## ----setup, include=FALSE----------------------------------------------------- library(evola) ## ----------------------------------------------------------------------------- set.seed(1) # Data Gems <- data.frame( Color = c("Red", "Blue", "Purple", "Orange", "Green", "Pink", "White", "Black", "Yellow"), Weight = round(runif(9,0.5,5),2), Value = round(abs(rnorm(9,0,5))+0.5,2) ) head(Gems) ## ----------------------------------------------------------------------------- # Task: Gem selection. # Aim: Get highest combined value. # Restriction: Max weight of the gem combined = 10. res0<-evolafit(cbind(Weight,Value)~Color, dt= Gems, # constraints: if greater than this ignore constraintsUB = c(10,Inf), # constraints: if smaller than this ignore constraintsLB= c(-Inf,-Inf), # weight the traits for the selection traitWeight = c(0,1), # population parameters nCrosses = 100, nProgeny = 20, recombGens = 1, # coancestry parameters A=NULL, lambda=0, nQTLperInd = 1, # selection parameters propSelBetween = .9, propSelWithin =0.9, nGenerations = 15, verbose = FALSE ) pmonitor(res0) ## ----------------------------------------------------------------------------- # index for the best solution for trait Value best=bestSol(res0)["pop","Value"]; best # actual solution res0$M[best,] # value and weight for the selected solution xa = res0$M[best,] %*% as.matrix(Gems[,c("Weight","Value")]); xa ## ----fig.show='hold'---------------------------------------------------------- data(DT_cpdata) DT <- DT_cpdata head(DT) ## ----fig.show='hold'---------------------------------------------------------- # get best 20 individuals weighting variance by 0.5 res<-evolafit(cbind(Yield, occ)~id, dt= DT, # constraints: if sum is greater than this ignore constraintsUB = c(Inf,20), # constraints: if sum is smaller than this ignore constraintsLB= c(-Inf,-Inf), # weight the traits for the selection traitWeight = c(1,0), # population parameters nCrosses = 100, nProgeny = 10, # coancestry parameters A=A, lambda= (30*pi)/180 , nQTLperInd = 2, # selection parameters propSelBetween = 0.5, propSelWithin =0.5, nGenerations = 15, verbose=FALSE) ## ----fig.show='hold'---------------------------------------------------------- best = bestSol(res)["pop","Yield"]; sum(res$M[best,]) # total # of inds selected ## ----fig.show='hold'---------------------------------------------------------- pmonitor(res) plot(DT$Yield, col=as.factor(res$M[best,]), pch=(res$M[best,]*19)+1) ## ----------------------------------------------------------------------------- data(DT_technow) DT <- DT_technow DT$occ <- 1; DT$occ[1]=0 M <- M_technow A <- A.mat(M) head(DT) ## ----------------------------------------------------------------------------- # silent for CRAN checks restriction on vignettes time # run the genetic algorithm # res<-evolafit(formula = c(GY, occ)~hy, dt= DT, # # constraints: if sum is greater than this ignore # constraintsUB = c(Inf,100), # # constraints: if sum is smaller than this ignore # constraintsLB= c(-Inf,-Inf), # # weight the traits for the selection # traitWeight = c(1,0), # # population parameters # nCrosses = 100, nProgeny = 10, # # coancestry parameters # A=A, lambda= (20*pi)/180 , nQTLperInd = 100, # # selection parameters # propSelBetween = 0.5, propSelWithin =0.5, # nGenerations = 15, verbose=FALSE) # best = bestSol(res)["pop","GY"] # sum(res$M[best,]) # total # of inds selected ## ----------------------------------------------------------------------------- # pmonitor(res) # plot(DT$GY, col=as.factor(res$M[best,]), # pch=(res$M[best,]*19)+1) ## ----------------------------------------------------------------------------- data(DT_wheat) DT <- as.data.frame(DT_wheat) DT$id <- rownames(DT) # IDs DT$occ <- 1; DT$occ[1]=0 # to track occurrences DT$dummy <- 1; DT$dummy[1]=0 # dummy trait # if genomic # GT <- GT_wheat + 1; rownames(GT) <- rownames(DT) # A <- GT%*%t(GT) # A <- A/mean(diag(A)) # if pedigree A <- A_wheat ## ----------------------------------------------------------------------------- ##Perform eigenvalue decomposition for clustering ##And select cluster 5 as target set to predict pcNum=25 svdWheat <- svd(A, nu = pcNum, nv = pcNum) PCWheat <- A %*% svdWheat$v rownames(PCWheat) <- rownames(A) DistWheat <- dist(PCWheat) TreeWheat <- cutree(hclust(DistWheat), k = 5 ) plot(PCWheat[,1], PCWheat[,2], col = TreeWheat, pch = as.character(TreeWheat), xlab = "pc1", ylab = "pc2") vp <- rownames(PCWheat)[TreeWheat == 3]; length(vp) tp <- setdiff(rownames(PCWheat),vp) ## ----------------------------------------------------------------------------- As <- A[tp,tp] DT2 <- DT[rownames(As),] ## ----------------------------------------------------------------------------- res<-evolafit(cbind(dummy, occ)~id, dt= DT2, # constraints: if sum is greater than this ignore constraintsUB = c(Inf, 100), # constraints: if sum is smaller than this ignore constraintsLB= c(-Inf, -Inf), # weight the traits for the selection traitWeight = c(1,0), # population parameters nCrosses = 100, nProgeny = 10, # coancestry parameters A=As, lambda=(60*pi)/180, nQTLperInd = 80, # selection parameters propSelBetween = 0.5, propSelWithin =0.5, nGenerations = 15, verbose = FALSE) best = bestSol(res)["pop","dummy"] sum(res$M[best,]) # total # of inds selected ## ----------------------------------------------------------------------------- cex <- rep(0.5,nrow(PCWheat)) names(cex) <- rownames(PCWheat) cex[names(which(res$M[best,]==1))]=2 plot(PCWheat[,1], PCWheat[,2], col = TreeWheat, cex=cex, pch = TreeWheat, xlab = "pc1", ylab = "pc2") ## ----------------------------------------------------------------------------- DT2$cov <- apply(A[tp,vp],1,mean) ## ----------------------------------------------------------------------------- res<-evolafit(cbind(cov, occ)~id, dt= DT2, # constraints: if sum is greater than this ignore constraintsUB = c(Inf, 100), # constraints: if sum is smaller than this ignore constraintsLB= c(-Inf, -Inf), # weight the traits for the selection traitWeight = c(1,0), # population parameters nCrosses = 100, nProgeny = 10, # coancestry parameters A=As, lambda=(60*pi)/180, nQTLperInd = 80, # selection parameters propSelBetween = 0.5, propSelWithin =0.5, nGenerations = 15, verbose = FALSE) best = bestSol(res)["pop","cov"] sum(res$M[best,]) # total # of inds selected ## ----------------------------------------------------------------------------- cex <- rep(0.5,nrow(PCWheat)) names(cex) <- rownames(PCWheat) cex[names(which(res$M[best,]==1))]=2 plot(PCWheat[,1], PCWheat[,2], col = TreeWheat, cex=cex, pch = TreeWheat, xlab = "pc1", ylab = "pc2") ## ----------------------------------------------------------------------------- data(DT_technow) DT <- DT_technow DT$occ <- 1; DT$occ[1]=0 M <- M_technow A <- A.mat(M) Z=with(DT,overlay(dent,flint) )# Matrix::sparse.model.matrix(~dent-1, data=DT) rownames(Z) <- DT$hy # needed to link to the QTL matrix ## ----------------------------------------------------------------------------- # regular fitness function fitnessf <-function (Y, b, d, Q, Z) { fit <- Y %*% b - d return(fit) } # new fitness function with constraint fitnessf <-function (Y, b, d, Q, Z) { X=Q%*%Z[colnames(Q),] bad <- as.vector( apply(X,1, function(x){length(which(x > 5))}) ) bad <- which(bad > 0) fit <- Y %*% b - d if(length(bad) > 0){fit[bad,1]=min(fit[,1])} return(fit) } ## ----------------------------------------------------------------------------- # silent for CRAN checks restriction on time # res<-evolafit(formula = c(GY, occ)~hy, # dt= DT, # # constraints: if sum is greater than this ignore # constraintsUB = c(Inf,50), # # constraints: if sum is smaller than this ignore # constraintsLB= c(-Inf,-Inf), # # weight the traits for the selection # traitWeight = c(1,0), # # population parameters # nCrosses = 100, nProgeny = 10, # # coancestry parameters # A=A, lambda= (10*pi)/180 , nQTLperInd = 40, # # new fitness function and additional args # fitnessf = fitnessf, Z=Z, # # selection parameters # propSelBetween = 0.5, propSelWithin =0.5, # nGenerations = 15, verbose=FALSE) # # best = bestSol(res)["pop","GY"] # xa = (res$M %*% DT$GY)[best,]; xa # xAx = res$M[best,] %*% A %*% res$M[best,]; xAx # sum(res$M[best,]) # total # of inds selected ## ----------------------------------------------------------------------------- # # check how many times an individual was used in the final crosses # crosses <- data.frame(cross=names(which( res$M[best,] == 1))) # table(unlist(strsplit(crosses$cross,":"))) # # check performance of crosses selected # plot(DT$GY, col=as.factor(res$M[best,]), # pch=(res$M[best,]*19)+1) ## ----------------------------------------------------------------------------- data("mtcars") mtcars <- as.data.frame(apply(mtcars,2,scale)) mtcars$inter <- 1 # head(mtcars) # relationship between the 2 variables # plot(mpg~hp, data=mtcars) mod <- lm(mpg~hp, data=mtcars);mod # create initial QTL effects a <- seq(-1,1,.1);a dt <- as.data.frame(expand.grid(a,a)) colnames(dt) <- paste0("alpha",1:ncol(dt)) dt$qtl=paste0("Q",1:nrow(dt)) dt$inter <- rnorm(nrow(dt)) head(dt) # create n samples equivalent to the number of progeny # you are planning to simulate (e.g., 1000) sam <- sample(1:nrow(mtcars),500,replace = TRUE) y <- mtcars$mpg[sam] one <- rep(1,length(y)) x <- mtcars$hp[sam] x2 <- mtcars$hp[sam]^2 X <- cbind(one,x) plot(x,y) # Task: linear regression res0<-evolafit(formula=cbind(inter,alpha1)~qtl, dt= dt, # constraints: if greater than this ignore constraintsUB = c(Inf,Inf), # constraints: if smaller than this ignore constraintsLB= c(-Inf,-Inf), # weight the traits for the selection traitWeight = c(1,1), # population parameters nCrosses = 50, nProgeny = 10, recombGens = 1, # coancestry parameters A=NULL, lambda=0, nQTLperInd = 1, # least MSE function (y - Xb)^2 fitnessf=function(Y,b,d,Q,x,y){ apply(( (y%*%Jc(500)) - ( X%*%t(Y)) )^2,2,sum) }, # selection parameters propSelBetween = 0.5, propSelWithin =0.5, selectTop=FALSE, nGenerations = 15, y=y, x=x, verbose = FALSE ) # develop a joint fitness function that uses all traits pmonitor(res0) # this time the best solution is the one that minimizes the error error = ( stan(y) - apply( X*res0$pheno,1,sum ) )^2 best=which(error == min(error))[1] xa=res0$M[best,] %*% as.matrix(dt[,c("inter","alpha1")]); xa plot( as.matrix(mtcars[,c("inter","hp")]) %*% t(xa) , mtcars$mpg, main="Correlation between GA-prediction and observed") # GA plot( (mtcars$hp * mod$coefficients[2] ) + mod$coefficients[1] , mtcars$mpg, main="Correlation between lm-prediction and observed") # LM # Correlation between GA-prediction and observed cor( as.matrix(mtcars[,c("inter","hp")]) %*% t(xa) , mtcars$mpg) # Correlation between lm-prediction and observed cor( (mtcars$hp * mod$coefficients[2] ) + mod$coefficients[1] , mtcars$mpg) # LM