## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE------------------------------------------------------------ require(causalBatch) require(ggplot2) require(tidyr) n = 200 ## ----eval=FALSE--------------------------------------------------------------- # vignette("cb.simulations", package="causalBatch") ## ----------------------------------------------------------------------------- # a function for plotting a scatter plot of the data plot.sim <- function(Ys, Ts, Xs, title="", xlabel="Covariate", ylabel="Outcome (1st dimension)") { data = data.frame(Y1=Ys[,1], Y2=Ys[,2], Group=factor(Ts, levels=c(0, 1), ordered=TRUE), Covariates=Xs) data %>% ggplot(aes(x=Covariates, y=Y1, color=Group)) + geom_point() + labs(title=title, x=xlabel, y=ylabel) + scale_x_continuous(limits = c(-1, 1)) + scale_color_manual(values=c(`0`="#bb0000", `1`="#0000bb"), name="Group/Batch") + theme_bw() } ## ----fig.width=5, fig.height=3------------------------------------------------ sim = cb.sims.sim_sigmoid(n=n, eff_sz=1, unbalancedness=1.5) plot.sim(sim$Ys, sim$Ts, sim$Xs, title="Sigmoidal Simulation") ## ----------------------------------------------------------------------------- result <- cb.detect.caus_cdcorr(sim$Ys, sim$Ts, sim$Xs, R=100) ## ----------------------------------------------------------------------------- print(sprintf("p-value: %.4f", result$Test$p.value)) ## ----------------------------------------------------------------------------- # compute distance matrix for outcomes DY = dist(sim$Ys) ## ----------------------------------------------------------------------------- result <- cb.detect.caus_cdcorr(DY, sim$Ts, sim$Xs, distance=TRUE, R=100)