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A vignette for movieROC package:
Visualizing the Decision Rules Underlying

Binary Classification

Sonia Pérez-Fernández, Pablo Martínez-Camblor and Norberto Corral-Blanco

Abstract The R package movieROC provides visualization tools for understanding the ability of
markers to identify a characteristic of interest, complementing the ROC curve representation. This
tool accommodates multivariate scenarios and generalizations involving different decision rules. The
main contribution of this package is the visualization of the underlying classification regions, with
the associated gain in interpretability. Adding the time (videos) as a third dimension, this package
facilitates the visualization of binary classification in multivariate problems.

This vignette offers a tutorial introduction to the package. It explains the mathematical formalism
underlying the implemented methods and gives the main structure of the HCC dataset.

1 Mathematical notation

Continuous markers are surrogate measures for the characteristic under study, or predictors of a
potential subsequent event. They are measured in subjects, some of them with the characteristic
(positive), and some without it (negative). A usual practice when the binary classification accuracy
of a marker is of interest involves the representation of the Receiver Operating Characteristic (ROC)
curve , a plot reflecting the trade-off between the sensitivity and the complementary of the specificity.

Mathematically, let ξ and χ be the random variables modeling the marker values in the positive
and the negative population, respectively, with Fξ(·) and Fχ(·) their associated cumulative distribution
functions (CDFs).

1.1 Regular ROC curve

Assuming that the expected value of the marker is larger in the positive than in the negative population,
the standard ROC curve is based on classification subsets of the form s = (c, ∞), where c is the so-
called cut-off value or threshold in the support of the marker X, S(X). One subject is classified as a
positive if its marker value is within this region, and as a negative otherwise. This type of subsets has
two important advantages: first, their interpretability is clear; second, for each specificity 1− t ∈ [0, 1],
the corresponding st = (ct, ∞) is univocally defined by ct = F−1

χ (1− t).
The regular, right-sided or standard ROC curve may be seen as the graph depending on cut-off

values ct ∈ S(X) ⊆ R, or as a functionR(·) of the complementary of the specificity, t ∈ [0, 1]. That is,{(
1− Sp(ct), Se(ct)

)
with ct ∈ S(X)

}
=
{(

t,R(t)
)

with t ∈ [0, 1]
}

.

In other words, the standard ROC curve associated with the marker X considers classification
subsets of the form st = (ct, ∞). As a result, it may be represented by the following equivalences:{(

IP(χ ∈ st), IP(ξ ∈ st)
)

: st = (ct, ∞) , ct ∈ S(X)
}
=
{(

1− Fχ(ct), 1− Fξ(ct)
)

: ct ∈ S(X)
}

=
{(

t,Rr(t)
)

with t ∈ [0, 1]
}
=
{(

t, 1− Fξ

(
1− F−1

χ (1− t)
))

: t ∈ [0, 1]
}

.

The first expression, in terms of the eligible classification subsets in the standard scenario, is not
commonly considered but reflected here with the aim of focusing on the underlying decision rules.
For each fixed specificity 1− t ∈ [0, 1], also called true-negative rate , there exists only one subset
st = (ct, ∞) reporting such specificity and thus a particular sensitivity, so-called true-positive rate .
The underlying subsets are thus univocally determined, resulting in a simple correspondence between
each point of the ROC curve

(
t,Rr(t)

)
and its associated classification region st ∈ Ir(t), where

Ir(t) =
{

st = (ct, ∞) : ct ∈ S(X) , IP(χ ∈ st) = t
}

is the right-sided family of eligible classification subsets .

https://CRAN.R-project.org/package=movieROC
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If the standard assumption is not fulfilled, but the opposite direction is plausible (i.e. higher values
of the marker are associated with a higher probability of being a negative), the ROC curve would be
defined by the left-sided family of eligible classification subsets (Martínez-Camblor et al., 2017):

Il(t) =
{

st = (∞, ct] : ct ∈ S(X) , IP(χ ∈ st) = t
}

,

resulting inRl(t) = Fξ

(
F−1

χ (t)
)
, t ∈ [0, 1]. The decision rules are also univocally defined in this case,

being st = (−∞, ct] = (−∞, F−1
χ (t)] the classification subset which reports a false-positive rate t.

Information related to the ROC curve is frequently summarized by numerical indices such as the
AUC (Hanley and McNeil, 1982) and the Youden index (Youden, 1950). The classification rule derived
from the Youden index, stY where tY = arg maxt∈[0,1]

{
R(t)− t

}
, is commonly employed when there

is no preference or upper limit for misclassification errors in positive and negative subjects.

Estimation In practice, let (ξ1, ξ2, . . . , ξn) and (χ1, χ2, . . . , χm) be two independent and identically
distributed (i.i.d.) samples from the positive and the negative population, respectively.

The most direct estimator for the ROC curve is the empirical estimator (Hsieh and Turnbull, 1996),
which directly substitutes the empirical CDFs, F̂ξ(·) and F̂χ(·), for their theoretical counterparts, Fξ(·)
and Fχ(·), resulting in:

R̂r(t) = 1− F̂ξ(1− F̂−1
χ (1− t)),

where F̂ξ(x) =
# (ξi ≤ x)

n
and F̂−1

χ (p) = min
{

x ∈ S(X) such that F̂χ(x) =
#
(
χj ≤ x

)
m

≥ p
}

.

This estimation method is implemented in the movieROC package, accompanied by its corresponding
summary indices: the empirical AUC and the empirical Youden index (see code in Section 3.1 and
Figure 3 [right, black line]).

Alternatively, semiparametric approaches based on kernel density estimation for the involved dis-
tributions may be considered (Zou et al., 1997). The plot_densityROC() function provides plots for
both right- and left-sided ROC curved estimated by this method (see Figures 3 [left and middle] and
Figure 4).

Binormal scenario Besides the empirical estimation addressed above, a special parametric estimate
should be mentioned: the binormal one. This assumes that the marker follows a gaussian distribution
in both populations; mathematically, ξ ∼ N (µξ , σξ) and χ ∼ N (µχ, σχ), where µ and σ are the mean
and standard deviation, respectively, usually unknown. Therefore, the binormal right-sided ROC
curve is

RNr (t) = 1− Fξ

(
1− F−1

χ (1− t)
)
= Φ

(
a + b Φ−1(t)

)
, t ∈ [0, 1],

where a =
(
µξ − µχ

)
/σξ and b = σχ/σξ measure the difference in means and variances, respectively,

Φ(·) is the cumulative distribution function of a standard normal, and Φ−1(·) its quantile function.
By definition, binormal right-sided ROC curve crosses the diagonal if and only if variances differ
(b 6= 1). Parametric approaches propose plug-in estimators by estimating the unknown parameters
while using the known distributions.

1.2 Generalizations for univariate markers

When differences in marker distribution between the two populations are only in location but not in
shape, then the classification is direct by using these decision rules. However, when this is not the
case, the standard ROC curve may cross the main diagonal, resulting in an improper curve (Dorfman
et al., 1997). This may reflect that there exists a non-monotone relationship between the marker and
the response with a potential classification use. In this case, we have to define classification subsets
different from standard st = (ct, ∞), and the use of the marker becomes more complex.

1.2.1 Generalized ROC curve: the gROC curve

With the aim of accommodating scenarios where both higher and lower values of the marker are
associated with a higher risk of having the characteristic, Martínez-Camblor et al. (2017) proposed the
so-called generalized ROC (gROC) curve . This curve tracks the highest sensitivity for every specificity
in the unit interval resulting from subsets of the form st = (−∞, xL

t ] ∪ (xU
t , ∞) with xL

t ≤ xU
t ∈ S(X).

https://CRAN.R-project.org/package=movieROC
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The generalized ROC (gROC) curve may be defined as any of the following equivalences:

Rg(t) = sup
st∈Ig(t)

IP(ξ ∈ st) = sup
xL

t ≤xU
t ∈S(X):

Fχ(xU
t )−Fχ(xL

t )=1−t

{
Fξ(xL

t ) + 1− Fξ(xU
t )
}

= sup
γ∈[0,1]

{
Fξ(F−1

χ (γt)) + 1− Fξ(F−1
χ (1− [1− γ]t))

}
= sup

γ∈[0,1]

{
Rr(γt) + 1−Rr(1− [1− γ]t)

}
, t ∈ [0, 1]

where Ig(t) =
{

st = (−∞, xL
t ] ∪ (xU

t , ∞) : xL
t ≤ xU

t ∈ S(X) , IP(χ ∈ st) = t
}

is the both-sided family
of eligible classification subsets .

The two latest equivalences are based on the following redefinition of eligible xL
t and xU

t in terms of t:

xL
t = F−1

χ (γt) and xU
t = F−1

χ (1− [1− γ]t) with γ ∈ [0, 1].

It becomes crucial to consider the supremum in the definition of the gROC curve because the
decision rule for each t ∈ [0, 1] is not univocally defined: there exist infinite pairs xL

t ≤ xU
t reporting a

specificity 1− t (i.e. Ig(t) is uncountably infinite). Among those, only the one reporting the maximum
sensitivity is considered.

Despite final decisions are based on the underlying classification subsets, they are typically not
represented. This omission is not considered a shortcoming in standard cases, as for each specificity
1− t ∈ [0, 1], both the associated sensitivity and the subset st = (ct, ∞) are univocally defined by
Se(ct) = IP(ξ ∈ st) = 1− Fξ(ct) and ct = 1− F−1

χ (1− t), respectively. There is only one classification
rule of this form resulting in a fixed specificity 1− t (same consideration without loss of generality
if we fix a sensitivity). Nevertheless, if the gROC curve is considered, given a particular specificity
1− t ∈ [0, 1], there are infinite subsets in the form st = (−∞, xL

t ]∪ (xU
t , ∞) satisfying that IP(χ ∈ st) = t.

This loss of univocity underlines the importance of reporting (numerically and/or graphically) the
decision rules actually proposed for doing the classification. This gap is covered in the presented
package. Particularly, the implemented gROC() function estimates the gROC curve, both in the
studied direction (side = "both") and in the opposite, that is, when classification subsets of the form
st = (xL

t , xU
t ] are considered (side = "both2"). This last one is defined as

Rg′ (t) = sup
st∈Ig′ (t)

IP(ξ ∈ st) = sup
xL

t ≤xU
t ∈S(X):

Fχ(xU
t )−Fχ(xL

t )=t

{
Fξ(xU

t )− Fξ(xL
t )
}

where Ig′ (t) =
{

st = (xL
t , xU

t ] : xL
t ≤ xU

t ∈ S(X) , IP(χ ∈ st) = t
}

.

Self-contained subsets condition By considering this generalization, another property of the classi-
fication subsets may be lost: the classification regions may not be self-contained over the increase in
false-positive rate. It may happen that a subject is classified as a positive for a particular FPR t1, but
as a negative for a higher FPR t2. Therefore, it is natural to establish the following restriction on the
classification subsets:

(C) Let t1, t2 ∈ [0, 1] with t1 ≤ t2 be the corresponding eligible subsets such thatRg(t1) = IP(ξ ∈ st1 )
andRg(t2) = IP(ξ ∈ st2 ), then st1 ⊆ st2 .

This condition means that, any subject classified as a positive for a fixed specificity (or sensitivity) will
be also classified as a positive for any classification subset with lower specificity (higher sensitivity).
Pérez-Fernández et al. (2021) proposed an algorithm to estimate the gROC curve under restriction
(C), included in the gROC() function of the presented R package. It should be noted that this method
involves a quite exhaustive search of the self-contained classification subsets leading to the optimal
gROC curve estimate. It benefits from the allShortestPaths() function in the e1071 package (Meyer
et al., 2023), which implements the Floyd’s algorithm (Floyd, 1962) for finding shortest paths in a
directed weighted graph. However, even selecting different false-positive rates t0 to start from, it may
not result in the optimal achievable estimate under restriction (C). Input parameters restric, optim,
t0 and t0max for gROC() function serve to control this search.

Binormal scenario To accommodate those heteroscedastic binormal scenarios where ξ ∼ N (µξ , σξ)
and χ ∼ N (µχ, σχ) with different σξ 6= σχ, the gROC curve is more appropriate. Assuming that

https://CRAN.R-project.org/package=e1071
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σξ ≥ σχ, the binormal gROC curve (Martínez-Camblor and Pardo-Fernández, 2019) is

RNg (t) = sup
γ∈[0,1]

{
Φ
(

a + b Φ−1(γt)
)
+ 1−Φ

(
a + b Φ−1(1− [1− γ]t

))}
, t ∈ [0, 1],

where a =
(
µξ − µχ

)
/σξ and b = σχ/σξ measure the difference in means and variances, respectively.

By definition,RNg (0) = 0 andRNg (1) = 1, while for each t ∈ [0, 1], γt ∈ [0, 1] reporting the supremum
of the sensitivity is the solution to

γt =
1
t

Φ
(

2ab
b2 − 1

−Φ−1(1− [1− γt]t
))

.

The cut-off values xL
t and xU

t defining the classification subsets underlying the binormal gROC curve,

st = (−∞, xL
t ] ∪ (xU

t , ∞), are symmetrical about the central value µ∗ =
b2µξ − µχ

b2 − 1
for every t ∈ (0, 1).

Consequently, the binormal gROC curve fulfills the aforementioned restriction (C).
Assuming the binormal model, the gROC_param() function estimates the binormal standard ROC and
gROC curve,RNr (·) andRNg (·), respectively, by considering the sample mean estimates (ξn, χm), and
standard deviation estimates (ŝχ, ŝξ ).

1.2.2 Efficient ROC curve: the eROC curve

By keeping classification subsets of the form st = (ct, ∞), an alternative approach can be explored:
transforming the marker through a suitable function h(·) to enhance its accuracy. The concept is
that the right-sided ROC curve of the transformed marker h(X) effectively captures the differences
between populations better than original marker X. The ROC curve resulting from a transformation
h(·) is defined byRh(t) = 1− Fh(ξ)

(
1− F−1

h(χ)(1− t)
)

for t ∈ [0, 1]. Kauppi (2016) denoted by efficient
ROC curve the one resulting from the optimal functional transformation in the ROC sense among all
the possible ones. Recall that the standard ROC curve is invariant under monotone transformations of
the marker, that is, if h(·) is a monotone increasing function,Rh(·) = Rr(·), while if it is decreasing,
Rh(·) = Rl(·).

Here we revisit how to improve the binary classification performance of univariate markers via
functional transformations and its impact on the final classification regions. With this goal, the hROC()
function and others related (plot_regions() and plot_funregions()) were implemented. Depending
on the monotonicity of the function h(·), the resulting classification subsets for X have different shapes,
despite the rules for h(X) are of the form st = (ct, ∞).

Henceforth, the transformation h∗(·) reporting the dominant ROC curve compared to the ROC
curve from any other transformation h(·) (i.e. Rh∗ (·) ≥ Rh(·)) will be referred to as optimal transfor-
mation (in the ROC sense). With the purpose of estimating such optimal transformation, two different
semiparametric procedures are reviewed:

1.- Martínez-Camblor et al. (2019) exploited the result proved by McIntosh and Pepe (2002), sug-
gesting to estimate the logit of the risk function by logistic regression. That is,

h∗(·) = logit {IP(D = 1 | ·)}

where D is the random variable modeling the population the subject belongs to (D = 1 if
the subject has the characteristic of interest, D = 0 otherwise). This function is a monotone
increasing transformation of the likelihood ratio function, L(·) = fξ(·)/ fχ(·), which is the
optimal one in the ROC sense by the Neyman-Pearson lemma. To clarify notation, fξ(·) and
fχ(·) are the density functions for the positive and the negative population, respectively. Namely,

logit
{

IP(D = 1 |X)
}
= logit

{
L(X) · q

1 + L(X) · q

}
where q =

IP(D = 1)
IP(D = 0)

.

By the proposed R tool, the user can define any transformation h(·) for the right-hand side of
the logistic regression model to be fitted, logit

{
IP(D = 1 | x)

}
= h(x), to estimate the optimal

transformation. Particularly, by fixing type = "lrm" as an input parameter for the hROC()
function, the user may define any function h(·) by the input formula.lrm. The user can make
use of special transformation functions such as pol() (polynomial) or rcs() (restricted cubic
splines) by loading the library rms.

2.- Arguing as in Martínez-Camblor et al. (2021b) for univariate markers instead of multivariate,

https://CRAN.R-project.org/package=rms
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the optimal transformation in the ROC sense is equivalent to

h∗(·) =
fξ(·)

fξ(·) + fχ(·)
.

The sum in the denominator is applied to avoid zeros. In order to estimate h∗(·), different
estimation procedures for the density functions separately may be used, such as kernel density
estimator. The main handicap of the latter is that it is based on a bandwidth chosen by the user.
By our package, by fixing type = "kernel" as an input parameter for the hROC() function and
choosing a bandwidth by the input kernel.h (1 by default), the user may compute this method.

3.- Martínez-Camblor et al. (2019) also argues that with no restrictions on the shape of h∗(·) and based
on a fixed sample of positive and negative subjects without ties between the positive and negative values,
it is always possible to build a function which provides a perfect classification region. This is called the
overfitting function and its estimation (since it totally relies on the available sample) is defined
as follows:

ĥ∗o f (x) =
n1

∑
i=1

I(x = yi) +
n2

∑
i=1

#(ξ = zi)

#(ξ = zi) + #(χ = zi)
I(x = zi)

where I(A) denotes the indicator function (which takes the value 1 if A is true and 0 otherwise),
#(B) is the cardinal of the subset B, {y1, . . . , yn1} ⊆ {ξ1, . . . , ξn} are the positive sample values
without ties and {z1, . . . , zn2} ⊆ {ξ1, . . . , ξn} are the positive sample values with ties with any
negative sample value. Classification based on this transformation is the optimal one in the
AUC sense, but the resulting decision rules cannot be extended to any other sample.
By the hROC() function of our package, this transformation may be estimated by fixing the input
parameter type to "overfitting".

Relationship with the gROC curve Martínez-Camblor et al. (2021a) proved that, under restriction
(C), the gROC curve based on the classification subsets

{
st = (−∞, xL

t ] ∪ (xU
t , ∞)

}
t∈[0,1] is equivalent

to the right-sided ROC curve of the transformed marker hgC(X) by the following function:

hgC(x) =
∫ 1

0
I(x < xL

t )dt +
∫ 1

0
I(x > xU

t )dt , x ∈ S(X),

where I(A) denotes the indicator function, which takes the value 1 if A is true and 0 otherwise. This
relationship is used in the implementation of plot_funregions() function for `groc` objects, which is
only allowed when restriction (C) is fulfilled (self-contained classification subsets). Otherwise, such
transformation does not exist, as argued in Pérez-Fernández et al. (2021) (Appendix).

1.3 Multivariate ROC curve

We want to point out that the ROC curve is defined for classification accuracy evaluation of univariate
markers. When dealing with multivariate markers (X ∈ Rp), the usual practice is to consider a
transformation h : Rp −→ R, usually linear, to reduce it to a univariate marker, and then to construct
the standard ROC curve. Same considerations as before apply when a functional transformation is
taken. In the proposed R library, we consider several methods to define such transformation in the
multivariate scenario, from the existing literature, most of them listed and mathematically explained
in Pérez-Fernández et al. (2021) and Martínez-Camblor et al. (2021b).

The function of the movieROC package dealing with multivariate markers is the multiROC()
function. It considers one of these methods, chosen by the user by the input parameter method:

i) fitting a binary logistic regression model with a particular combination of the components on
the right-hand side (method = "lrm"),

ii) linear combinations with fixed parameters (method = "fixedLinear"),

iii) linear combinations with dynamic parameters (method = "dynamicMeisner" or method =
"dynamicEmpirical"),

iv) quadratic combinations with fixed parameters (method = "fixedQuadratic"), or

v) estimating the optimal transformation by kernel density techniques deeply studies in Duong
(2007) (method = "kernelOptimal").

The latter two are only available for bivariate markers. Dealing with bivariate markers has been much
more exploited in the scientific literature. Some extensions are implemented to deal with multivariate
markers when p > 2, mainly by using linear combinations thus far.

https://CRAN.R-project.org/package=movieROC
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2 Main functions of the movieROC package and illustrative dataset

To enhance the comprehension of the developed R package, Section 2.1 provides a detailed description
of the main objectives of the implemented R functions. Furthermore, to reflect its practical usage, we
employ a real dataset throughout this vignette, which is introduced in Section 2.3.

2.1 Functionality of the movieROC package

A graphical tool was developed to showcase static and dynamic graphics displaying the classifica-
tion subsets derived from maximizing diagnostic accuracy under certain assumptions, ensuring the
preservation of the interpretability. The R package facilitates the construction of the ROC curve across
various specificities, providing visualizations of the resulting classification regions. The proposed tool
comprises multiple R functions that generate objects with distinct class attributes (see function names
where red arrows depart from and red nodes in Figure 1, respectively). Once the object of interest
is created, different functions may be passed to them, in order to plot the underlying classification
regions (plot_regions(), plot_funregions()), to track the resulting ROC curve (plot_buildROC(),
plot()), to predict decision rules for a particular specificity, and to print relevant information, among
others. The main function of the package, movieROC(), produces videos to exhibit the classification
procedure.

plot_buildROC()

print()
plot()

predict()
plot_regions()

plot_funregions()

’groc’ obj

’multiroc’ obj

’hroc’ obj

movieROC()gROC()

multiROC()

hROC()

plot_densityROC()plot_densities()

plot_ROCdensity()

movieROC2_densities()

Figure 1: R functions of the movieROC package. The blue nodes include the names of the R functions
and the red nodes indicate the different R objects that can be created and worked with. The red arrows
depart from those R functions engaged in creating R objects and the black arrows indicate which R
functions can be applied to which R objects. The grey dashed arrows depart from those R functions
internally used in the implementation of the R function at the end of the arrow.

2.2 Functions to be passed to movieROC objects

By using the gROC(), the multiROC() or the hROC() function, the user obtains an R object of class
‘groc’, ‘multiroc’ or ‘hroc’, respectively. These will be called movieROC objects. Once the object of
interest is created, the implemented package includes many functions to pass to it. Some of them
are generic methods (print(), plot() and predict()), commonly used in R language over different
objects according to their class attributes. The rest of the functions are specific for this library and
therefore only applicable to movieROC objects. Table 1 summarizes the functions plot_densities()
and plot_densityROC() and provides their target and main syntax (with default input parameters).
The main functions of the package (top diagram of Figure 1) are explained in the main manuscript of
the package.

https://CRAN.R-project.org/package=movieROC
https://CRAN.R-project.org/package=movieROC
https://CRAN.R-project.org/package=movieROC
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Specific functions to be passed

plot_densities() Applicable only to a ‘groc’ object.

Plot the density function estimates for the marker distribution in positive and negative
populations (in red and blue color by default, respectively).

MAIN SYNTAX:
plot_densities(obj,h = c(1,1),histogram = FALSE,breaks = 15,...)

By default, the density functions are estimated by stats::density() function with input
parameter adjust = h[i] for i ∈ {1 = controls, 2 = cases}. Instead, histograms may be
reported by means of graphics::hist() function with a fixed number of breaks (15 by
default). obj is the output of gROC() function, but parameter side is not considered.

plot_densityROC() Applicable only to a ‘groc’ object.

Plot the ROC curve estimate based on kernel density estimation functions for the marker
distribution in both positive and negative populations.

MAIN SYNTAX:
plot_densityROC(obj,h = c(1,1),C = NULL,build.process = FALSE,...)

The classification procedure may be displayed for a cut-off value C introduced by the user.
Note: This function is only valid for right-sided and left-sided ROC curves.

Table 1: Brief explanation of plot_densities() and plot_densityROC() function usage. Both can be
applied to a ‘groc’ object (output of the gROC() function). The main input parameters are displayed.

2.3 Illustrative dataset. plot_densities() function

In order to illustrate functionality of our R package, we consider the HCC data. This dataset is derived
from gene expression arrays of tumor and adjacent non-tumor tissues of 62 Taiwanese cases of
hepatocellular carcinoma (HCC). The goal of the original study (Shen et al., 2012) was to identify,
with a genome-wide approach, additional genes hypermethylated in HCC that could be used for
more accurate analysis of plasma DNA for early diagnosis, by using Illumina methylation arrays
(Illumina, Inc., San Diego, CA) that screen 27,578 autosomal CpG sites. The complete dataset was
deposited in NCBI’s Gene Expression Omnibus (GEO) and it is available through series accession
number GSE37988 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37988). It is included in the
presented package (HCC dataset), excluding 275 genes with incomplete information and selecting 948
among remaining.

The following code loads the R package and the HCC dataset and shows its main structure:

R> library(movieROC)
R> data(HCC)
R> str(HCC)

'data.frame': 124 obs. of 952 variables:
$ tissue : num 1 2 3 4 5 6 7 8 9 10 ...
$ sex : chr "male" "male" "male" "female" ...
$ age : num NA 67 47 70 NA NA 56 NA 39 78 ...
$ tumor : chr "tumor" "tumor" "tumor" "tumor" ...
$ cg03409548: num 0.0495 0.0315 0.0752 0.0433 0.0559 ...
$ cg03410718: num 0.93 0.913 0.943 0.94 0.948 ...
$ cg03411288: num 0.025 0.0146 0.0226 0.0271 0.0319 ...
(...)
$ cg20239949: num 0.0332 0.0292 0.0376 0.0328 0.0679 ...
$ cg20240860: num 0.0822 0.07 0.0502 0.1175 0.2827 ...

R> table(HCC$tumor)

nontumor tumor
62 62

We selected the genes 20202438, 18384097, and 03515901. On the one hand, we chose the gene
03515901 as an example of a monotone relationship between the marker and the response, reporting
a good left-sided ROC curve. On the other hand, relative gene expression intensities of the genes
20202438 and 18384097 tend to be more extreme in tissues with tumor than in those without it. These
are non-standard cases, so if we limit ourselves to detect “appropriate” genes on the basis of the
standard ROC curve, they would not be chosen. However, extending the decision rules by means of
the gROC curve, those genes may be considered as potential biomarkers (locations) to differ between
the two groups.

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37988
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The next chunk of code summarizes the distribution of the three selected genes, separated by tumor or
non-tumor tissues.

R> genes <- c("20202438", "18384097", "03515901")
R> summary_genes <- lapply(genes, function(gene){
+ by(HCC[,paste0("cg",gene)], HCC$tumor, summary)
+ })
R> names(summary_genes) <- paste("Gene", genes)
R> summary_genes

$`Gene 20202438`
HCC$tumor: nontumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6025 0.7549 0.7724 0.7665 0.7930 0.8356
---------------------------------------------------------
HCC$tumor: tumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4849 0.7245 0.7828 0.7610 0.8166 0.8683

$`Gene 18384097`
HCC$tumor: nontumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3952 0.6294 0.6630 0.6609 0.7086 0.8008
---------------------------------------------------------
HCC$tumor: tumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0268 0.6407 0.7628 0.7169 0.8354 0.8952

$`Gene 03515901`
HCC$tumor: nontumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4291 0.6713 0.7206 0.7188 0.7755 0.8793
---------------------------------------------------------
HCC$tumor: tumor

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1662 0.3588 0.4752 0.5096 0.6732 0.9472

The next piece of code represents the density estimation for gene expression intensities of the selected
genes in each group, shown in Figure 2, using the plot_densities() function.

R> par(mfrow = c(1,3))
R> for(gene in c("20202438", "18384097", "03515901")){
+ roc <- gROC(X = HCC[,paste0("cg",gene)], D = HCC$tumor)
+ plot_densities(roc, histogram = TRUE, lwd = 3, main = paste("Gene", gene),
+ legend = (gene == "03515901"), pos.legend = "topleft",
+ xlim = c(0.4*(gene == "20202438"),1))
+ plot_densities(roc, lwd = 3, new = FALSE,
+ col = adjustcolor(c('#485C99','#8F3D52'), alpha.f = 0.8))}
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Figure 2: Density histograms and kernel density estimations (lighter) for gene expression intensities
of the genes 20202438, 18384097 and 03515901 in negative (non-tumor) and positive (tumor) tissues.
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3 Study of the classification performance of gene 20202438 by using the
movieROC package

For the next subsections (except the last one, multivariate), the marker used will be the gene expression
intensity of the gene 20202438 and the goal is to classify tissues in tumor or non-tumor.

R> X <- HCC$cg20202438; D <- HCC$tumor

3.1 The regular ROC curve. gROC() and predict() functions

The function gROC() performs an empirical estimation of the right-sided ROC curve by default.

R> roc <- gROC(X, D)
R> roc

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that larger values of the marker indicate larger confidence that a
given subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.855 and 0.403,
respectively, corresponding to the following classification subset: (0.799, Inf).
The area under the right-sided ROC curve (AUC) is 0.547.

With the function predict(), we can numerically display the classification subset and sensitivity
resulting in a false-positive rate of 0.1.

R> predict(roc, FPR = .1)

$ClassSubsets $Specificity $Sensitivity
[1] 0.8063487 Inf [1] 0.9032258 [1] 0.3064516

3.2 The gROC curve. gROC() and predict() functions

The function gROC() with input side = "both" performs an empirical estimation of the gROC curve
without restrictions. Now the decision rules are of the form st = (−∞, xL

t ] ∪ (xU
t , ∞).

R> groc <- gROC(X, D, side = "both")
R> groc

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that both lower and larges values of the marker indicate larger
confidence that a given subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.694 and 0.726,
respectively, corresponding to the following classification subset:
(-Inf, 0.737) U (0.799, Inf).

The area under the gROC curve (gAUC) is 0.765.

With the function predict(), we can numerically display the classification subset and sensitivity
resulting in a false-positive rate of 0.1.

R> predict(groc, FPR = .1)

$ClassSubsets $Specificity $Sensitivity
[,1] [,2] [1] 0.9032258 [1] 0.4032258

[1,] -Inf 0.7180623
[2,] 0.8296072 Inf

3.3 The gROC curve with restriction (C). gROC() and predict() functions

The function gROC() with inputs side = "both" and restric = TRUE performs an empirical estimation
of the gROC curve with restriction (C). Now the decision rules are of the form st = (−∞, xL

t ] ∪ (xU
t , ∞)

and self-contained along the change of t ∈ [0, 1]. This procedure is time-consuming.

It may be seen that the loss in the gAUC is small with respect to the gROC without restrictions (from
0.765 to 0.762).
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R> groc_C <- gROC(X, D, side = "both", restric = TRUE)
R> groc_C

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that both lower and larges values of the marker indicate larger
confidence that a given subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.694 and 0.726,
respectively, corresponding to the following classification subset:
(-Inf, 0.737) U (0.799, Inf).
The area under the gROC curve (gAUC) is 0.762.

The classification subset and sensitivity resulting in a false-positive rate of 0.1 is the same than
those for the gROC curve without restrictions.

R> predict(groc_C, FPR = .1)

$ClassSubsets $Specificity
[,1] [,2] [1] 0.9032258

[1,] -Inf 0.7180623
[2,] 0.8296072 Inf $Sensitivity

[1] 0.4032258

3.4 Some figures for standard and gROC curves. plot(), plot_densityROC() and
plot_regions() functions

Right plot in Figure 3 represents the previous empirical estimates in a single figure by the function
plot() included in movieROC. The left panels in Figure 3 come from the kernel estimation of the two
probability density functions involved, by using a bandwidth = 1 in the plot_densityROC() function.
The resulting estimate for standard ROC curve (middle) is very similar to the empirical one (right,
black line).

R> layout(mat = matrix(1:2, nrow = 1), width = c(1.5,1))
R> plot_densityROC(roc, lwd = 3, par.specify = TRUE)

R> par(mfrow = c(1,1))
R> plot(roc, main = "Empirical ROC curve", lwd = 3)
R> plot(groc, new = FALSE, lwd = 3, col = "gray50")
R> plot(groc_C, new = FALSE, lwd = 3, lty = 2, col = "blue")
R> legend("bottomright", paste(c("AUC =", "gAUC =", "gAUC_C ="),
+ format(c(roc$auc, groc$auc, groc_C$auc), digits = 3)),
+ col = c("black", "gray50", "blue"), lwd = 3, lty = c(1,1,2),
+ bty = "n", inset = .01)
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Figure 3: From left to right: i) Kernel density function estimates of gene 20202438 in tumor (in red)
and non-tumor (in blue) groups (bandwidth = 1 by default); ii) Standard ROC curve estimate from i);
iii) Empirical estimate for standard ROC curve (in black), gROC curve (in gray) and gROC curve with
restriction (C) (in blue).

The function plot_densityROC() also allows to graphically track the construction of the “smooth”
ROC curve (by the input parameter build.process), displaying the classification subsets until a
particular cut-off value chosen by the user (input parameter C).

https://CRAN.R-project.org/package=movieROC
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R> plot_densityROC(roc, C = .8, build.process = TRUE)
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Figure 4: Classification procedure until cut-off value 0.8 for the gene 20202438 by using the
plot_densityROC() function.

All the classification regions underlying the standard and the generalized ROC curves without
and with restrictions are represented in Figure 5. The following code was used to generate the
figure, illustrating the usage and output of the plot_regions() function. Besides displaying all the
classification regions underlying every specificity (in gray), the one chosen by the user (FPR = 0.1 to be
consistent with previous sections) is highlighted in blue. Note that the ROC curves are rotated 90◦ to
the right, in order to use the vertical axis for FPR in both plots.

R> plot_regions(roc, cex.legend = 1.5, plot.auc = TRUE, FPR = .1,
+ main = "Standard right-sided assumption [Classification subsets]")
R> plot_regions(groc, plot.auc = TRUE, legend = F, main.plotroc = "gROC curve",
+ FPR = .1, main = "General approach [Classification subsets]")
R> plot_regions(groc_C, plot.auc = TRUE, legend = F, main.plotroc = "gROC curve",
+ FPR = .1, xlab = "Gene 20202438 expression intensity",
+ main = "General approach with restriction (C) [Classification subsets]")
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Figure 5: Classification regions and the ROC curve (90º rotated) for evaluation of gene 20202438
expression intensity assuming i) standard scenario (top), ii) generalized scenario without restrictions
(middle), iii) generalized scenario under restriction (C) over the subsets (bottom).

3.5 Videos for the gROC curve. movieROC() and plot_buildROC() functions

The following line of code saves a video as a GIF with the construction of the empirical gROC curve:

R> movieROC(groc, file = "gROC_gene20202438.gif")
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Figure 6: Snapshots (from movieROC() function) of the classification procedure and empirical gROC
curve for the gene 20202438 when FPR ∈ {0.1, 0.4, 0.7}.

These three snapshots can also be generated by the plot_buildROC() function, as follows:

R> for(fpr in c(.1,.4,.7)) plot_buildROC(groc, FPR = fpr, build.process = TRUE)
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3.6 The binormal scenario. gROC_param(), plot(), plot_densities and plot_regions()
functions

When the binormal scenario is assumed, the results for the regular and gROC curve estimation are the
following, obtained by the function gROC_param() in our package:

R> norm_roc <- gROC_param(X, D)
R> norm_roc

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that larger values of the marker indicate larger confidence that a given
subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.923 and 0.226,
respectively, corresponding to the following classification subset: (0.825, Inf).
The area under the right-sided ROC curve (AUC) is 0.477.

R> norm_lroc <- gROC_param(X, D, side = "left")
R> norm_lroc

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that lower values of the marker indicate larger confidence that a given
subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.91 and 0.281,
respectively, corresponding to the following classification subset: (-Inf, 0.712).
The area under the left-sided ROC curve (AUC) is 0.523.

R> norm_groc <- gROC_param(X, D, side = "both")
R> norm_groc

Data was encoded with nontumor (controls) and tumor (cases).
It is assumed that both lower and larges values of the marker indicate larger
confidence that a given subject is a case.
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.833 and 0.507,
respectively, corresponding to the following classification subset:
(-Inf, 0.712) U (0.824, Inf).
The area under the gROC curve (gAUC) is 0.715.

Figure 7 illustrates the kernel density estimation for the gene 20202438 in both groups with a high
bandwidth and the ROC curve estimates when binormal scenario is assumed. It can be seen that the
left-sided ROC curve reports an AUC slightly better than the right-sided ROC curve. However, the
biggest gain in AUC is considering the gROC curve, since from the left plot it is clear that the largest
differences between the two groups are in deviation, not in location.

R> plot_densities(norm_roc, h = 3, lwd = 3, legend = TRUE, pos.legend = "topleft")
R> plot(norm_roc, main = "Binormal ROC curve", lwd = 3)
R> plot(norm_lroc, new = FALSE, lwd = 3, col = "green4")
R> plot(norm_groc, new = FALSE, lwd = 3, col = "gray50")
R> legend("bottomright", paste(c("AUC =", "lAUC =", "gAUC ="),
+ format(c(norm_roc$auc, norm_lroc$auc, norm_groc$auc), digits = 3)),
+ col = c("black", "green4", "gray50"), lwd = 3, bty = "n", inset = .01)

All the classification regions underlying the standard and the generalized ROC curves when
binormal scenario is assumed are represented in Figure 8. The following code was used to generate
the figure, illustrating the usage and output of the plot_regions() function. Besides displaying all
the classification regions underlying every specificity (in gray), the one chosen by the user (FPR = 0.1
to be consistent with previous sections) is highlighted in blue.

R> plot_regions(norm_roc, FPR = .1, main.plotroc = "Binormal ROC curve",
+ main = "Standard right-sided assumption [Classification subsets]",
+ cex.legend = 1.5, plot.auc = TRUE)
R> plot_regions(norm_lroc, FPR = .1, main.plotroc = "Binormal ROC curve",
+ main = "Standard left-sided assumption [Classification subsets]",
+ legend = FALSE, plot.auc = TRUE)
R> plot_regions(norm_groc, FPR = .1, main.plotroc = "Binormal gROC curve",
+ main = "General approach [Classification subsets]", legend = FALSE,
+ plot.auc = TRUE, xlab = "Gene 20202438 expression intensity")
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Figure 7: Left, kernel density function estimates of gene 20202438 in tumor (in red) and non-tumor (in
blue) groups (bandwidth = 3); right, right- and left-sided ROC curve (in black and green, respectively)
and gROC curve (in gray) when the binormal scenario is assumed.
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Figure 8: Classification regions and the binormal ROC curve (90º rotated) for gene 20202438 assuming
i) standard scenario with subsets of the form st = (ct, ∞) (right-sided, top) or st = (−∞, ct] (left-sided,
middle), ii) generalized scenario with subsets of the form st = (−∞, xL

t ] ∪ (xU
t , ∞) (both-sided, bottom).

3.7 The eROC curve. hROC(), plot_funregions() and plot_regions() functions

For illustrative purposes, following code and figures study the capacity of improving the classification
performance of the gene 20202438 expression intensity via functional transformations and its impact
on the final decision rules. Different approaches reviewed in Section 1.2.2 are included. The first one
considering an ordinary cubic polynomial formula (hroc_cubic object), and a linear tail-restricted
cubic splines (hroc_rcs object) for the right-hand side of logistic regression model. The second one
using two different bandwidths, h = 1 and h = 3 for hroc_lkr1 and hroc_lkr3 object, respectively,
to estimate density functions of the marker for both positive and negative populations by using
kernel density estimation. The third one, considering the overfitting transformation estimation, ĥ∗o f (·)
(hroc_overfit object).
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R> hroc_cubic <- hROC(X, D)
R> hroc_cubic

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A logistic regression model of the form D ~ pol(X,3) has been performed.
The estimated parameters of the model are the following:
Intercept X X^2 X^3
"-204.2" "999.5" "-1573.7" "804.0"
The specificity and sensitivity reported by the Youden index are 0.677 and 0.694,
respectively, corresponding to the following classification subset:
(-Inf, 0.718) U (0.795, Inf).
The area under the ROC curve (AUC) is 0.725.

R> hroc_rcs <- hROC(X, D, formula.lrm = "D ~ rcs(X,8)")
R> hroc_rcs

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A logistic regression model of the form D ~ rcs(X,8) has been performed.
The estimated parameters of the model are the following:

Intercept X X' X'' X''' X''''
"9.602" "-13.934" "11.761" "-1809.932" "10205.202" "-10407.198"

X''''' X''''''
"-8660.667" "21802.573"

The specificity and sensitivity reported by the Youden index are 0.677 and 0.742,
respectively, corresponding to the following classification subset:
(-Inf, 0.74) U (0.8, Inf).
The area under the ROC curve (AUC) is 0.737.

R> hroc_lkr1 <- hROC(X, D, type = "kernel")
R> hroc_lkr1

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.694 and 0.71,
respectively, corresponding to the following classification subset:
(-Inf, 0.586) U (0.623, 0.745) U (0.802, Inf).
The area under the ROC curve (AUC) is 0.750.

R> hroc_lkr3 <- hROC(X, D, type = "kernel", kernel.h = 3)
R> hroc_lkr3

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
The specificity and sensitivity reported by the Youden index are 0.661 and 0.742,
respectively, corresponding to the following classification subset:
(-Inf, 0.746) U (0.8, Inf).
The area under the ROC curve (AUC) is 0.732.

R> hroc_overfit <- hROC(X, D, type = "overfitting")
R> hroc_overfit

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
The overfitted ROC curve is reported.
The specificity and sensitivity reported by the Youden index are 1.00 and 1.00,
respectively, corresponding to the following classification subset:
(-Inf, 0.54) U (0.639, 0.639) U (0.66, 0.693) U (...) U (0.835, 0.835) U (0.837, Inf).
The area under the ROC curve (AUC) is 1.000.
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Following chunk of code compares the AUC achieved from each transformation of the gene
20202438 considered:

R> list_hroc <- list(Cubic = hroc_cubic, Splines = hroc_rcs,
+ LikRatioEst_h1 = hroc_lkr1, LikRatioEst_h3 = hroc_lkr3,
+ gAUC_restC = groc_C, Overfit = hroc_overfit)
R> AUCs <- sapply(list_hroc, function(x) x$auc)
R> round(AUCs, 3)

Cubic Splines LikRatioEst_h1 LikRatioEst_h3 gAUC_restC Overfit
0.725 0.737 0.750 0.732 0.762 1.000

Note that type = "overfitting" computes the transformation providing a perfect classification region
with no restrictions and completely based on the available sample. The resulting AUC is 1 if there are
no ties between positive and negative values (as this is the case), but the overfitting is clear and the
underlying rules may not be extended to any other data.

By using the plot_funregions() function as displayed in the code snippet below, Figure 9 repre-
sents the different functional transformations estimated previously.

R> par(mfrow = c(2,3), mar = c(3.1,2.1,4.1,1.1))
R> for(i in seq_along(list_hroc)){
+ main <- NULL
+ if(i == 5) main <- "General approach \n under restriction (C)"
+ plot_funregions(list_hroc[[i]], FPR = .1, main = main)
+ }
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FPR=0.1

0.5 0.6 0.7 0.8

Model: lrm D ~ rcs(X,8)
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Model: kernel (bandwidth = 1)
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Model: kernel (bandwidth = 3)

FPR=0.1
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 under restriction (C)
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Model: overfitting 

FPR=0.1

Figure 9: Different functional transformations and resulting classification subsets for gene 20202438.
Classification regions for FPR 0.1 are remarked in blue color. Top, from left to right: cubic polynomial
function, restricted cubic splines, and likelihood ratio estimation (LRE) with bandwidth 1. Bottom:
LRE with bandwidth 3, transformation resulting in gROC curve under restriction (C), and overfittintg.

Finally, using the plot_regions() function, Figure 10 shows the resulting classification subsets
over the original space for five of the six methods above (overfitting transformation was excluded
because the rules are unions of many intervals). Particularly, the decision rules reporting a FPR of 0.1
are highlighted in blue color. All the methods except the third one (likelihood ratio estimation with
bandwidth 1) report classification rules of the form st = (−∞, xL

t ] ∪ (xU
t , ∞). The AUCs range from

0.725 to 0.76, compared to 0.547 by the empirical standard ROC curve for the gene under study.

The third method is not very convenient because it does not report a significant gain in AUC, but
the shape of some classification rules is more complex: st = (−∞, at] ∪ (bt, ct] ∪ (dt, ∞) or even as an
union of 4 intervals (as it may be seen for t = 0.1).

R> for(i in 1:5){
+ if(i == 1){
+ plot_regions(list_hroc[[i]], FPR = .1, cex.legend = 1.5, plot.auc = TRUE)
+ }else if(i < 5){
+ plot_regions(list_hroc[[i]], FPR = .1, legend = FALSE, plot.auc = TRUE)
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+ }else{
+ plot_regions(list_hroc[[i]], FPR = .1, legend = FALSE, plot.auc = TRUE,
+ main = "Classification subsets: General approach with restriction (C)",
+ main.plotroc = "gROC curve", xlab = "Gene 20202438 expression intensity")
+ }
+ }

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Classification subsets: lrm D ~ pol(X,3)

Fa
ls

e−
P

os
iti

ve
 R

at
e

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1
0.

5
0

Classification:

nontumor
tumor

 

 

 

R
O

C
 curve

0 0.5 1

TPR

AUC=0.725

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Classification subsets: lrm D ~ rcs(X,8)

Fa
ls

e−
P

os
iti

ve
 R

at
e

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1
0.

5
0

 

 

 

R
O

C
 curve

0 0.5 1

TPR

AUC=0.737

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Classification subsets: kernel 

Fa
ls

e−
P

os
iti

ve
 R

at
e

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1
0.

5
0

 

 

 

R
O

C
 curve

0 0.5 1

TPR

AUC=0.75

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Classification subsets: kernel 

Fa
ls

e−
P

os
iti

ve
 R

at
e

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1
0.

5
0

 

 

 

R
O

C
 curve

0 0.5 1

TPR

AUC=0.732

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Classification subsets: General approach with restriction (C)

Gene 20202438 expression intensity

Fa
ls

e−
P

os
iti

ve
 R

at
e

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

1
0.

5
0

 

 

 

gR
O

C
 curve

0 0.5 1

TPR

AUC=0.762

Figure 10: Classification regions and the resulting ROC curve (90º rotated) for the gene 20202438.
From top to bottom: i) ROC curve for cubic transformation, ii) ROC curve for restricted cubic splines
transformation with 8 knots, iii) ROC curve for likelihood ratio estimation with bandwidth 1, iv) ROC
curve for likelihood ratio estimation with bandwidth 3, v) gROC curve under restriction (C) for the
original marker.
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3.8 The multivariate ROC curve

For the next subsections, gene expression intensity of the gene 20202438 will be combined with the
gene 18384097 first (Section 3.8.1) and also with the gene 03515901 later on (Section 3.9.1). The goal is
to increase the binary classification accuracy and display the resulting decision rules.

3.8.1 A bivariate marker (p = 2). multiROC() and plot() functions

R> X <- HCC[ ,c("cg20202438", "cg18384097")]; D <- HCC$tumor

Following two estimates consider fitting a binary logistic regression model to combine the two
markers. First, by using the formula by default at right-hand side of the regression model; second,
considering restricted cubic splines with 4 knots for each univariate marker.

R> biroc_lrm <- multiROC(X, D)
R> biroc_lrm

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
A stepwise logistic regression model from the initial formula D ~ X.1 + I(X.1^2) + X.2
+ I(X.2^2) + I(X.1*X.2) has been performed.
The estimated parameters of the resulting model are the following:
(Intercept) X.1 I(X.1^2) X.2 I(X.2^2)

78.87003 -158.65880 106.44235 -69.18716 56.79345
The specificity and sensitivity reported by the Youden index are 0.871 and 0.645,
respectively, corresponding to the cut-off point -0.0291 for the transformation h(X)
in the formula above.
The area under the ROC curve (AUC) is 0.774.

R> biroc_lrm_rcs <- multiROC(X, D, method = "lrm",
+ formula.lrm = "D ~ rcs(X.1,4) + rcs(X.2,4)")
R> biroc_lrm_rcs

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
A stepwise logistic regression model from the initial formula
D ~ rcs(X.1,4) + rcs(X.2,4) has been performed.
The estimated parameters of the resulting model are the following:

(Intercept) rcs(X.1, 4)X.1 rcs(X.1, 4)X.1' rcs(X.1, 4)X.1''
6.269163 -6.572278 -15.444407 484.022536

rcs(X.2, 4)X.2 rcs(X.2, 4)X.2' rcs(X.2, 4)X.2''
-2.394454 -7.067841 252.533859

The specificity and sensitivity reported by the Youden index are 0.919 and 0.629,
respectively, corresponding to the cut-off point 0.262 for the transformation h(X)
in the formula above.
The area under the ROC curve (AUC) is 0.844.

The next two estimates consider a linear combination of the two markers with fixed parameters.
Those coefficients are estimated by Pepe and Thompson (2000) method (first) and by Su and Liu (1993)
approach (second).

R> biroc_PT <- multiROC(X, D, method = "fixedLinear", methodLinear = "PepeThompson")
R> biroc_PT

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
A linear combination with fixed parameters estimated by PepeThompson approach has been
considered.
The specificity and sensitivity reported by the Youden index are 0.871 and 0.548,
respectively, corresponding to the cut-off point 0.358 for the transformation
h(X) = - 0.51*cg20202438 + 1*cg18384097.
The area under the ROC curve (AUC) is 0.697.
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R> biroc_SL <- multiROC(X, D, method = "fixedLinear", methodLinear = "SuLiu")
R> biroc_SL

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
A linear combination with fixed parameters estimated by SuLiu approach has been
considered.
The specificity and sensitivity reported by the Youden index are 0.887 and 0.565,
respectively, corresponding to the cut-off point 1 for the transformation
h(X) = - 0.547*cg20202438 + 1.91*cg18384097.
The area under the ROC curve (AUC) is 0.694.

The following object keeps the ROC curve and decision rules when linear combinations of the two
markers under study are considered, but with dynamic parameters (each t ∈ [0, 1] may result in a
different linear combination) by using the Meisner et al. (2021) algorithm.

R> biroc_Meis <- multiROC(X, D, method = "dynamicMeisner")
R> biroc_Meis

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
A linear combination with dynamic parameters has been considered.
The specificity and sensitivity reported by the Youden index are 0.968 and 0.50,
respectively, corresponding to the cut-off point 0.701 for the transformation
h(X) = - 0.0884*cg20202438 + 0.996*cg18384097.
The area under the ROC curve (AUC) is 0.702.

Finally, the optimal transformation is estimated based on bivariate kernel density estimation by
Martínez-Camblor et al. (2021b), which uses the kde() function in the ks package with the "Hbcv"
method by default (input kernelOptimal.H) to approximate the bandwidth matrix of the bivariate
marker in each group.

R> biroc_kernel <- multiROC(X, D, method = "kernelOptimal")
R> biroc_kernel

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 2 variables have been considered.
Optimal transformation based on bivariate kernel density estimation has been considered.
Hbcv method has been used to estimate the bandwidth matrix in each group.
The specificity and sensitivity reported by the Youden index are 0.968 and 0.677,
respectively, corresponding to the cut-off point 0.481 for the transformation computed
in optimalT(X).
The area under the ROC curve (AUC) is 0.872.

R> ls(biroc_kernel)

[1] "auc" "c" "cases" "controls" "D" "H.method" "levels"
[8] "method" "optimalT" "roc" "t" "X" "Z"

R> class(biroc_kernel$optimalT)

[1] "function"

A quick comparison of the empirical reported AUCs shows that the best result is the kernel density
estimation of the bivariate marker and the logistic regression model considering restricted cubic
splines. Both are complex transformations and we will see that result in complex decision rules which
are difficult to interpret (Figure 12 (c)-(d)).

R> list_biroc <- list(LRm = biroc_lrm, LRm_rcs = biroc_lrm_rcs,
+ PepeTh = biroc_PT, SuLiu = biroc_SL,
+ Meisner = biroc_Meis, KernelDens = biroc_kernel)
R> AUCs <- sapply(list_biroc, function(x) x$auc)
R> round(AUCs, 3)

LRm LRm_rcs PepeTh SuLiu Meisner KernelDens
0.774 0.844 0.697 0.694 0.702 0.872

https://CRAN.R-project.org/package=ks
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The resulting empirical ROC curves can be graphically displayed (Figure 11) with the plot()
function of our package:

R> colors <- c(LRm = "#4357AD", LRm_rcs = "#48A9A6", PepeTh = "gold",
+ SuLiu = "#E18D10", Meisner = "#C96066", KernelDens = "violet")

R> plot(biroc_PT, main = "Bivariate ROC curve\n(linear transf.)", lwd = 3,
+ col = colors["PepeTh"])
> plot(biroc_SL, new = FALSE, lwd = 3, col = colors["SuLiu"])
> plot(biroc_Meis, new = FALSE, lwd = 3, col = colors["Meisner"])
> legend("bottomright", c("Pepe&Thompson", "Su&Liu", "Meisner et al."),
+ col = colors[c("PepeTh","SuLiu","Meisner")], lwd = 3, bty = "n", inset = .01)

R> plot(biroc_lrm, main = "Bivariate ROC curve\n(complex transf.)", lwd = 3,
+ col = colors["LRm"])
> plot(biroc_lrm_rcs, new = FALSE, lwd = 3, col = colors["LRm_rcs"])
> plot(biroc_kernel, new = FALSE, lwd = 3, col = colors["KernelDens"])
> legend("bottomright", c("LogReg", "LogReg RCS", "Kernel optimal"),
+ col = colors[c("LRm","LRm_rcs","KernelDens")], lwd = 3, bty = "n", inset = .01)
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Figure 11: Empirical ROC curves for the combination of the genes 20202438 and 18384097. By using
linear combinations (left), and more complex transformations (right).

3.9 Videos for the bivariate ROC curve. movieROC() and plot_buildROC() functions

The following line of code saves video as GIFs with the construction of the empirical ROC curve
for the bivariate marker (gene 20202438, gene 18384097) by using different methods to combine the
two univariate markers. One video is saved for each method in the object list_biroc created in the
previous section.

R> for(x in names(list_biroc)){
+ movieROC(list_biroc[[x]], display.method = "OV",
+ xlab = "Gene 20202438", ylab = "Gene 18384097",
+ border = TRUE, lwd.curve = 4, cex = 1.2, col.threshold = colors[x],
+ file = paste0("Video_", x, ".gif"))
+ }

The three snapshots for each method illustrated in Figure 12 can also be generated by the
plot_buildROC() function, as follows:

R> for(x in names(list_biroc)){
+ for(fpr in c(.1, .3, .6)){
+ plot_buildROC(list_biroc[[x]], display.method = "OV", FPR = fpr,
+ build.process = TRUE, completeROC = FALSE,
+ xlab = "Gene 20202438", ylab = "Gene 18384097",
+ border = TRUE, lwd.curve = 4, cex = 1.2, col.threshold = colors[x])
+ }
+ }
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(a) Linear combinations with fixed parameters by
Pepe and Thompson (2000).
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(b) Linear combinations with dynamic parameters
by Meisner et al. (2021).
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(c) Logistic regression model with restricted cubic
splines with 4 knots for each univariate marker.
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(d) Optimal transformation by multivariate kernel
density estimation with "Hbcv" method by default
(Martínez-Camblor et al., 2021b).

Figure 12: Snapshots (from movieROC() function) of the classification procedure and empirical ROC
curve for the bivariate marker (gene 20202438, gene 18384097) when FPR ∈ {0.1, 0.3, 0.6}.



movieROC PACKAGE VIGNETTE 22

3.9.1 A multidimensional marker with p > 2

For this subsection, a marker of dimension p = 3 is considered. Particularly, gene expression intensity
of the gene 20202438 is combined with the gene 18384097 and the gene 03515901. The methods used
are those studied in the previous subsection for p = 2.

R> X <- HCC[ ,c("cg20202438", "cg18384097", "cg03515901")]; D <- HCC$tumor

Following two estimates consider fitting a binary logistic regression model to combine the three
markers. First, by using the formula by default extended to dimension 3 at right-hand side of the
regression model; second, considering restricted cubic splines with 4 knots for each univariate marker.

R> multiroc_lrm <- multiROC(X, D, method = "lrm", formula.lrm =
+ "D ~ X.1 + I(X.1^2) + X.2 + I(X.2^2) + X.3 + I(X.3^2) + I(X.1*X.2*X.3)")
R> multiroc_lrm

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
A stepwise logistic regression model from the initial formula
D ~ X.1 + I(X.1^2) + X.2 + I(X.2^2) + X.3 + I(X.3^2) + I(X.1*X.2*X.3)
has been performed.
The estimated parameters of the resulting model are the following:
(Intercept) X.1 I(X.1^2) X.2 I(X.2^2) X.3 I(X.3^2)

98.57338 -185.76142 127.89683 -41.25060 32.14067 -51.56556 33.29841
The specificity and sensitivity reported by the Youden index are 0.887 and 0.806,
respectively, corresponding to the cut-off point -0.301 for the transformation h(X)
in the formula above.
The area under the ROC curve (AUC) is 0.876.

R> multiroc_lrm_rcs <- multiROC(X, D, method = "lrm",
+ formula.lrm = "D ~ rcs(X.1,4) + rcs(X.2,4) + rcs(X.3,4)")
R> multiroc_lrm_rcs

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
A stepwise logistic regression model from the initial formula
D ~ rcs(X.1,4) + rcs(X.2,4) + rcs(X.3,4) has been performed.
The estimated parameters of the resulting model are the following:

(Intercept) rcs(X.2, 4)X.2 rcs(X.2, 4)X.2' rcs(X.2, 4)X.2'' rcs(X.3, 4)X.3
14.696335839 -0.003217415 -21.304677940 336.242585415 -27.944341462

rcs(X.3, 4)X.3' rcs(X.3, 4)X.3''
18.022003883 -50.586827581

The specificity and sensitivity reported by the Youden index are 0.871 and 0.855,
respectively, corresponding to the cut-off point -0.607 for the transformation h(X)
in the formula above.
The area under the ROC curve (AUC) is 0.888.

The next two estimates consider a linear combination of the three markers with fixed parameters.
Those coefficients are estimated by Pepe and Thompson (2000) method (first) and by Su and Liu (1993)
approach (second).

R> multiroc_PT <- multiROC(X, D, method = "fixedLinear", methodLinear = "PepeThompson")
R> multiroc_PT

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
A linear combination with fixed parameters estimated by PepeThompson approach has been
considered.
The specificity and sensitivity reported by the Youden index are 0.855 and 0.742,
respectively, corresponding to the cut-off point -0.0755 for the transformation
h(X) = 0.81*cg20202438 - 0.1*cg18384097 - 1*cg03515901.
The area under the ROC curve (AUC) is 0.811.
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R> multiroc_SL <- multiROC(X, D, method = "fixedLinear", methodLinear = "SuLiu")
R> multiroc_SL

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
A linear combination with fixed parameters estimated by SuLiu approach has been
considered.
The specificity and sensitivity reported by the Youden index are 0.968 and 0.597,
respectively, corresponding to the cut-off point -0.408 for the transformation
h(X) = 1.96*cg20202438 + 0.594*cg18384097 - 4.22*cg03515901.
The area under the ROC curve (AUC) is 0.797.

The following object keeps the ROC curve and decision rules when linear combinations of the
three markers under study are considered, but with dynamic parameters (each t ∈ [0, 1] may result in
a different linear combination) by using the Meisner et al. (2021) algorithm.

R> multiroc_Meis <- multiROC(X, D, method = "dynamicMeisner")
R> multiroc_Meis

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
A linear combination with dynamic parameters has been considered.
The specificity and sensitivity reported by the Youden index are 0.855 and 0.774,
respectively, corresponding to the cut-off point -0.407 for the transformation
h(X) = 0.49*cg20202438 - 0.438*cg18384097 - 0.754*cg03515901.
The area under the ROC curve (AUC) is 0.824.

Finally, the optimal transformation is estimated based on multivariate kernel density estimation
by Martínez-Camblor et al. (2021b), which uses the kde() function in the ks package with the "Hpi"
method by default (input kernelOptimal.H) to approximate the bandwidth matrix of the multivariate
marker in each group.

R> multiroc_kernel <- multiROC(X, D, method = "kernelOptimal")
R> multiroc_kernel

Data was encoded with nontumor (controls) and tumor (cases).
There are 62 controls and 62 cases.
A total of 3 variables have been considered.
Optimal transformation based on bivariate kernel density estimation has been considered.
Hpi method has been used to estimate the bandwidth matrix in each group.
The specificity and sensitivity reported by the Youden index are 0.984 and 0.968,
respectively, corresponding to the cut-off point 0.189 for the transformation
computed in optimalT(X).
The area under the ROC curve (AUC) is 0.986.

A quick comparison of the empirical reported AUCs shows that the best result is the kernel density
estimation of the bivariate marker and the logistic regression model considering restricted cubic
splines. Both are complex transformations and we will see that result in complex decision rules which
are difficult to interpret (Figure 16).

R> list_multiroc <- list(LRm = multiroc_lrm, LRm_rcs = multiroc_lrm_rcs,
+ PepeTh = multiroc_PT, SuLiu = multiroc_SL,
+ Meisner = multiroc_Meis, KernelDens = multiroc_kernel)
R> AUCs <- sapply(list_multiroc, function(x) x$auc)
R> round(AUCs, 3)

LRm LRm_rcs PepeTh SuLiu Meisner KernelDens
0.876 0.888 0.811 0.797 0.824 0.986

The resulting empirical ROC curves can be graphically displayed (Figure 13) with the plot()
function of our package:

R> plot(multiroc_PT, main = "Multivariate ROC curve\n(linear transf.)", lwd = 3,
+ col = colors["PepeTh"])
> plot(multiroc_SL, new = FALSE, lwd = 3, col = colors["SuLiu"])
> plot(multiroc_Meis, new = FALSE, lwd = 3, col = colors["Meisner"])
> legend("bottomright", c("Pepe&Thompson", "Su&Liu", "Meisner et al."),
+ col = colors[c("PepeTh","SuLiu","Meisner")], lwd = 3, bty = "n", inset = .01)

https://CRAN.R-project.org/package=ks
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R> plot(multiroc_lrm, main = "Multivariate ROC curve\n(complex transf.)", lwd = 3,
+ col = colors["LRm"])
> plot(multiroc_lrm_rcs, new = FALSE, lwd = 3, col = colors["LRm_rcs"])
> plot(multiroc_kernel, new = FALSE, lwd = 3, col = colors["KernelDens"])
> legend("bottomright", c("LogReg", "LogReg RCS", "Kernel optimal"),
+ col = colors[c("LRm","LRm_rcs","KernelDens")], lwd = 3, bty = "n", inset = .01)
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Figure 13: Empirical ROC curves for the combination of the genes 20202438, 18384097 and 03515901.
By using linear combinations (left), and more complex transformations (right).

Thanks to Figure 13 one can clearly see that the ROC curve estimate proposed by Meisner et al.
(2021) (using their R function maxTPR()) may not be monotone.

3.10 Videos for the multivariate ROC curve. movieROC() and plot_buildROC() func-
tions

The following line of code saves video as GIFs with the construction of the empirical ROC curve for
the multivariate marker (gene 20202438, gene 18384097, gene 03515901) by using different methods to
combine the three univariate markers. One video is saved for each method in the object list_multiroc
created in the previous section.

When the marker has a dimension higher than two it is difficult to visualize the data and the
classification regions. Therefore, the plot_buildROC() and movieROC() functions offer two options for
showing the results, both on a bidimensional space. On the one hand, to choose two of the components
of the multivariate marker and project the classification subsets on the plain defined by them (Figure 14,
first for loop in the code below). On the other, to project the classification regions on the plain defined
by the two first principal components (Figure 15, second for loop in the code below).

R> x <- "PepeTh"

R> for(fpr in c(.1, .3, .6)){
+ plot_buildROC(list_multiroc[[x]], display.method = "OV", displayOV = c(1,2),
+ FPR = fpr, build.process = TRUE, completeROC = FALSE, border = TRUE,
+ lwd.curve = 4, cex = 1.2, col.threshold = colors[x])
+ plot_buildROC(list_multiroc[[x]], display.method = "OV", displayOV = c(1,3),
+ FPR = fpr, build.process = TRUE, completeROC = FALSE, border = TRUE,
+ lwd.curve = 4, cex = 1.2, col.threshold = colors[x])
+ plot_buildROC(list_multiroc[[x]], display.method = "OV", displayOV = c(2,3),
+ FPR = fpr, build.process = TRUE, completeROC = FALSE, border = TRUE,
+ lwd.curve = 4, cex = 1.2, col.threshold = colors[x])
+ }

R> for(fpr in c(.1, .3, .6, .9)){
+ plot_buildROC(list_multiroc[[x]], display.method = "PCA",
+ FPR = fpr, build.process = TRUE, completeROC = FALSE, border = TRUE,
+ lwd.curve = 4, cex = 1.2, col.threshold = colors[x])
+ }
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Figure 14: Multivariate ROC curve estimation for the simultaneous diagnostic accuracy of genes
20202438, 18384097 and 03515901. Pepe and Thompson (2000) approach was used and classification
rules when FPR ∈ {0.1, 0.3, 0.6} (from top to bottom). The classification subsets are projected over
the three pairs of original univariate markers (1-2, 1-3, 2-3, from left to right); points in gold color for
positive classification and in gray for negative.

−0.2 0.0 0.2 0.4

−
0.

6
−

0.
2

0.
2

Classification subsets

PC1

P
C

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve

1−Specificity

S
en

si
tiv

ity −0.052

−0.2 0.0 0.2 0.4

−
0.

6
−

0.
2

0.
2

Classification subsets

PC1

P
C

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve

1−Specificity

S
en

si
tiv

ity

−0.12

−0.2 0.0 0.2 0.4

−
0.

6
−

0.
2

0.
2

Classification subsets

PC1

P
C

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve

1−Specificity

S
en

si
tiv

ity

−0.19

−0.2 0.0 0.2 0.4

−
0.

6
−

0.
2

0.
2

Classification subsets

PC1

P
C

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve

1−Specificity

S
en

si
tiv

ity

−0.27

Figure 15: Multivariate ROC curve estimation for the simultaneous diagnostic accuracy of genes
20202438, 18384097 and 03515901. Pepe and Thompson (2000) approach was used and classification
rules when FPR ∈ {0.1, 0.3, 0.6, 0.9}. The classification subsets are projected over the two first principal
components.

With comparison purposes, Figure 14 is repeated for the logistic regression model considering
restricted cubic splines, with the R code showed in the first for loop above with x <-"LRm_rcs". The
frontiers defining the decision rules are clearly more complex in this case.
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Figure 16: Multivariate ROC curve estimation for the simultaneous diagnostic accuracy of genes
20202438, 18384097 and 03515901. A logistic regression model considering restricted cubic splines was
used and classification rules when FPR ∈ {0.1, 0.3, 0.6} (from top to bottom). The classification subsets
are projected over the three pairs of original univariate markers (1-2, 1-3, 2-3, from left to right); points
in blue color for positive classification and in gray for negative.

Finally, the next code snippet saves a video with the construction of the multivariate ROC curve
illustrated in the third column of Figure 16, i.e. with the classification subsets projected over the genes
18384097 and 03515901. The resulting GIF file is called video_multiROC_LRm_rcs_proj23.gif.

R> x <- "LRm_rcs"
R> movieROC(list_multiroc[[x]], display.method = "OV", displayOV = c(2,3),
+ border = TRUE, lwd.curve = 4, cex = 1.2, col.threshold = colors[x],
+ file = "video_multiROC_LRm_rcs_proj23.gif")
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