--- title: "Dynamic factor analysis" author: "James Thorson" output: rmarkdown::html_vignette #output: rmarkdown::pdf_document vignette: > %\VignetteIndexEntry{Dynamic factor analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) # Install locally # devtools::install_local( R'(C:\Users\James.Thorson\Desktop\Git\dsem)', force=TRUE ) # Build # setwd(R'(C:\Users\James.Thorson\Desktop\Git\dsem)'); devtools::build_rmd("vignettes/dynamic_factor_analysis.Rmd") ``` ## Dynamic factor analysis `dsem` is an R package for fitting dynamic structural equation models (DSEMs) with a simple user-interface and generic specification of simultaneous and lagged effects in a potentially recursive structure. Here, we highlight how DSEM can be used to implement dynamic factor analysis (DFA). We specifically replicate analysis using the Multivariate Autoregressive State-Space (MARSS) package, using data that are provided as an example in the MARSS package. ```{r setup, echo=TRUE, message=FALSE} library(dsem) library(MARSS) library(ggplot2) data( harborSealWA, package="MARSS") # Define helper function grab = \(x,name) x[which(names(x)==name)] # Define number of factors # n_factors >= 3 doesn't seem to converge using DSEM or MARSS without penalties n_factors = 2 ``` ## Using MARSS We first illustrate a DFA model using two factors, fitted using MARSS: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Load data dat <- t(scale(harborSealWA[,c("SJI","EBays","SJF","PSnd","HC")])) # DFA with 3 states; used BFGS because it fits much faster for this model fit_MARSS <- MARSS( dat, model = list(m=n_factors), form="dfa", method="BFGS", silent = TRUE ) ``` We can then plot the estimated factors (latent variables): ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=3.5} # Plots states using all data plot(fit_MARSS, plot.type="xtT") ``` And the estimated predictor for measurements (manifest variables): ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Plot expectation for data using all data plot(fit_MARSS, plot.type="fitted.ytT") ``` ## Full-rank covariance using DSEM In DSEM syntax, we can first fit a saturated (full-covariance) model using the argument `covs`: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7, warning=FALSE} # Add factors to data tsdata = ts( cbind(harborSealWA[,c("SJI","EBays","SJF","PSnd","HC")]), start=1978) # Scale and center (matches with MARSS does when fitting a DFA) tsdata = scale( tsdata, center=TRUE, scale=TRUE ) # Define SEM sem = " # Random-walk process for variables SJF -> SJF, 1, NA, 1 SJI -> SJI, 1, NA, 1 EBays -> EBays, 1, NA, 1 PSnd -> PSnd, 1, NA, 1 HC -> HC, 1, NA, 1 " # Initial fit mydsem0 = dsem( tsdata = tsdata, covs = c("SJF, SJI, EBays, PSnd, HC"), sem = sem, family = rep("normal", 5), control = dsem_control( quiet = TRUE, run_model = FALSE ) ) # fix all measurement errors at diagonal and equal map = mydsem0$tmb_inputs$map map$lnsigma_j = factor( rep(1,ncol(tsdata)) ) # mydsem_full = dsem( tsdata = tsdata, covs = c("SJF, SJI, EBays, PSnd, HC"), sem = sem, family = rep("normal", 5), control = dsem_control( quiet = TRUE, map = map ) ) ``` We can then define a custom function to plot states: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} plot_states = function( out, vars=1:ncol(out$tmb_inputs$data$y_tj) ){ # xhat_tj = as.list(out$sdrep,report=TRUE,what="Estimate")$z_tj[,vars,drop=FALSE] xse_tj = as.list(out$sdrep,report=TRUE,what="Std. Error")$z_tj[,vars,drop=FALSE] # longform = expand.grid( Year=time(tsdata), Var=colnames(tsdata)[vars] ) longform$est = as.vector(xhat_tj) longform$se = as.vector(xse_tj) longform$upper = longform$est + 1.96*longform$se longform$lower = longform$est - 1.96*longform$se longform$data = as.vector(tsdata[,vars,drop=FALSE]) # ggplot(data=longform) + #, aes(x=interaction(var,eq), y=Estimate, color=method)) + geom_line( aes(x=Year,y=est) ) + geom_point( aes(x=Year,y=data), color="blue", na.rm=TRUE ) + geom_ribbon( aes(ymax=as.numeric(upper),ymin=as.numeric(lower), x=Year), color="grey", alpha=0.2 ) + facet_wrap( facets=vars(Var), scales="free", ncol=2 ) } plot_states( mydsem_full ) ``` These estimated states follow the data more closely and have smaller estimated confidence intervals. Presumably this occurs because we are using a full-rank covariance so far. ## Reduced-rank factor model with measurement errors Next, we can specify two factors factors while eliminating additional process error and estimating measurement errors. This requires us to switch to `gmrf_parameterization = "projection"`, so that we can fit a rank-deficient Gaussian Markov random field: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Add factors to data tsdata = harborSealWA[,c("SJI","EBays","SJF","PSnd","HC")] newcols = array( NA, dim = c(nrow(tsdata),n_factors), dimnames = list(NULL,paste0("F",seq_len(n_factors))) ) tsdata = ts( cbind(tsdata, newcols), start=1978) # Scale and center (matches with MARSS does when fitting a DFA) tsdata = scale( tsdata, center=TRUE, scale=TRUE ) # Automated version #sem = make_dfa( variables = c("SJI","EBays","SJF","PSnd","HC"), # n_factors = n_factors ) # Manual specification to show structure, using equations-and-lags interface equations = " # Loadings of variables onto factors SJI = L11(0.1) * F1 EBays = L12(0.1) * F1 + L22(0.1) * F2 SJF = L13(0.1) * F1 + L23(0.1) * F2 PSnd = L14(0.1) * F1 + L24(0.1) * F2 HC = L15(0.1) * F1 + L25(0.1) * F2 # random walk for factors F1 = NA(1) * lag[F1,1] F2 = NA(1) * lag[F2,1] # Unit variance for factors V(F1) = NA(1) V(F2) = NA(1) # Zero residual variance for variables V(SJI) = NA(0) V(EBays) = NA(0) V(SJF) = NA(0) V(PSnd) = NA(0) V(HC) = NA(0) " sem = convert_equations(equations) # Initial fit mydsem0 = dsem( tsdata = tsdata, sem = sem, family = c( rep("normal",5), rep("fixed",n_factors) ), estimate_delta0 = TRUE, control = dsem_control( quiet = TRUE, run_model = FALSE, gmrf_parameterization = "projection" ) ) # fix all measurement errors at diagonal and equal map = mydsem0$tmb_inputs$map map$lnsigma_j = factor( rep(1,ncol(tsdata)) ) # Fix factors to have initial value, and variables to not map$delta0_j = factor( c(rep(NA,ncol(harborSealWA)-1), 1:n_factors) ) # Fix variables to have no stationary mean except what's predicted by initial value map$mu_j = factor( rep(NA,ncol(tsdata)) ) # profile "delta0_j" to match MARSS (which treats initial condition as unpenalized random effect) mydfa = dsem( tsdata = tsdata, sem = sem, family = c( rep("normal",5), rep("fixed",n_factors) ), estimate_delta0 = TRUE, control = dsem_control( quiet = TRUE, map = map, use_REML = TRUE, #profile = "delta0_j", gmrf_parameterization = "projection" ) ) ``` We again plot the estimated latent variables ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=3.5} # Plot estimated factors plot_states( mydfa, vars=5+seq_len(n_factors) ) ``` and the estimated predictor for manifest variables ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Plot estimated variables plot_states( mydfa, vars=1:5 ) ``` This results in similar (but not identical) factor values using MARSS and DSEM. In particular, DSEM has higher variance in early years. This likely arises because the default MARSS implementation of DFA includes a penalty of the initial state $\mathbf{x}_0$ with mean zero and variance of $5\mathbf{I}$. This term presumably provides additional information about the initial year such that MARSS DFA results are not invariant to reversing the order of the data. To further explore, we can modify the MARSS DFA to eliminate the prior on initial conditions, based on help from Dr. Eli Holmes. This involves specifying: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Extract internal settings modmats <- summary(fit_MARSS$model, silent=TRUE) # Redefine defaults modmats$V0 <- matrix(0, n_factors, n_factors ) modmats$x0 <- "unequal" # Refit fit_MARSS2 = MARSS( dat, model = modmats, silent = TRUE, control = list( abstol = 0.001, conv.test.slope.tol = 0.01, maxit = 1000 )) ``` These have estimated time-series that are more similar to those from DSEM ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=3.5} # Plots states using all data plot(fit_MARSS2, plot.type="xtT") ``` We can now compare the three options in terms of the fitted log-likelihood: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Compare likelihood for MARSS and DSEM Table = c( "MARSS" = logLik(fit_MARSS), "DSEM" = logLik(mydfa), "MARSS_no_pen" = logLik(fit_MARSS2) ) knitr::kable( Table, digits=3) ``` which confirms that the MARSS model without a penalty on initial conditions results in the same likelihood as DSEM. Finally, we can also compare the three options in terms of estimated loadings: ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} Table = cbind( "MARSS" = as.vector(fit_MARSS$par$Z), "DSEM" = grab(mydfa$opt$par,"beta_z"), "MARSS_no_pen" = as.vector(fit_MARSS2$par$Z) ) rownames(Table) = names(fit_MARSS$coef)[1:nrow(Table)] knitr::kable( Table, digits=3) ``` The estimating loadings are similar using DSEM and the MARSS model without initial penalty, except with label switching (where some factors and loadings can be multiplied by -1 with no change in the model):