Package 'stdReg2'

September 13, 2024

Type Package

Title Regression Standardization for Causal Inference

Version 1.0.1

URL <https://sachsmc.github.io/stdReg2/>

BugReports <https://github.com/sachsmc/stdReg2/issues/>

Date 2024-09-10

Description Contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) [<doi:10.1007/s10654-016-0157-3>](https://doi.org/10.1007/s10654-016-0157-3). Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.

License AGPL $(>= 3)$

Encoding UTF-8

Imports data.table, drgee, generics, survival

Suggests causaldata, AF, knitr, nnet, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.2

Depends R ($>= 2.10$)

NeedsCompilation no

Author Michael C Sachs [aut, cre], Arvid Sjölander [aut], Erin E Gabriel [aut], Johan Sebastian Ohlendorff [aut], Adam Brand [aut]

Maintainer Michael C Sachs <sachsmc@gmail.com>

Repository CRAN

Date/Publication 2024-09-13 17:50:02 UTC

Contents

stdReg2-package *stdReg2: Regression Standardization for Causal Inference*

Description

Contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) [doi:10.1007/s1065401601573.](https://doi.org/10.1007/s10654-016-0157-3) Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.

Author(s)

Maintainer: Michael C Sachs <sachsmc@gmail.com>

Authors:

- Arvid Sjölander
- Erin E Gabriel
- Johan Sebastian Ohlendorff
- Adam Brand

parfrailty 30 and 3

See Also

Useful links:

- <https://sachsmc.github.io/stdReg2/>
- Report bugs at <https://github.com/sachsmc/stdReg2/issues/>

parfrailty *Fits shared frailty gamma-Weibull models*

Description

parfrailty fits shared frailty gamma-Weibull models. It is specifically designed to work with the function standardize_parfrailty, which performs regression standardization in shared frailty gamma-Weibull models.

Usage

parfrailty(formula, data, clusterid, init)

Arguments

Details

parfrailty fits the shared frailty gamma-Weibull model

$$
\lambda(t_{ij}|C_{ij}) = \lambda(t_{ij}; \alpha, \eta) U_i \exp\{h(C_{ij}; \beta)\},
$$

where t_{ij} and C_{ij} are the survival time and covariate vector for subject j in cluster i, respectively. $\lambda(t; \alpha, \eta)$ is the Weibull baseline hazard function

$$
\eta t^{\eta-1} \alpha^{-\eta},
$$

where η is the shape parameter and α is the scale parameter. U_i is the unobserved frailty term for cluster i, which is assumed to have a gamma distribution with scale = $1/\text{shape} = \phi$. $h(X;\beta)$ is the regression function as specified by the formula argument, parameterized by a vector β . The ML estimates $\{\log(\hat{\alpha}), \log(\hat{\eta}), \log(\hat{\phi}), \hat{\beta}\}$ are obtained by maximizing the marginal (over U) likelihood.

Value

An object of class "parfrailty" which is a list containing:

If left truncation is present, it is assumed that it is strong left truncation. This means that even if the truncation time may be subject-specific, the whole cluster is unobserved if at least one subject in the cluster dies before his/her truncation time. If all subjects in the cluster survive beyond their subject-specific truncation times, then the whole cluster is observed (Van den Berg and Drepper, 2016).

Author(s)

Arvid Sjölander and Elisabeth Dahlqwist.

References

Dahlqwist E., Pawitan Y., Sjölander A. (2019). Regression standardization and attributable fraction estimation with between-within frailty models for clustered survival data. *Statistical Methods in Medical Research* 28(2), 462-485.

Van den Berg G.J., Drepper B. (2016). Inference for shared frailty survival models with lefttruncated data. *Econometric Reviews*, 35(6), 1075-1098.

Examples

```
require(survival)
# simulate data
set.seed(5)
n < -200m \leq -3alpha <-1.5eta <- 1
phi < -0.5beta <-1id \leq rep(1:n, each = m)
U \leftarrow \text{rep}(\text{rgamma}(n, \text{ shape} = 1 / \text{phi}, \text{scale} = \text{phi}), \text{each} = \text{m})X \leq -rnorm(n * m)# reparameterize scale as in rweibull function
weibull.scale <- alpha / (U * exp(beta * X))^(1 / eta)T <- rweibull(n \times m, shape = eta, scale = weibull.scale)
# right censoring
C \le runif(n * m, 0, 10)
D \le - as.numeric(T \le C)
T \leftarrow pmin(T, C)# strong left-truncation
L \le runif(n * m, 0, 2)
incl \leq T > L
incl \leq -</math> ave(x = incl, id, FUN = sum) == mdd <- data.frame(L, T, D, X, id)
dd <- dd[incl, ]
```
Note

plot.std_glm 5

```
fit \le parfrailty(formula = Surv(L, T, D) \sim X, data = dd, clusterid = "id")
print(fit)
```
plot.std_glm *Plots regression standardization fit*

Description

This is a plot method for class "std_glm".

Usage

```
## S3 method for class 'std_glm'
plot(
 x,
 plot_ci = TRUE,
 ci_type = "plain",
 ci\_level = 0.95,
 transform = NULL,
 contrast = NULL,
  reference = NULL,
 summary_fun = "summary_std_glm",
  ...
\mathcal{L}
```
Arguments

Value

None. Creates a plot as a side effect

Examples

see standardize_glm

plot.std_surv *Plots regression standardization fit*

Description

This is a plot method for class "std_surv".

Usage

```
## S3 method for class 'std_surv'
plot(
  x,
  plot_ci = TRUE,
  ci_type = "plain",
  ci\_level = 0.95,
  transform = NULL,
  contrast = NULL,
  reference = NULL,
  legendpos = "bottomleft",
  summary_fun = "summary_std_coxph",
  ...
\mathcal{L}
```
Arguments

print.std_surv 7

Value

None. Creates a plot as a side effect

print.std_surv *Prints summary of regression standardization fit*

Description

Prints summary of regression standardization fit

Usage

S3 method for class 'std_surv' $print(x, \ldots)$ ## S3 method for class 'std_glm' $print(x, \ldots)$ ## S3 method for class 'std_custom'

 $print(x, \ldots)$

Arguments

Value

The object being printed, invisibly.

print.summary.parfrailty

Print method for parametric frailty fits

Description

Print method for parametric frailty fits

Usage

```
## S3 method for class 'summary.parfrailty'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```
8 sandwich is a series of the series of

Arguments

Value

The object being printed, invisibly

Description

Compute the sandwich variance components from a model fit

Usage

```
sandwich(fit, data, weights, t, fit.detail)
```
Arguments

Value

A list consisting of the Fisher information matrix (I) and the Score equations (U)

Get standardized estimates using the g-formula with a custom model

Usage

```
standardize(
  fitter,
  arguments,
 predict_fun,
 data,
 values,
 B = NULL,ci\_level = 0.95,
 contrasts = NULL,
  reference = NULL,
  seed = NULL,
  times = NULL,
  transforms = NULL,
 progressbar = TRUE
)
```
Arguments

10 standardize

Details

Let Y , X , and Z be the outcome, the exposure, and a vector of covariates, respectively. standardize uses a model to estimate the standardized mean $\theta(x) = E\{E(Y|X=x,Z)\}\,$, where x is a specific value of X , and the outer expectation is over the marginal distribution of Z . With survival data, $Y = I(T > t)$, and a vector of different time points times (t) can be given, where T is the uncensored survival time.

Value

An object of class std_custom. This is a list with components estimates and fit for the outcome model.

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* 31(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* 33(9), 847-858.

```
set.seed(6)
n < -100Z \leftarrow \text{norm}(n)X \leq -rnorm(n, mean = Z)Y \le - rbinom(n, 1, prob = (1 + \exp(X + Z))^(-1))
dd <- data.frame(Z, X, Y)
prob_predict.glm <- function(...) predict.glm(..., type = "response")
x <- standardize(
  fitter = "glm",
  arguments = list(
    formula = Y \sim X * Z,
    family = "binomial"
  ),
  predict_fun = prob_predict.glm,
  data = dd,values = list(X = seq(-1, 1, 0.1)),
```
standardize_coxph 11

```
B = 100,
  reference = 0,
  contrasts = "difference"
)
x
require(survival)
prob_predict.coxph <- function(object, newdata, times) {
  fit.detail <- suppressWarnings(basehaz(object))
 cum.haz <- fit.detail$hazard[sapply(times, function(x) max(which(fit.detail$time <= x)))]
  predX <- predict(object = object, newdata = newdata, type = "risk")
  res <- matrix(NA, ncol = length(times), nrow = length(predX))
  for (ti in seq_len(length(times))) {
    res[, ti] <- exp(-predX * cum.haz[ti])
  }
  res
}
set.seed(68)
n <- 500
Z \leq -rnorm(n)X \leq -rnorm(n, mean = Z)T \leq - rexp(n, rate = exp(X + Z + X * Z)) # survival time
C <- r \exp(n, r \text{ate} = \exp(X + Z + X + Z)) # censoring time
U \leq pmin(T, C) # time at risk
D \le - as.numeric(T < C) # event indicator
dd <- data.frame(Z, X, U, D)
x <- standardize(
fitter = "coxph",
  arguments = list(
    formula = Surv(U, D) ~ X + Z + X * Z,
    method = "breslow",
    x = TRUE,y = TRUE),
  predict_fun = prob_predict.coxph,
  data = dd,times = 1:5,
  values = list(X = c(-1, 0, 1)),B = 100,
  reference = 0,
  contrasts = "difference"
)
x
```
standardize_coxph *Regression standardization in Cox proportional hazards models*

Description

standardize_coxph performs regression standardization in Cox proportional hazards models at specified values of the exposure over the sample covariate distribution. Let T , X , and Z be the survival outcome, the exposure, and a vector of covariates, respectively. standardize_coxph fits a Cox proportional hazards model and the Breslow estimator of the baseline hazard in order to estimate the standardized survival function $\theta(t,x) = E\{S(t|X = x, Z)\}\$ when measure = "survival" or the standardized restricted mean survival up to time t $\theta(t,x) = E\{\int_0^t S(u|X=x)\}$ $x, Z/du$ when measure = "rmean", where t is a specific value of T, x is a specific value of X, and the expectation is over the marginal distribution of Z .

Usage

```
standardize_coxph(
  formula,
  data,
  values,
  times,
 measure = c("survival", "rmean"),
 clusterid,
  ci\_level = 0.95,
  ci_type = "plain",contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
\mathcal{L}
```
Arguments

Details

standardize_coxph fits the Cox proportional hazards model

$$
\lambda(t|X,Z) = \lambda_0(t) \exp\{h(X,Z;\beta)\}.
$$

Breslow's estimator of the cumulative baseline hazard $\Lambda_0(t) = \int_0^t \lambda_0(u) du$ is used together with the partial likelihood estimate of β to obtain estimates of the survival function $S(t|X = x, Z)$ if measure = "survival":

$$
\hat{S}(t|X=x,Z) = \exp[-\hat{\Lambda}_0(t)\exp\{h(X=x,Z;\hat{\beta})\}].
$$

For each t in the t argument and for each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z) to produce estimates

$$
\hat{\theta}(t,x) = \sum_{i=1}^{n} \hat{S}(t|X=x, Z_i)/n,
$$

where Z_i is the value of Z for subject i, $i = 1, ..., n$. The variance for $\hat{\theta}(t, x)$ is obtained by the sandwich formula.

If measure = "rmean", then $\Lambda_0(t)=\int_0^t\lambda_0(u)du$ is used together with the partial likelihood estimate of β to obtain estimates of the restricted mean survival up to time t: $\int_0^t S(u|X = x, Z) du$ for each element of times. The estimation and inference is done using the method described in Chen and Tsiatis 2001. Currently, we can only estimate the difference in RMST for a single binary exposure. Two separate Cox models are fit for each level of the exposure, which is expected to be coded as 0/1.

Value

An object of class std_surv. This is basically a list with components estimates and covariance estimates in res Results for transformations, contrasts, references are stored in res_contrasts. The output contains estimates for contrasts and confidence intervals for all combinations of transforms and reference levels. Obtain numeric results in a data frame with the [tidy](#page-0-0) function.

Note

Standardized survival functions are sometimes referred to as (direct) adjusted survival functions in the literature.

standardize_coxph/standardize_parfrailty does not currently handle time-varying exposures or covariates.

standardize_coxph/standardize_parfrailty internally loops over all values in the t argument. Therefore, the function will usually be considerably faster if length(t) is small.

The variance calculation performed by standardize_coxph does not condition on the observed covariates $\overline{Z} = (Z_1, ..., Z_n)$. To see how this matters, note that

$$
var\{\hat{\theta}(t,x)\} = E[var\{\hat{\theta}(t,x)|\bar{Z}\}] + var[E\{\hat{\theta}(t,x)|\bar{Z}\}].
$$

The usual parameter β in a Cox proportional hazards model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z}) = \beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(t, x)$ depends on \overline{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(t,x)|\bar{Z}\}]$ is not 0, unless one conditions on \bar{Z} . The variance calculation by Gail and Byar (1986) ignores this term, and thus effectively conditions on \overline{Z} .

Author(s)

Arvid Sjölander, Adam Brand, Michael Sachs

References

Chang I.M., Gelman G., Pagano M. (1982). Corrected group prognostic curves and summary statistics. *Journal of Chronic Diseases* 35, 669-674.

Gail M.H. and Byar D.P. (1986). Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect. *Biometrical Journal* 28(5), 587-599.

Makuch R.W. (1982). Adjusted survival curve estimation using covariates. *Journal of Chronic Diseases* 35, 437-443.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* 31(6), 563-574.

Sjölander A. (2018). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* 33(9), 847-858.

Chen, P. Y., Tsiatis, A. A. (2001). Causal inference on the difference of the restricted mean lifetime between two groups. *Biometrics*, 57(4), 1030-1038.

```
require(survival)
set.seed(7)
n <- 300
Z \leftarrow \text{norm}(n)Zbin \leq rbinom(n, 1, .3)X \leq -rnorm(n, mean = Z)T <- rexp(n, rate = exp(X + Z + X * Z)) # survival time
C <- rexp(n, rate = exp(X + Z + X * Z)) # censoring time
fact <- factor(sample(letters[1:3], n, replace = TRUE))
U \leftarrow pmin(T, C) # time at risk
D \le - as.numeric(T \le C) # event indicator
dd <- data.frame(Z, Zbin, X, U, D, fact)
```
standardize_gee 15

```
fit.std.surv <- standardize_coxph(
 formula = Surv(U, D) ~ X + Z + X \times Z,
 data = dd,values = list(X = seq(-1, 1, 0.5)),times = 1:5)
print(fit.std.surv)
plot(fit.std.surv)
tidy(fit.std.surv)
fit.std <- standardize_coxph(
 formula = Surv(U, D) ~ X + Zbin + X * Zbin + fact,
 data = dd,
 values = list(Zbin = 0:1),
 times = 1.5,
 measure = "rmean",
 contrast = "difference",
 reference = 0
)
print(fit.std)
tidy(fit.std)
```
standardize_gee *Regression standardization in conditional generalized estimating equations*

Description

standardize_gee performs regression standardization in linear and log-linear fixed effects models, at specified values of the exposure, over the sample covariate distribution. Let Y , X , and Z be the outcome, the exposure, and a vector of covariates, respectively. It is assumed that data are clustered with a cluster indicator i . standardize_gee uses fitted fixed effects model, with cluster-specific intercept a_i (see details), to estimate the standardized mean $\theta(x) = E\{E(Y|i, X = x, Z)\}\,$ where x is a specific value of X , and the outer expectation is over the marginal distribution of (a_i, Z) .

Usage

```
standardize_gee(
  formula,
  link = "identity",
  data,
  values,
  clusterid,
  case_control = FALSE,
  ci level = 0.95,
  ci_type = "plain",contrasts = NULL,
```

```
family = "gaussian",
  reference = NULL,
  transforms = NULL
\mathcal{L}
```
Arguments

Details

standardize_gee assumes that a fixed effects model

$$
\eta\{E(Y|i, X, Z)\} = a_i + h(X, Z; \beta)
$$

has been fitted. The link function η is assumed to be the identity link or the log link. The conditional generalized estimating equation (CGEE) estimate of β is used to obtain estimates of the clusterspecific means:

$$
\hat{a}_i = \sum_{j=1}^{n_i} r_{ij} / n_i,
$$

where

$$
r_{ij} = Y_{ij} - h(X_{ij}, Z_{ij}; \hat{\beta})
$$

standardize_gee 17

if η is the identity link, and

$$
r_{ij} = Y_{ij} \exp\{-h(X_{ij}, Z_{ij}; \hat{\beta})\}
$$

if η is the log link, and (X_{ij}, Z_{ij}) is the value of (X, Z) for subject j in cluster $i, j = 1, ..., n_i, i =$ 1, ..., n. The CGEE estimate of β and the estimate of a_i are used to estimate the mean $E(Y|i, X =$ x, Z :

$$
\hat{E}(Y|i, X = x, Z) = \eta^{-1} \{ \hat{a}_i + h(X = x, Z; \hat{\beta}) \}.
$$

For each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z and all estimated values of a_i) to produce estimates

$$
\hat{\theta}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \hat{E}(Y|i, X = x, Z_i)/N,
$$

where $N = \sum_{i=1}^{n} n_i$. The variance for $\hat{\theta}(x)$ is obtained by the sandwich formula.

Value

An object of class std_glm. This is basically a list with components estimates and covariance estimates in res. Results for transformations, contrasts, references are stored in res_contrasts. Obtain numeric results in a data frame with the [tidy](#page-0-0) function.

Note

The variance calculation performed by standardize_gee does not condition on the observed covariates $\bar{Z} = (Z_{11}, ..., Z_{nn_i})$. To see how this matters, note that

$$
var\{\hat{\theta}(x)\} = E[var\{\hat{\theta}(x)|\bar{Z}\}] + var[E\{\hat{\theta}(x)|\bar{Z}\}].
$$

The usual parameter β in a generalized linear model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z}) = \beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(x)$ depends on \overline{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(x)|\bar{Z}\}]$ is not 0, unless one conditions on \bar{Z} .

Author(s)

Arvid Sjölander.

References

Goetgeluk S. and Vansteelandt S. (2008). Conditional generalized estimating equations for the analysis of clustered and longitudinal data. *Biometrics* 64(3), 772-780.

Martin R.S. (2017). Estimation of average marginal effects in multiplicative unobserved effects panel models. *Economics Letters* 160, 16-19.

Sjölander A. (2019). Estimation of marginal causal effects in the presence of confounding by cluster. *Biostatistics* doi: 10.1093/biostatistics/kxz054

Examples

```
require(drgee)
```

```
set.seed(4)
n < -300ni <- 2
id \leftarrow rep(1:n, each = ni)ai <- rep(rnorm(n), each = ni)
Z \le rnorm(n * ni)
X \leq -rnorm(n * ni, mean = ai + Z)Y \le - rnorm(n * ni, mean = ai + X + Z + 0.1 * X^2)
dd <- data.frame(id, Z, X, Y)
fit.std <- standardize_gee(
  formula = Y \sim X + Z + I(X^2),
 link = "identity",
  data = dd,values = list(X = seq(-3, 3, 0.5)),clusterid = "id"
\lambdaprint(fit.std)
plot(fit.std)
```
standardize_glm *Get regression standardized estimates from a glm*

Description

Get regression standardized estimates from a glm

Usage

```
standardize_glm(
  formula,
 data,
  values,
  clusterid,
 matched_density_cases,
 matched_density_controls,
 matching_variable,
 p_population,
  case_control = FALSE,
 ci<sup>= 0.95</sup>,
  ci_type = "plain",contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
)
```


Arguments

Details

standardize_glm performs regression standardization in generalized linear models, at specified values of the exposure, over the sample covariate distribution. Let Y , X , and Z be the outcome, the exposure, and a vector of covariates, respectively. standardize_glm uses a fitted generalized linear model to estimate the standardized mean $\theta(x) = E\{E(Y|X=x, Z)\}\)$, where x is a specific value of X , and the outer expectation is over the marginal distribution of Z .

Value

An object of class std_glm. This is basically a list with components estimates and covariance estimates in res. Results for transformations, contrasts, references are stored in res_contrasts. Obtain numeric results in a data frame with the [tidy](#page-0-0) function.

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* 31(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* 33(9), 847-858.

```
# basic example
# needs to correctly specify the outcome model and no unmeasered confounders
# (+ standard causal assunmptions)
set.seed(6)
n < -100Z \leftarrow \text{norm}(n)X \leq -rnorm(n, mean = Z)Y \le - rbinom(n, 1, prob = (1 + \exp(X + Z))^(-1))
dd \leftarrow data . frame(Z, X, Y)x <- standardize_glm(
  formula = Y \sim X * Z,
  family = "binomial",
  data = dd,values = list(X = 0:1),
  contrasts = c("difference", "ratio"),
  reference = 0\lambdax
# different transformations of causal effects
# example from Sjölander (2016) with case-control data
# here the matching variable needs to be passed as an argument
singapore <- AF::singapore
Mi <- singapore$Age
m < - mean(Mi)
s \leftarrow sd(Mi)d \leq -5standardize_glm(
  formula = Oesophagealcancer \sim (Everhotbev + Age + Dial + Samsu + Cigs)^22,
  family = binomial, data = singapore,
  values = list(Everhotbev = 0:1), clusterid = "Set",
  case_control = TRUE,
  matched\_density\_cases = function(x) \text{ donorm}(x, m, s),matched_density_controls = function(x) dnorm(x, m - d, s),
  matching_variable = Mi,
  p_population = 19.3 / 100000
)
# multiple exposures
set.seed(7)
n < - 100
```

```
Z \leftarrow \text{norm}(n)X1 \leq - \text{norm}(n, \text{mean} = Z)X2 \leq -rnorm(n)Y \le - rbinom(n, 1, prob = (1 + \exp(X1 + X2 + Z))^(-1))
dd <- data.frame(Z, X1, X2, Y)
x <- standardize_glm(
  formula = Y ~ X1 + X2 + Z,
  family = "binomial",
  data = dd, values = list(X1 = 0:1, X2 = 0:1),
  contrasts = c("difference", "ratio"),
  reference = c(X1 = 0, X2 = 0)\mathcal{L}x
tidy(x)
# continuous exposure
set.seed(2)
n <- 100
Z \leftarrow \text{norm}(n)X \leq -rnorm(n, mean = Z)Y \le - rnorm(n, mean = X + Z + 0.1 \times X^2)
dd <- data.frame(Z, X, Y)
x <- standardize_glm(
  formula = Y \sim X * Z,
  family = "gaussian",
  data = dd,values = list(X = seq(-1, 1, 0.1)))
# plot standardized mean as a function of x
plot(x)
# plot standardized mean - standardized mean at x = 0 as a function of x
plot(x, contrast = "difference", reference = 0)
```
standardize_glm_dr *Get regression standardized doubly-robust estimates from a glm*

Description

Get regression standardized doubly-robust estimates from a glm

Usage

```
standardize_glm_dr(
  formula_outcome,
  formula_exposure,
 data,
  values,
  ci level = 0.95,
```

```
ci_type = "plain",
 contrasts = NULL,
  family_outcome = "gaussian",
  family_exposure = "binomial",
  reference = NULL,
  transforms = NULL
)
```
Arguments

Details

standardize_glm_dr performs regression standardization in generalized linear models, see e.g., documentation for standardize_glm_dr. Specifically, this version uses a doubly robust estimator for standardization, meaning inference is valid when either the outcome regression or the exposure model is correctly specified and there is no unmeasured confounding.

Value

An object of class std_glm. This is basically a list with components estimates and covariance estimates in res. Results for transformations, contrasts, references are stored in res_contrasts. Obtain numeric results in a data frame with the [tidy](#page-0-0) function.

References

Gabriel E.E., Sachs, M.C., Martinussen T., Waernbaum I., Goetghebeur E., Vansteelandt S., Sjölander A. (2024), Inverse probability of treatment weighting with generalized linear outcome models for doubly robust estimation. *Statistics in Medicine*, 43(3):534–547.

Examples

```
# doubly robust estimator
# needs to correctly specify either the outcome model or the exposure model
# for confounding
# NOTE: only works with binary exposures
data <- AF::clslowbwt
x <- standardize_glm_dr(
  formula_outcome = bwt ~ smoker * (race + age + lwt) + I(age^2) + I(lwt^2),
  formula_exposure = smoker \sim race \star age \star lwt + I(age^2) + I(lwt^2),
  family_outcome = "gaussian"
  family_exposure = "binomial",
  data = data,
  values = list(smoker = c(\emptyset, 1)), contrasts = "difference", reference = \emptyset)
set.seed(6)
n < -100Z \leftarrow \text{norm}(n)X \le - rbinom(n, 1, prob = (1 + \exp(Z))^(-1))
Y \le - rbinom(n, 1, prob = (1 + \exp(X + Z))^(-1))
dd <- data.frame(Z, X, Y)
x <- standardize_glm_dr(
  formula_outcome = Y \sim X \times Z, formula_exposure = X \sim Z,
  family_outcome = "binomial",
  data = dd,
  values = list(X = 0:1), reference = 0,
  contrasts = c("difference"), transforms = c("odds"))
```
standardize_level *Get standardized estimates using the g-formula with and separate models for each exposure level in the data*

Description

Get standardized estimates using the g-formula with and separate models for each exposure level in the data

Usage

```
standardize_level(
 fitter_list,
 arguments,
 predict_fun_list,
 data,
 values,
 B = NULL,ci\_level = 0.95,
 contrasts = NULL,
 reference = NULL,
 seed = NULL,
 times = NULL,
 transforms = NULL,
 progressbar = TRUE
)
```
Arguments

Details

See standardize. The difference is here that different models can be fitted for each value of x in values.

Value

An object of class std_custom. This is a list with components estimates and fit for the outcome model.

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* 31(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* 33(9), 847-858.

```
require(survival)
prob_predict.coxph <- function(object, newdata, times) {
  fit.detail <- suppressWarnings(basehaz(object))
 cum.haz <- fit.detail$hazard[sapply(times, function(x) max(which(fit.detail$time <= x)))]
  predX <- predict(object = object, newdata = newdata, type = "risk")
  res \leq matrix(NA, ncol = length(times), nrow = length(predX))
  for (ti in seq_len(length(times))) {
    res[, ti] <- exp(-predX * cum.haz[ti])
  }
  res
}
set.seed(68)
n < -500Z \leftarrow \text{norm}(n)X \leq - rbinom(n, 1, prob = 0.5)
T <- rexp(n, rate = exp(X + Z + X * Z)) # survival time
C \leq rexp(n, rate = exp(X + Z + X \star Z)) # censoring time
U \le - pmin(T, C) # time at risk
D \le - as.numeric(T < C) # event indicator
dd <- data.frame(Z, X, U, D)
x <- standardize_level(
  fitter_list = list("coxph", "coxph"),
  arguments = list(
    list(
      formula = Surv(U, D) ~ X + Z + X * Z,
      method = "breslow",
     x = TRUE,
      y = TRUE),
```

```
list(
      formula = Surv(U, D) ~ X,
     method = "breslow",
     x = TRUE,y = TRUE)
 ),
 predict_fun_list = list(prob_predict.coxph, prob_predict.coxph),
 data = dd,
 times = seq(1, 5, 0.1),values = list(X = c(0, 1)),B = 100,reference = 0,
 contrasts = "difference"
\mathcal{L}print(x)
```
standardize_parfrailty

```
Regression standardization in shared frailty gamma-Weibull models
```
Description

standardize_parfrailty performs regression standardization in shared frailty gamma-Weibull models, at specified values of the exposure, over the sample covariate distribution. Let T , X , and Z be the survival outcome, the exposure, and a vector of covariates, respectively. standardize_parfrailty fits a parametric frailty model to estimate the standardized survival function $\theta(t, x) = E\{S(t|X =$ x, Z }, where t is a specific value of T, x is a specific value of X, and the expectation is over the marginal distribution of Z.

Usage

```
standardize_parfrailty(
  formula,
  data,
  values,
  times,
  clusterid,
  ci\_level = 0.95,
  ci_type = "plain",contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
)
```


Arguments

Details

standardize_parfrailty fits a shared frailty gamma-Weibull model

$$
\lambda(t_{ij}|X_{ij}, Z_{ij}) = \lambda(t_{ij}; \alpha, \eta) U_i exp\{h(X_{ij}, Z_{ij}; \beta)\}
$$

, with parameterization as described in the help section for [parfrailty.](#page-2-1) Integrating out the gamma frailty gives the survival function

$$
S(t|X, Z) = [1 + \phi \Lambda_0(t; \alpha, \eta) \exp\{h(X, Z; \beta)\}]^{-1/\phi},
$$

where $\Lambda_0(t; \alpha, \eta)$ is the cumulative baseline hazard

 $(t/\alpha)^{\eta}$.

The ML estimates of $(\alpha, \eta, \phi, \beta)$ are used to obtain estimates of the survival function $S(t|X =$ x, Z :

 $\hat{S}(t|X=x,Z)=[1+\hat{\phi}\Lambda_{0}(t;\hat{\alpha},\hat{\eta})\exp\{h(X,Z;\hat{\beta})\}]^{-1/\hat{\phi}}.$

For each t in the t argument and for each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z) to produce estimates

$$
\hat{\theta}(t,x) = \sum_{i=1}^{n} \hat{S}(t|X=x, Z_i)/n.
$$

The variance for $\hat{\theta}(t, x)$ is obtained by the sandwich formula.

Value

An object of class std_surv. This is basically a list with components estimates and covariance estimates in res Results for transformations, contrasts, references are stored in res_contrasts. The output contains estimates for contrasts and confidence intervals for all combinations of transforms and reference levels. Obtain numeric results in a data frame with the [tidy](#page-0-0) function.

Note

Standardized survival functions are sometimes referred to as (direct) adjusted survival functions in the literature.

standardize_coxph/standardize_parfrailty does not currently handle time-varying exposures or covariates.

standardize_coxph/standardize_parfrailty internally loops over all values in the t argument. Therefore, the function will usually be considerably faster if length(t) is small.

The variance calculation performed by standardize_coxph does not condition on the observed covariates $\bar{Z} = (Z_1, ..., Z_n)$. To see how this matters, note that

$$
var\{\hat{\theta}(t,x)\} = E[var\{\hat{\theta}(t,x)|\bar{Z}\}] + var[E\{\hat{\theta}(t,x)|\bar{Z}\}].
$$

The usual parameter β in a Cox proportional hazards model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z}) = \beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(t, x)$ depends on \overline{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(t,x)|\bar{Z}\}]$ is not 0, unless one conditions on \overline{Z} . The variance calculation by Gail and Byar (1986) ignores this term, and thus effectively conditions on \overline{Z} .

Author(s)

Arvid Sjölander

References

Chang I.M., Gelman G., Pagano M. (1982). Corrected group prognostic curves and summary statistics. *Journal of Chronic Diseases* 35, 669-674.

Dahlqwist E., Pawitan Y., Sjölander A. (2019). Regression standardization and attributable fraction estimation with between-within frailty models for clustered survival data. *Statistical Methods in Medical Research* 28(2), 462-485.

Gail M.H. and Byar D.P. (1986). Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect. *Biometrical Journal* 28(5), 587-599.

summary.parfrailty 29

Makuch R.W. (1982). Adjusted survival curve estimation using covariates. *Journal of Chronic Diseases* 35, 437-443.

```
require(survival)
# simulate data
set.seed(6)
n <- 300
m \leq -3alpha <-1.5eta <- 1
phi <- 0.5
beta <-1id \leftarrow rep(1:n, each = m)U \leftarrow \text{rep}(\text{rgamma}(n, \text{ shape} = 1 / \text{phi}, \text{scale} = \text{phi}), \text{each} = \text{m})X \leq -rnorm(n * m)# reparameterize scale as in rweibull function
weibull.scale <- alpha / (U * exp(beta * X))^(1 / eta)T <- rweibull(n \times m, shape = eta, scale = weibull.scale)
# right censoring
C <- runif(n * m, 0, 10)
D \le - as.numeric(T \le C)
T \leftarrow pmin(T, C)# strong left-truncation
L \le runif(n * m, 0, 2)
incl \leq T > L
incl \leq -</math> ave(x = incl, id, FUN = sum) == mdd <- data.frame(L, T, D, X, id)
dd <- dd[incl, ]
fit.std <- standardize_parfrailty(
  formula = Surv(L, T, D) \sim X,
  data = dd,values = list(X = seq(-1, 1, 0.5)),times = 1:5,
  clusterid = "id"
)
print(fit.std)
plot(fit.std)
```
This is a summary method for class "parfrailty".

Usage

```
## S3 method for class 'parfrailty'
summary(
  object,
  ci_type = "plain",
  ci<sup>= 0.95</sup>,
  digits = max(3L, getOption("digits") - 3L),
  ...
\mathcal{L}
```
Arguments

Value

An object of class "summary.parfrailty", which is a list that contains relevant summary statistics about the fitted model

Author(s)

Arvid Sjölander and Elisabeth Dahlqwist.

See Also

[parfrailty](#page-2-1)

Examples

See documentation for parfrailty

Tidy summarizes information about the components of the standardized regression fit.

Usage

S3 method for class 'std_glm' tidy(x, ...)

Arguments

Value

A data.frame

```
set.seed(6)
n <- 100
Z \leftarrow \text{norm}(n)X \leq -rnorm(n, mean = Z)Y \le - rbinom(n, 1, prob = (1 + \exp(X + Z))^(-1))
dd <- data.frame(Z, X, Y)
x <- standardize_glm(
  formula = Y \sim X * Z,
  family = "binomial",
  data = dd,values = list(X = 0:1),
  contrasts = c("difference", "ratio"),
  reference = 0
\overline{\phantom{a}}tidy(x)
```


Tidy summarizes information about the components of the standardized model fit.

Usage

S3 method for class 'std_surv' tidy (x, \ldots)

Arguments

Value

A data.frame

```
require(survival)
set.seed(8)
n < -300Z \leftarrow \text{norm}(n)X \leq -rnorm(n, mean = Z)time \leq rexp(n, rate = exp(X + Z + X * Z)) # survival time
C <- r \exp(n, r \text{ate} = \exp(X + Z + X * Z)) # censoring time
U <- pmin(time, C) # time at risk
D \le - as.numeric(time \le C) # event indicator
dd <- data.frame(Z, X, U, D)
x <- standardize_coxph(
  formula = Surv(U, D) ~ X + Z + X * Z,
  data = dd, values = list(X = seq(-1, 1, 0.5)), times = c(2,3,4)\mathcal{L}
```

```
tidy(x)
```
Index

coxph, *[3](#page-2-0)*, *[8](#page-7-0)* coxph.detail, *[8](#page-7-0)* glm, *[8](#page-7-0)* legend, *[6](#page-5-0)* parfrailty, [3,](#page-2-0) *[27](#page-26-0)*, *[30](#page-29-0)* plot.std_glm, [5](#page-4-0) plot.std_surv, [6](#page-5-0) print.std_custom *(*print.std_surv*)*, [7](#page-6-0) print.std_glm *(*print.std_surv*)*, [7](#page-6-0) print.std_surv, [7](#page-6-0) print.summary.parfrailty, [7](#page-6-0) sandwich, [8](#page-7-0) standardize, [9](#page-8-0) standardize_coxph, [11](#page-10-0) standardize_gee, [15](#page-14-0) standardize_glm, [18](#page-17-0) standardize_glm_dr, [21](#page-20-0) standardize_level, [23](#page-22-0) standardize_parfrailty, [26](#page-25-0) stdReg2 *(*stdReg2-package*)*, [2](#page-1-0) stdReg2-package, [2](#page-1-0) summary.parfrailty, [29](#page-28-0) survfit, *[8](#page-7-0)* tidy, *[13](#page-12-0)*, *[17](#page-16-0)*, *[19](#page-18-0)*, *[23](#page-22-0)*, *[28](#page-27-0)* tidy.std_glm, [31](#page-30-0)

tidy.std_surv, [32](#page-31-0)