: https:

//ctan.org/pkg/graphicx.
[7] Joseph Wright. LATEX3 and document environments. url: https://www.

texdev.net/2011/01/09/latex3-and-document-environments/ (visited
on 07/17/2020).

[8] Manuel. Sept. 16, 2014. url: https://tex.stackexchange.com/question
s/201348/why-doesnt-makeatletter-work-inside-newcommand.

[9] Donald E. Knuth. The TEXbook. Addison-Wesley, 1986. isbn: 0-201-13448-9.
[10] Axel Sommerfeldt. The subcaption package. Aug. 24, 2020. url: https:

//ctan.org/pkg/subcaption.
[11] Anselm Lingnau. An Improved Environment for Floats. Nov. 8, 2001. url:

https://ctan.org/pkg/float.
[12] user2574. July 19, 2012. url: https://tex.stackexchange.com/a/63967.
[13] Simon Fear. Publication quality tables in LATEX. Apr. 29, 2016. url: https:

//ctan.org/pkg/booktabs.
[14] The LATEX3 Project. LATEX 2ε for class and package writers. Feb. 15, 2006.

url: https://ctan.org/pkg/clsguide.

42

https://ctan.org/pkg/biblatex
https://www.ctan.org/pkg/pgf
https://ctan.org/pkg/newfloat
https://latexref.xyz/Floats.html
https://ctan.org/pkg/caption
https://ctan.org/pkg/texbytopic
https://ctan.org/pkg/texbytopic
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://tex.stackexchange.com/questions/3243/why-should-a-table-caption-be-placed-above-the-table
https://tex.stackexchange.com/questions/3243/why-should-a-table-caption-be-placed-above-the-table
https://tex.stackexchange.com/questions/3243/why-should-a-table-caption-be-placed-above-the-table
https://ctan.org/pkg/latex2e-help-texinfo
https://ctan.org/pkg/latex2e-help-texinfo
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/graphicx
https://www.texdev.net/2011/01/09/latex3-and-document-environments/
https://www.texdev.net/2011/01/09/latex3-and-document-environments/
https://tex.stackexchange.com/questions/201348/why-doesnt-makeatletter-work-inside-newcommand
https://tex.stackexchange.com/questions/201348/why-doesnt-makeatletter-work-inside-newcommand
https://ctan.org/pkg/subcaption
https://ctan.org/pkg/subcaption
https://ctan.org/pkg/float
https://tex.stackexchange.com/a/63967
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/clsguide

[15] David Carlisle. Dec. 5, 2017. url: https://tex.stackexchange.com/

questions/404673/paperwidth-too-large/404693#comment1008643_

404673.
[16] Johannes Braams et al. The LATEX 2ε Sources. Oct. 1, 2020. url: https:

//ctan.org/pkg/source2e.
[17] Frank Mittelbach and David Carlisle. A new implementation of LATEX’s tab-

ular and array environment. Oct. 1, 2020. url: https://ctan.org/pkg/
array.

[18] Mark Trettin and Marc Ensenbach. Das LATEX 2ε-Sündenregister. German.
Feb. 3, 2016. url: https://ctan.org/pkg/l2tabu. An English translation
of an older version is available at https://ctan.org/pkg/l2tabu-english.

[19] Toby Cubitt. Aug. 10, 2016. url: https://tex.stackexchange.com/

questions/256849/cleveref- change- behaviour- of- cref- to- use-

the-abbreviated-form#comment791998_256849.

43

https://tex.stackexchange.com/questions/404673/paperwidth-too-large/404693#comment1008643_404673
https://tex.stackexchange.com/questions/404673/paperwidth-too-large/404693#comment1008643_404673
https://tex.stackexchange.com/questions/404673/paperwidth-too-large/404693#comment1008643_404673
https://ctan.org/pkg/source2e
https://ctan.org/pkg/source2e
https://ctan.org/pkg/array
https://ctan.org/pkg/array
https://ctan.org/pkg/l2tabu
https://ctan.org/pkg/l2tabu-english
https://tex.stackexchange.com/questions/256849/cleveref-change-behaviour-of-cref-to-use-the-abbreviated-form#comment791998_256849
https://tex.stackexchange.com/questions/256849/cleveref-change-behaviour-of-cref-to-use-the-abbreviated-form#comment791998_256849
https://tex.stackexchange.com/questions/256849/cleveref-change-behaviour-of-cref-to-use-the-abbreviated-form#comment791998_256849

	Examples
	Table
	Graphic
	Subobjects
	Longtable
	Local definitions in tables
	New object style / tikzobject
	Nonfloating objects

	Names
	Documentation
	Options
	Initial vs default values
	Options scope
	Special characters in options
	Key patterns
	Key name vs key path
	Key types
	Styles
	Style groups
	Options processing order

	Environments
	object environment
	figureobject environment
	tableobject environment
	subobject environment

	Commands
	\includegraphicobject command
	\includegraphicsubobject command
	Setting options globally
	New object styles and types
	New object style groups
	Hooks

	Initialization
	Package options
	Help

	Installation
	Bug reports and contributions
	License
	Motivation
	Graphics
	Tables
	Subobjects

	Used packages
	Other packages
	References

