#ifdef WEBGL2 #define IN in out vec4 outValue; #define OUTVALUE outValue #else #define IN varying #define OUTVALUE gl_FragColor #endif #ifdef WEBGL2 flat in int MaterialIndex; struct Material { vec4 diffuse,emissive,specular; vec4 parameters; }; uniform Material Materials[Nmaterials]; vec4 diffuse; vec3 specular; float roughness,metallic,fresnel0; vec4 emissive; #ifdef COLOR in vec4 Color; #endif #else IN vec4 diffuse; IN vec3 specular; IN float roughness,metallic,fresnel0; IN vec4 emissive; #endif #ifdef NORMAL #ifndef ORTHOGRAPHIC IN vec3 ViewPosition; #endif IN vec3 Normal; vec3 normal; struct Light { vec3 direction; vec3 color; }; uniform Light Lights[Nlights]; #ifdef USE_IBL uniform sampler2D reflBRDFSampler; uniform sampler2D diffuseSampler; uniform sampler2D reflImgSampler; const float pi=acos(-1.0); const float piInv=1.0/pi; const float twopi=2.0*pi; const float twopiInv=1.0/twopi; // (x,y,z) -> (r,theta,phi); // theta -> [0,pi]: colatitude // phi -> [-pi,pi]: longitude vec3 cart2sphere(vec3 cart) { float x=cart.x; float y=cart.z; float z=cart.y; float r=length(cart); float theta=r > 0.0 ? acos(z/r) : 0.0; float phi=atan(y,x); return vec3(r,theta,phi); } vec2 normalizedAngle(vec3 cartVec) { vec3 sphericalVec=cart2sphere(cartVec); sphericalVec.y=sphericalVec.y*piInv; sphericalVec.z=0.75-sphericalVec.z*twopiInv; return sphericalVec.zy; } vec3 IBLColor(vec3 viewDir) { vec3 IBLDiffuse=diffuse.rgb*texture(diffuseSampler,normalizedAngle(normal)).rgb; vec3 reflectVec=normalize(reflect(-viewDir,normal)); vec2 reflCoord=normalizedAngle(reflectVec); vec3 IBLRefl=textureLod(reflImgSampler,reflCoord,roughness*ROUGHNESS_STEP_COUNT).rgb; vec2 IBLbrdf=texture(reflBRDFSampler,vec2(dot(normal,viewDir),roughness)).rg; float specularMultiplier=fresnel0*IBLbrdf.x+IBLbrdf.y; vec3 dielectric=IBLDiffuse+specularMultiplier*IBLRefl; vec3 metal=diffuse.rgb*IBLRefl; return mix(dielectric,metal,metallic); } #else float Roughness2; float NDF_TRG(vec3 h) { float ndoth=max(dot(normal,h),0.0); float alpha2=Roughness2*Roughness2; float denom=ndoth*ndoth*(alpha2-1.0)+1.0; return denom != 0.0 ? alpha2/(denom*denom) : 0.0; } float GGX_Geom(vec3 v) { float ndotv=max(dot(v,normal),0.0); float ap=1.0+Roughness2; float k=0.125*ap*ap; return ndotv/((ndotv*(1.0-k))+k); } float Geom(vec3 v, vec3 l) { return GGX_Geom(v)*GGX_Geom(l); } float Fresnel(vec3 h, vec3 v, float fresnel0) { float a=1.0-max(dot(h,v),0.0); float b=a*a; return fresnel0+(1.0-fresnel0)*b*b*a; } // physical based shading using UE4 model. vec3 BRDF(vec3 viewDirection, vec3 lightDirection) { vec3 lambertian=diffuse.rgb; vec3 h=normalize(lightDirection+viewDirection); float omegain=max(dot(viewDirection,normal),0.0); float omegaln=max(dot(lightDirection,normal),0.0); float D=NDF_TRG(h); float G=Geom(viewDirection,lightDirection); float F=Fresnel(h,viewDirection,fresnel0); float denom=4.0*omegain*omegaln; float rawReflectance=denom > 0.0 ? (D*G)/denom : 0.0; vec3 dielectric=mix(lambertian,rawReflectance*specular,F); vec3 metal=rawReflectance*diffuse.rgb; return mix(dielectric,metal,metallic); } #endif #endif void main(void) { #ifdef WEBGL2 #ifdef NORMAL Material m; #ifdef TRANSPARENT m=Materials[abs(MaterialIndex)-1]; emissive=m.emissive; if(MaterialIndex >= 0) diffuse=m.diffuse; else { diffuse=Color; #if nlights == 0 emissive += Color; #endif } #else m=Materials[MaterialIndex]; emissive=m.emissive; #ifdef COLOR diffuse=Color; #if nlights == 0 emissive += Color; #endif #else diffuse=m.diffuse; #endif // COLOR #endif // TRANSPARENT specular=m.specular.rgb; vec4 parameters=m.parameters; roughness=1.0-parameters[0]; metallic=parameters[1]; fresnel0=parameters[2]; #else emissive=Materials[MaterialIndex].emissive; #endif // NORMAL #endif // WEBGL2 #if defined(NORMAL) && nlights > 0 normal=normalize(Normal); normal=gl_FrontFacing ? normal : -normal; #ifdef ORTHOGRAPHIC vec3 viewDir=vec3(0.0,0.0,1.0); #else vec3 viewDir=-normalize(ViewPosition); #endif vec3 color; #ifdef USE_IBL color=IBLColor(viewDir); #else Roughness2=roughness*roughness; color=emissive.rgb; for(int i=0; i < nlights; ++i) { Light Li=Lights[i]; vec3 L=Li.direction; float cosTheta=max(dot(normal,L),0.0); vec3 radiance=cosTheta*Li.color; color += BRDF(viewDir,L)*radiance; } #endif OUTVALUE=vec4(color,diffuse.a); #else OUTVALUE=emissive; #endif }