--- title: "The `Alt()` function in the `stokes` package" author: "Robin K. S. Hankin" output: html_vignette bibliography: stokes.bib link-citations: true vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Alt} %\usepackage[utf8]{inputenc} --- ```{r setup, include=FALSE} set.seed(0) library("stokes") options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set(echo = TRUE) knit_print.function <- function(x, ...){dput(x)} registerS3method( "knit_print", "function", knit_print.function, envir = asNamespace("knitr") ) ``` ```{r out.width='20%', out.extra='style="float:right; padding:10px"',echo=FALSE} knitr::include_graphics(system.file("help/figures/stokes.png", package = "stokes")) ``` ```{r, label=showAlt,comment=""} Alt ``` To cite the `stokes` package in publications, please use @hankin2022_stokes. @spivak1965, in a memorable passage, states:
A $k$-tensor $\omega\in{\mathcal J}(V)$ is called alternating if $$ \omega(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k)= -\omega(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)\qquad\mbox{for all $v_1,\ldots,v_k\in V$.} $$ $\ldots$ The set of all alternating $k$-tensors is clearly a subspace $\Lambda^k(V)$ of ${\mathcal J}^k(V)$. Since it requires considerable work to produce the determinant, it is not surprising that alternating $k$-tensors are difficult to write down. There is, however, a uniform way of expressing all of them. Recall that the sign of a permutation $\sigma$, denoted $\operatorname{sgn}\sigma$, is $+1$ if $\sigma$ is even and $-1$ if $\sigma$ is odd. If $T\in{\mathcal J}^k(V)$, we define $\operatorname{Alt}(T)$ by $$ \operatorname{Alt}(T){\left(v_1,\ldots,v_k\right)}= \frac{1}{k!}\sum_{\sigma\in S_k}\mathrm{sgn}(\sigma)\cdot T{\left(v_{\sigma(1)},\ldots,v_{\sigma(k)}\right)} $$ where $S_k$ is the set of all permutations of numbers $1$ to $k$.
- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Page 78