## ----message=FALSE, include=FALSE, results="hide", setup, echo=FALSE---------- knitr::opts_chunk$set( echo = TRUE, eval = TRUE, message = FALSE, warning = FALSE, collapse = TRUE, tidy = FALSE, cache = FALSE, dev = "png", comment = "#>" ) library(rbioapi) rba_options(timeout = 30, skip_error = TRUE) ## ----rba_reactome_analysis---------------------------------------------------- ## 1 We create a simple vector with our genes genes <- c( "p53", "BRCA1", "cdk2", "Q99835", "CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1", "RHOA", "RHOB", "MSL1", "PHF21A", "INSR", "JADE2", "P2RX7", "CCDC101", "PPM1B", "ANAPC16", "CDH8", "HSPA1L", "CUL2", "ZNF302", "CUX1", "CYTH2", "SEC22C", "EIF4E3", "ROBO2", "CXXC1", "LINC01314", "ATP5F1" ) ## 2 We call reactome analysis with the default parameters analyzed <- rba_reactome_analysis( input = genes, projection = TRUE, p_value = 0.01 ) ## 3 As always, we use str() to inspect the resutls str(analyzed, 1) ## 4 Note that in the summary element: (analyzed$summary) ### 4.a because we supplied a simple vector, the analysis type was: over-representation ### 4.b You need the token for other rba_reactome_analysis_* functions ## 5 Analsis results are in the pathways data frame: ## ----analysis_results, echo=FALSE--------------------------------------------- if (utils::hasName(analyzed, "pathways") && is.data.frame(analyzed$pathways)) { DT::datatable( data = jsonlite::flatten(analyzed$pathways), options = list( scrollX = TRUE, paging = TRUE, fixedHeader = TRUE, keys = TRUE, pageLength = 5 ) ) } else { print("Vignette building failed. It is probably because the web service was down during the building.") } ## ----rba_reactome_analysis_pdf/download, eval=FALSE--------------------------- # # download a full pdf report # rba_reactome_analysis_pdf( # token = analyzed$summary$token, # species = 9606 # ) # # # download the result in compressed json.gz format # rba_reactome_analysis_download( # token = analyzed$summary$token, # request = "results", # save_to = "reactome_results.json" # ) ## ----rba_reactome_analysis_import, eval=FALSE--------------------------------- # re_uploaded <- rba_reactome_analysis_import(input = "reactome_results.json") ## ----rba_reactome_query_ex1--------------------------------------------------- ## 1 query a pathway Entry pathway <- rba_reactome_query( ids = "R-HSA-109581", enhanced = TRUE ) ## 2 As always we use str() to inspect the output's structure str(pathway, 2) ## 3 You can compare it with the webpage of R-HSA-202939 entry: # https://reactome.org/content/detail/R-HSA-202939 ## ----rba_reactome_query_ex2--------------------------------------------------- ## 1 query a protein Entry protein <- rba_reactome_query( ids = 66247, enhanced = TRUE ) ## 2 As always we use str() to inspect the output's structure str(protein, 1) ## 3 You can compare it with the webpage of R-HSA-202939 entry: # https://reactome.org/content/detail/R-HSA-202939 ## ----rba_reactome_xref-------------------------------------------------------- ## 1 We Supply HGNC ID to find what is the corresponding database ID in Reactome xref_protein <- rba_reactome_xref("CD40") ## 2 As always use str() to inspect the output's structure str(xref_protein, 1) ## ----xref_mapping------------------------------------------------------------- ## 1 Again, consider CD40 protein: xref_mapping <- rba_reactome_mapping( id = "CD40", resource = "hgnc", map_to = "pathways" ) ## ----xref_mapping_df, echo=FALSE---------------------------------------------- if (is.data.frame(xref_mapping)) { DT::datatable( data = xref_mapping, options = list( scrollX = TRUE, paging = TRUE, fixedHeader = TRUE, keys = TRUE, pageLength = 10 ) ) } else { print("Vignette building failed. It is probably because the web service was down during the building.") } ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()