The R package visae
implements ‘shiny’ apps to visualize adverse events (AE) based on the
Common Terminology Criteria for Adverse Events (CTCAE).
instal.packages("visae")
The latest version can be installed from GitHub as follows:
::install_github("dnzmarcio/visae") devtools
<- 1:4000
patient_id <- c(rep("A", 1000), rep("B", 1000), rep("C", 1000), rep("D", 1000))
group <- c(rep("AE class 01", 600), rep("AE class 02", 300),
ae_grade rep("AE class 03", 100), rep("AE class 04", 0),
rep("AE class 01", 100), rep("AE class 02", 400),
rep("AE class 03", 400), rep("AE class 04", 100),
rep("AE class 01", 233), rep("AE class 02", 267),
rep("AE class 03", 267), rep("AE class 04", 233),
rep("AE class 01", 0), rep("AE class 02", 100),
rep("AE class 03", 300), rep("AE class 04", 600))
<- tibble(patient_id = patient_id, trt = group, ae_g = ae_grade) dt
library(visae)
library(magrittr)
library(dplyr)
%>% run_ca(., group = trt,
dt id = patient_id,
ae_grade = ae_g)
<- dt %>% ca_ae(., group = trt,
ca id = patient_id,
ae_class = ae_g,
contr_indicator = FALSE,
mass_indicator = TRUE,
contr_threshold = 0,
mass_threshold = 0)
$asymmetric_plot ca
Investigators often interpret CA biplots erroneously assuming that the distance between AE classes dots and treatments dots is an indicative of association. See step by step to interpret biplots correctly are below: