## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = nzchar(Sys.getenv("COMPILE_VIG")) ) ## ----setup-------------------------------------------------------------------- library(dplyr, warn.conflicts = FALSE) library(ggplot2) library(cansim) ## ----------------------------------------------------------------------------- connection.parquet <- get_cansim_connection("20-10-0001") # format='parquet' is the default glimpse(connection.parquet) ## ----------------------------------------------------------------------------- connection.feather <- get_cansim_connection("20-10-0001", format='feather') glimpse(connection.feather) ## ----------------------------------------------------------------------------- connection.sqlite <- get_cansim_connection("20-10-0001", format='sqlite') glimpse(connection.sqlite) ## ----------------------------------------------------------------------------- get_cansim_table_overview("20-10-0001") ## ----------------------------------------------------------------------------- data.parquet <- connection.parquet %>% filter(GEO=="Canada", `Seasonal adjustment`=="Unadjusted", Sales=="Units", `Origin of manufacture`=="Total, country of manufacture", `Vehicle type` %in% c("Passenger cars","Trucks")) %>% collect_and_normalize() data.parquet %>% head() ## ----------------------------------------------------------------------------- data.feather <- connection.feather %>% filter(GEO=="Canada", `Seasonal adjustment`=="Unadjusted", Sales=="Units", `Origin of manufacture`=="Total, country of manufacture", `Vehicle type` %in% c("Passenger cars","Trucks")) %>% collect_and_normalize() data.feather %>% head() ## ----------------------------------------------------------------------------- data.sqlite <- connection.sqlite %>% filter(GEO=="Canada", `Seasonal adjustment`=="Unadjusted", Sales=="Units", `Origin of manufacture`=="Total, country of manufacture", `Vehicle type` %in% c("Passenger cars","Trucks")) %>% collect_and_normalize() data.sqlite %>% head() ## ----------------------------------------------------------------------------- data.memory <- get_cansim("20-10-0001") %>% filter(GEO=="Canada", `Seasonal adjustment`=="Unadjusted", Sales=="Units", `Origin of manufacture`=="Total, country of manufacture", `Vehicle type` %in% c("Passenger cars","Trucks")) data.memory %>% head() ## ----------------------------------------------------------------------------- data.parquet %>% filter(Date>=as.Date("1990-01-01")) %>% ggplot(aes(x=Date,y=val_norm,color=`Vehicle type`)) + geom_smooth(span=0.2,method = 'loess', formula = y ~ x) + theme(legend.position="bottom") + scale_y_continuous(labels = function(d)scales::comma(d,scale=10^-3,suffix="k")) + labs(title="Canada new motor vehicle sales",caption="StatCan Table 20-10-0001", x=NULL,y="Number of units") ## ----------------------------------------------------------------------------- list_cansim_cached_tables() ## ----------------------------------------------------------------------------- disconnect_cansim_sqlite(connection.sqlite) remove_cansim_cached_tables("20-10-0001")