--- title: "Getting started with datamods" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting started with datamods} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` ```{r setup} library(datamods) ``` The {datamods} package contains modules to work with data in Shiny application, currently the following modules are implemented : * Import modules : import data from various sources * Update table structure: select columns to keep, rename variable and convert from a class to anoter (e.g. numeric to character) * Filter data : interactively filter a `data.frame` * Validate : check that data respect some expectations (with [package {validate}](https://cran.r-project.org/package=validate)) * Sample data: interactively sample a `data.frame`. ## Import ### From environment Imports data from the user's global environment or a package environment to retrieve included in it. It searches for data sets in the global environment and lets the user choose the data to use. ```r # UI import_globalenv_ui("myid") # Server imported <- import_globalenv_server("myid") ``` ### From file Imports data from an external file. The file can be of any format, csv, xlsx, tsv etc.. Import is performed by package [rio](https://github.com/gesistsa/rio). In case of Excel files, it gives an option to choose the sheet. ```r # UI import_file_ui("myid") # Server imported <- import_file_server("myid") ``` ### From clipboard Imports data via copy/paste. Simply copy and paste data from any source. ```r # UI import_copypaste_ui("myid") # Server imported <- import_copypaste_server("myid") ``` ### From Googlesheet Imports data from a Googlesheet. Use the shareable link to read data. ```r # UI import_googlesheets_ui("myid") # Server imported <- import_googlesheets_server("myid") ``` ### From URL Imports data from a URL. Only flat data in any format supported by [package rio](https://CRAN.R-project.org/package=rio/vignettes/rio.html#Supported_file_formats). ```r # UI import_url_ui("myid") # Server imported <- import_url_server("myid") ``` ### Usage All modules are used in the same way in a Shiny application, here is an example: ```r library(shiny) library(datamods) ui <- fluidPage( tags$h3("Import data with copy & paste"), fluidRow( column( width = 4, import_copypaste_ui("myid") ), column( width = 8, tags$b("Imported data:"), verbatimTextOutput(outputId = "status"), verbatimTextOutput(outputId = "data") ) ) ) server <- function(input, output, session) { imported <- import_copypaste_server("myid") output$status <- renderPrint({ imported$status() }) output$data <- renderPrint({ imported$data() }) } shinyApp(ui, server) ``` All modules have the same return value server-side, a `list` with three slots: * **status**: a `reactive` function returning the status: `NULL`, `error` or `success`. * **name**: a `reactive` function returning the name of the imported data as `character`. * **data**: a `reactive` function returning the imported `data.frame`. ### Modal Window All modules can be launched at once in a modal window: Launch the modal server-side with: ```r observeEvent(input$launch_modal, { import_modal( id = "myid", title = "Import data to be used in application" ) }) ``` See `?import_modal` for a complete example. ## Update Modules This module allow to dynamically select, rename and convert variables of a dataset. Some options for converting to date and numeric are available in a dropdown menu. Return value of the module is a `reactive` function with the update data. ## Validate When importing data into an application it can be useful to check that data respect some expectations: number of rows/columns, existence of a variable, ... This module allow to validate rules defined with package [validate](https://github.com/data-cleaning/validate). ```r # UI validation_ui("validation", display = "inline") # Server results <- validation_server( id = "validation", data = dataset, n_row = ~ . > 20, # more than 20 rows n_col = ~ . >= 3, # at least 3 columns rules = myrules ) # Rules are defined as follow: myrules <- validator( is.character(Manufacturer) | is.factor(Manufacturer), is.numeric(Price), Price > 12, # we should use 0 for testing positivity, but that's for the example !is.na(Luggage.room), in_range(Cylinders, min = 4, max = 8), Man.trans.avail %in% c("Yes", "No") ) # Add some labels label(myrules) <- c( "Variable Manufacturer must be character", "Variable Price must be numeric", "Variable Price must be strictly positive", "Luggage.room must not contain any missing values", "Cylinders must be between 4 and 8", "Man.trans.avail must be 'Yes' or 'No'" ) # you can also add a description() ``` Validation results can be displayed in a dropdown menu (above left) or inline where the module is called. The return value server-side is a list with the following items: * **status**: a reactive function returning the best status available between "OK", "Failed" or "Error". * **details**: a reactive function returning a list with validation details. ## Filter Interactively filter a `data.frame` and generate code to reproduce filters applied: ```r # UI filter_data_ui("filtering", max_height = "500px") # Server res_filter <- filter_data_server( id = "filtering", data = reactive(mtcars), name = reactive("mtcars"), vars = reactive(names(mtcars)), widget_num = "slider", widget_date = "slider", label_na = "Missing" ) ``` You can select variables for which to create a filter and choose widgets used to create the UI filter. The return value server-side is a list with the following items: * **filtered**: a `reactive` function returning the data filtered. * **code**: a `reactive` function returning the dplyr pipeline to filter data. * **expr**: a `reactive` function returning an expression to filter data. ## Sample Interactively sample a `data.frame` to keep only part of the data, depending on the number or proportion of rows to keep. ```r # UI sample_ui("myID") # Server result_sample <- sample_server("myID", reactive(iris)) ``` ## Edit Interactively edit a `data.frame`, this module also allow to : * **adding**, **deleting** and **modifying** rows * choosing **editable columns** and choosing **mandatory columns** * **exporting data** (csv and Excel) ```r # UI edit_data_ui(id = "id") # Server res_edited <- edit_data_server( id = "id", data_r = reactive(demo_edit), add = TRUE, update = TRUE, delete = TRUE, download_csv = TRUE, download_excel = TRUE, file_name_export = "datas", var_edit = c("name", "job", "credit_card_provider", "credit_card_security_code"), var_mandatory = c("name", "job") ) ``` This module returns the edited table with the user modifications. See ?demo_edit to see the data created for this data edit example.