--- title: "Objects `dx`, `dy`, and `dz` in the `stokes` package" author: "Robin K. S. Hankin" output: html_vignette bibliography: stokes.bib link-citations: true vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{dx} %\usepackage[utf8]{inputenc} --- ```{r setup, include=FALSE} set.seed(0) library("stokes") knitr::opts_chunk$set(echo = TRUE) options(rmarkdown.html_vignette.check_title = FALSE) ``` ```{r out.width='20%', out.extra='style="float:right; padding:10px"',echo=FALSE} knitr::include_graphics(system.file("help/figures/stokes.png", package = "stokes")) ``` ```{r label=definedxdydz} dx <- d(1) dy <- d(2) dz <- d(3) ``` To cite the `stokes` package in publications, please use @hankin2022_stokes. Convenience objects `dx`, `dy`, and `dz`, corresponding to elementary differential forms, are discussed here (basis vectors $e_1$, $e_2$, $e_2$ are discussed in vignette `ex.Rmd`). @spivak1965, in a memorable passage, states:

Fields and forms

If $f\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ is differentiable, then $Df(p)\in\Lambda^1(\mathbb{R}^n)$. By a minor modification we therefore obtain a $1$-form $\mathrm{d}f$, defined by $$\mathrm{d}f(p)(v_p)=Df(p)(v).$$ Let us consider in particular the $1$-forms $\mathrm{d}\pi^i$ ^[Spivak introduces the $\pi^i$ notation on page 11: "if $\pi\colon\mathbb{R}^n\longrightarrow\mathbb{R}^n$ is the identity function, $\pi(x)=x$, then [its components are] $\pi^i(x)=x^i$; the function $\pi^i$ is called the $i^\mathrm{th}$ *projection function*"]. It is customary to let $x^i$ denote the _function_ $\pi^i$ (on $\mathbb{R}^3$ we often denote $x^1$, $x^2$, and $x^3$ by $x$, $y$, and $z$) $\ldots$ Since $\mathrm{d}x^i(p)(v_p)=\mathrm{d}\pi^i(p)(v_p)=D\pi^i(p)(v)=v^i$, we see that $\mathrm{d}x^1(p),\ldots,\mathrm{d}x^n(p)$ is just the dual basis to $(e_1)_p,\ldots, (e_n)_p$.

- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Page 89

Spivak goes on to observe that every $k$-form $\omega$ can be written $\omega=\sum_{i_1 < \cdots < i_k}\omega_{i_1,\ldots, i_k}\mathrm{d}x^{i_1}\wedge\cdots\wedge\mathrm{d}x^{i_k}$. If working in $\mathbb{R}^3$, we have three elementary forms $\mathrm{d}x$, $\mathrm{d}y$, and $\mathrm{d}z$; in the package we have the pre-defined objects `dx`, `dy`, and `dz`. These are convenient for reproducing textbook results. We conceptualise `dx` as "picking out" the $x$-component of a 3-vector and similarly for `dy` and `dz`. Recall that $\mathrm{d}x\colon\mathbb{R}^3\longrightarrow\mathbb{R}$ and we have $$ dx\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_1\qquad dy\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_2\qquad dz\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_3. $$ Noting that $1$-forms are a vector space, we have in general $$(a\cdot\mathrm{d}x + b\cdot\mathrm{d}y +c\cdot\mathrm{d}z) \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = au_1+bu_2+cu_3 $$ Numerically: ```{r} v <- c(2,3,7) c(as.function(dx)(v),as.function(dx+dy)(v),as.function(dx+100*dz)(v)) ``` As Spivak says, `dx`, `dy` and `dz` are conjugate to $e_1,e_2,e_3$ and these are defined using function `e()`. In this case it is safer to pass `n=3` to function `e()` in order to specify that we are working in $\mathbb{R}^3$. ```{r} e(1,3) e(2,3) e(3,3) ``` We will now verify numerically that `dx`, `dy` and `dz` are indeed conjugate to $e_1,e_2,e_3$, but to do this we will define an orthonormal set of vectors $u,v,w$: ```{r} u <- e(1,3) v <- e(2,3) w <- e(3,3) matrix(c( as.function(dx)(u), as.function(dx)(v), as.function(dx)(w), as.function(dy)(u), as.function(dy)(v), as.function(dy)(w), as.function(dz)(u), as.function(dz)(v), as.function(dz)(w) ),3,3) ``` Above we see the conjugacy clearly [obtaining $I_3$ as expected]. ## Wedge products The elementary forms may be combined with a wedge product. We note that $\mathrm{d}x\wedge\mathrm{d}y\colon\left(\mathbb{R}^3\right)^2\longrightarrow\mathbb{R}$ and, for example, $$ (\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix} $$ and $$ (\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z) \left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}, \begin{pmatrix}w_1\\w_2\\w_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1&w_1\\u_2&v_2&w_2\\u_3&v_3&w_3\end{pmatrix} $$ Numerically: ```{r} as.function(dx ^ dy)(cbind(c(2,3,5),c(4,1,2))) ``` Above we see the package correctly giving $\det\begin{pmatrix}2&4\\3&1\end{pmatrix}=2-12=-10$. # The print method Here I give some illustrations of the package print method. ```{r label=showdx} dx ``` This is somewhat opaque and difficult to understand. It is easier to start with a more complicated example: take $X=\mathrm{d}x\wedge\mathrm{d}y -7\mathrm{d}x\wedge\mathrm{d}z + 3\mathrm{d}y\wedge\mathrm{d}z$: ```{r label=morecomplicatedcombination} (X <- dx^dy -7*dx^dz + 3*dy^dz) ``` We see that `X` has three rows for the three elementary components. Taking the row with coefficient $-7$ [which would be $-7\mathrm{d}x\wedge\mathrm{d}z$], this maps $\left(\mathbb{R}^3\right)^2$ to $\mathbb{R}$ and we have $$(-7\mathrm{d}x\wedge\mathrm{d}z)\left(\begin{pmatrix} u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\right)= -7\det\begin{pmatrix}u_1&v_1\\u_3&v_3\end{pmatrix} $$ The other two rows would be $$(3\mathrm{d}y\wedge\mathrm{d}z)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = 3\det\begin{pmatrix}u_2&v_2\\u_3&v_3\end{pmatrix}$$ and $$(1\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix} $$ Thus form $X$ would be, by linearity $$ X\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = -7\det\begin{pmatrix}u_1&v_1\\u_3&v_3\end{pmatrix} +3\det\begin{pmatrix}u_2&v_2\\u_3&v_3\end{pmatrix} +\det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix}. $$ We might want to verify that $\mathrm{d}x\wedge\mathrm{d}y=-\mathrm{d}y\wedge\mathrm{d}x$: ```{r dxdyequalsminusdydx} dx ^ dy == -dy ^ dx ``` # Configuring the print method The print method is configurable and can display kforms in symbolic form. For working with `dx dy dz` we may set option `kform_symbolic_print` to `dx`: ```{r setusedx} options(kform_symbolic_print = 'dx') ``` Then the results of calculations are more natural: ```{r showdxwithusedx} dx dx^dy + 56*dy^dz ``` However, this setting can be confusing if we work with $\mathrm{d}x^i,i>3$, for the print method runs out of alphabet: ```{r runsoutofalphabet} rform() ``` Above, we see the use of `NA` because there is no defined symbol. ## The Hodge dual Function `hodge()` returns the Hodge dual: ```{r hodgedxdydz} hodge(dx^dy + 13*dy^dz) ``` Note that calling `hodge(dx)` can be confusing: ```{r hodgedx} hodge(dx) ``` This returns a scalar because `dx` is interpreted as a one-form on one-dimensional space, which is a scalar form. One usually wants the result in three dimensions: ```{r hodgedx3} hodge(dx,3) ``` This is further discussed in the `dovs` vignette. ## Creating elementary one-forms Package function `d()` will create elementary one-forms but it is easier to interpret the output if we restore the default print method ```{r} options(kform_symbolic_print = NULL) d(8) ``` ### Package dataset Following lines create `dx.rda`, residing in the `data/` directory of the package. ```{r,label=savedxdydz} save(dx, dy, dz, file="dx.rda") ``` # References