## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----function_point_cloud, eval = FALSE--------------------------------------- # library(tidyverse) # library(ggpubr) # library(hypervolume) # # # load the example dataset # data(circles) # # # set seed for reproducibility # set.seed(42) # # # create gaussian hypervolumes from points using lapply # # and transform the resulting list in a HypervolumeList # hyper_list <- lapply(circles, function(x) hypervolume_gaussian(x)) # hyper_list <- hypervolume_join(hyper_list) # # # create labels to divide the hypervolumes in the resulting HypervolumeList # # into two groups # group_labels <- rep(letters[1:2], each = 10) # # # create an occupancy object from the hyper_list # # we will use the box method, and the summary statistics of each random point # # calculated as the mean value # hyper_occupancy <- hypervolume_n_occupancy(hyper_list, # method = "box", # classification = group_labels, # box_density = 5000, # FUN = mean) # # # transform the object hyper_occupancy to a data.frame for plotting # plot_hyper_occupancy <- hypervolume_to_data_frame(hyper_occupancy) # # # plot the hyper_occupancy, by removing ValueAtRandomPoints equal to 0 # # and by taking a subsample for shortening the time needed to generate the plot # plot_hyper_occupancy %>% # select(X.1, X.2, Name, ValueAtRandomPoints) %>% # filter(ValueAtRandomPoints != 0) %>% # group_by(Name) %>% # sample_n(10000) %>% # ungroup() %>% # ggplot(aes(X.1, X.2, col = ValueAtRandomPoints), alpha = 0.7) + # geom_point(size = 1, alpha = 0.5) + # theme_bw() + # facet_wrap(~ Name, ncol = 1) + # labs(x = "Axis 1", y = "Axis 2", color = "") + # scale_colour_continuous(high = "#132B43", low = "#add8e6") + # coord_fixed() # ## ----out.width="100%", echo=FALSE, fig.cap="Figure 1. Occupancy of two groups of hypervolumes. The first group (a) has most of the hypervolmes on the left while the second group (b) has most of the hypervolumes on the right. Occupancy is calculated for each random points as the fraction of hypervolumes enclosing the given random point."---- url <- "g1.png" knitr::include_graphics(url) ## ----evaluate_power_1, eval = FALSE------------------------------------------- # # set the folder to store the permutate hypervolumes # folder_name <- paste("circles_99", "20", sep = "_") # # # permute the hypervolumes 99 times # hyper_op <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 99, # cores = 4) # # perform a two-tailed permutation test # hyper_op_test<- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_op, # alternative = "two_sided") # # # # transform the results of the permutation test into a data.frame for plotting # # we will take a subset of the random points to reduce plotting times # plot_circles_test <- hypervolume_to_data_frame(hyper_occupancy_permute_test_ts) %>% # rename(occupancy = ValueAtRandomPoints) %>% # filter(occupancy != 0) %>% # sample_n(5000) # # # plot the results with ggplot2 # ggplot(plot_circles_test) + # geom_point(aes(x = X.1, y = X.2, col = occupancy)) + # theme_bw() + # scale_color_gradient(low = "orange", high = "blue", limits = c(-1, 1)) + # labs(x = "Axis 1", y = "Axis 2", color = "") ## ----out.width="100%", echo=FALSE, fig.cap="Figure 2. Results of a two-tailed permutation test perfomed on the circles dataset. The permutation test correctly identifies regions preferentially occupied by group a on the left and by group b on the right. Reported values represent the differences between occupancy values (calculated as the fraction of hypervolumes enclosing a given random point) of group a and those of group b. This is the reason why negative values are also reported."---- url <- "g2.png" knitr::include_graphics(url) ## ----evaluate_power, eval = FALSE--------------------------------------------- # # number of iterations # N <- 19 # # ### 9 permutations # # initialize an empty vector to store the volume of the significant # # fraction evaluated with the permutation test # res_9 <- c() # # for(i in 1:N){ # # name of the folder to store the permutations # # 9 = number of permutation # # i = number of iteration # # 20 = number of hypervolumes in hyper_list # folder_name <- paste("vol_same_coord_9", i, "20", sep = "_") # # # perform 9 hypervolume permutation # hyper_op <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 9, # cores = 4) # # # perform a two-tailed test # hyper_op_test <- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_op, # alternative = "two_sided") # # # store the volume of the signifiant fraction # res_9 <- c(res_9, hyper_op_test@Volume) # } # # # ### 19 permutations # res_19 <- c() # # for(i in 1:N){ # folder_name <- paste("vol_same_coord_19", i, "16", sep = "_") # hyper_occupancy_permute <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 19, cores = 4) # hyper_occupancy_permute_test_ts <- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_occupancy_permute, # alternative = "two_sided") # # res_19 <- c(res_19, hyper_occupancy_permute_test_ts@Volume) # } # # # # ### 99 permutations # res_99 <- c() # # for(i in 1:N){ # folder_name <- paste("vol_same_coord_99", i, "16", sep = "_") # hyper_occupancy_permute <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 99, cores = 4) # hyper_occupancy_permute_test_ts <- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_occupancy_permute, # alternative = "two_sided") # # res_99 <- c(res_99, hyper_occupancy_permute_test_ts@Volume) # } # # # ### 199 permutations # res_199 <- c() # # for(i in 1:N){ # folder_name <- paste("vol_same_coord_199", i, "16", sep = "_") # hyper_occupancy_permute <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 199, cores = 4) # # hyper_occupancy_permute_test_ts <- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_occupancy_permute, # alternative = "two_sided") # # res_199 <- c(res_199, hyper_occupancy_permute_test_ts@Volume) # } # # res_199 <- na.omit(res_199) # range(res_199) # mean(res_199) # median(res_199) # quantile(res_199, c(0.025, 0.975)) # # # ### 999 permutations # res_999 <- c() # # for(i in 1:N){ # folder_name <- paste("vol_same_coord_999", i, "16", sep = "_") # hyper_occupancy_permute <- hypervolume_n_occupancy_permute(folder_name, hyper_occupancy, # hyper_list, # n = 999, cores = 4) # # hyper_occupancy_permute_test_ts <- hypervolume_n_occupancy_test(hyper_occupancy, # hyper_occupancy_permute, # alternative = "two_sided") # # res_999 <- c(res_999, hyper_occupancy_permute_test_ts@Volume) # } # # res_999 <- na.omit(res_999) # # # ## ----out.width="100%", echo=FALSE, fig.cap="Figure 3. Number of permutations needed to have significant results for the circle dataset. A volume of 6.28 (the sum of the volume of both groups) is expected, because of the way the simulation was built. Group a have in fact significantly greater occupancy on the left while group by on the right (see figure 1). A minimum of 19 permutations are needed to have significant results at 0.05 level of significance.", out.width = "70%"---- url <- "simulation_results.png" knitr::include_graphics(url) ## ----pinus_acacia, eval = FALSE----------------------------------------------- # # set.seed # set.seed(42) # # # get climatic variables using the raster package # climate <- raster::getData('worldclim', var='bio', res=10) # # # Create a new climate variable # bio20<-climate[[18]]/(climate[[18]]+climate[[19]]) # slot(bio20@data, "names")<-"bio20" # # # Restrict our stack to 3 variables with low correlation # climate<-raster::stack(climate[[c(1,12)]],bio20) # rm(bio20) # # # Do a z-transform on our data # climate <- raster::scale(climate) # # # load data reporting occurrences of Pinus and Acacia species downloaded from BIEN # data("acacia_pinus") # # # get unique species # species_unique <- unique(acacia_pinus$species) # # # create hypervolumes for each species with a loop # # at first, create a list to store the hypervolumes # # and also a vector to store the genus information # hyper_list <- list() # genus_unique <- c() # # for(i in 1:length(species_unique)){ # # get climatic data of the ith species # data_i <- acacia_pinus %>% # filter(species == species_unique[i]) %>% # select(longitude, latitude) %>% # raster::extract(x = climate, # y = .) # # # remove NA data # data_i <- na.omit(data_i) # # # calculate the hypervolume assigning the species name # hyper_list[[i]] <- hypervolume(data_i, name = species_unique[i], verbose = FALSE) # # store the genus level information # genus_unique <- c(genus_unique, unlist(strsplit(species_unique[i], " "))[1]) # print(paste(species_unique[i], ": done", sep = "")) # } # # # transform hyper_list in an HypervolumeList # hyper_list <- hypervolume_join(hyper_list) # # # # increase box_density if you want more accurate results # # with mean as summary statistics # hyper_occupancy <- hypervolume_n_occupancy(hyper_list, # classification = genus_unique, # method = "box", # FUN = "mean") # # # transform hyper_occupancy into a data.frame for plotting # climatic_occupancy <- hypervolume_to_data_frame(hyper_occupancy) %>% # filter(ValueAtRandomPoints != 0) %>% # group_by(Name) %>% # sample_n(2000) %>% # ungroup() %>% # sample_n(nrow(.)) %>% # rename(genus = Name, occupancy = ValueAtRandomPoints) # # # plot bio1 vs bio12 # g1_12_points <- ggplot(climatic_occupancy) + # geom_point(aes(bio1, bio12, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#FFC20A", "#0C7BDC")) + # labs(title = "bio1 - bio12") # # # plot bio1 vs bio20 # g1_20_points <- ggplot(climatic_occupancy) + # geom_point(aes(bio1, bio20, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#FFC20A", "#0C7BDC")) + # labs(title = "bio1 - bio20") # # # plot bio12 vs bio20 # g12_20_points <- ggplot(climatic_occupancy) + # geom_point(aes(bio12, bio20, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#FFC20A", "#0C7BDC")) + # labs(title = "bio12 - bio20") # # # compose the plot # ggarrange(g1_12_points, g1_20_points, g12_20_points, # common.legend = TRUE, # legend = "right", # ncol = 3, # nrow = 1) # # ## ----out.width="100%", echo=FALSE, fig.cap="Figure 4. Results of the occupancy routine performed on climatic niches of multiple species of the Acacia and Pinus genera. The resulting hypervolumes looks highly overlapped."---- url <- "g3.png" knitr::include_graphics(url) ## ----pinus_acacia_test, eval = FALSE------------------------------------------ # # permute hypervolumes 999 times, can take long # get_adress_pa <- hypervolume_n_occupancy_permute("acacia_pinus", # hyper_occupancy, # hyper_list, # n = 999, # cores = 4, # verbose = FALSE) # # # perform a two-tailed test # pa_occupancy_test <- hypervolume_n_occupancy_test(hyper_occupancy, # path = get_adress_pa, # alternative = "two_sided", # p_adjust = "none") # # # transform hyper_occupancy into a data.frame for plotting # climatic_test <- hypervolume_to_data_frame(pa_occupancy_test) %>% # filter(ValueAtRandomPoints != 0) %>% # sample_n(2000) %>% # mutate(genus = ifelse(ValueAtRandomPoints>0, "Acacia", "Pinus")) %>% # mutate(occupancy = abs(ValueAtRandomPoints)) # # # plot bio1 vs bio12 # g1_12_test <- ggplot(climatic_test) + # geom_point(aes(bio1, bio12, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#E66100", "#5D3A9B")) + # labs(title = "bio1 - bio12") # # # plot bio1 vs bio20 # g1_20_test <- ggplot(climatic_test) + # geom_point(aes(bio1, bio20, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#E66100", "#5D3A9B")) + # labs(title = "bio1 - bio20") # # # plot bio12 vs bio20 # g12_20_test <- ggplot(climatic_test) + # geom_point(aes(bio12, bio20, col = genus, size = occupancy), alpha = 0.1) + # theme_bw() + # scale_size_continuous(limits = c(0, 1)) + # scale_colour_manual(values = c("#E66100", "#5D3A9B")) + # labs(title = "bio12 - bio20") # # # compose the plot # ggarrange(g1_12_test, g1_20_test, g12_20_test, # common.legend = TRUE, # legend = "right", # ncol = 3, # nrow = 1) # # ## ----out.width="100%", echo=FALSE, fig.cap="Figure 5. Results of the permutation test performed on the climatic niche of Acacia and Pinus genera. This two genera shows significant differences in space occupation on the three climatic variables selected."---- url <- "g4.png" knitr::include_graphics(url)