## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = T, message = F, warning = F--------------------------------------- library(WRTDStidal) ## ----------------------------------------------------------------------------- # import data data(chldat) # data format str(chldat) ## ----eval = F----------------------------------------------------------------- # # load a fitted model, quantiles # data(tidfit) # # # load a fitted model, mean # data(tidfitmean) # # # or recreate the quanitile models from chldat # tidfit <- modfit(chldat, tau = c(0.1, 0.5, 0.9)) # # # or recreate the mean model from chldat # tidfitmean <- modfit(chldat, resp_type = 'mean') ## ----fig.height = 6, fig.width = 8-------------------------------------------- # create a tidal object from a data frame, or use tidalmean function tidobj <- tidal(chldat) # plot the raw data obsplot(tidobj) ## ----------------------------------------------------------------------------- # data head(tidobj) # names of the attributes names(attributes(tidobj)) # load a fitted tidal object, or use tidfitmean data(tidfit) # fitted data head(tidfit) # fitted attributes names(attributes(tidfit)) ## ----message = FALSE, cache = TRUE-------------------------------------------- # get wrtds results, quantile model mod <- modfit(chldat) # get wrtds mean model mod <- modfit(chldat, resp_type = 'mean') ## ----message = FALSE, eval = FALSE-------------------------------------------- # # this is equivalent to running modfit # # modfit is a wrapper for tidal, wrtds, respred, and resnorm functions # # # pipes from the dplyr (magrittr) package are used for simplicity # library(dplyr) # # # quantile model # mod <- tidal(chldat) %>% # creates a tidal object # wrtds %>% # creates wrtds interpolation grids # respred %>% # get predictions from grids # resnorm # get normalized predictions from grids # # # mean model # mod <- tidalmean(chldat) %>% # creates a tidal object # wrtds %>% # creates wrtds interpolation grids # respred %>% # get predictions from grids # resnorm # get normalized predictions from grids ## ----eval = FALSE------------------------------------------------------------- # ## fit the model and get predicted/normalized chlorophyll data # # default median fit, quantile model # # grids predicted across salinity range with ten values # mod <- modfit(chldat) # # ## fit different quantiles and smaller interpolation grid # mod <- modfit(chldat, tau = c(0.2, 0.8), flo_div = 5) # # ## fit with different window widths # # half-window widths of one day, five years, and 0.3 salinity # mod <- modfit(chldat, wins = list(1, 5, 0.3)) # # ## suppress console output # mod <- modfit(chldat, trace = FALSE) ## ----fig.height=4, fig.width=8, message=FALSE, warning=FALSE------------------ # load data from the package for the example data(tidfit) # plot using fitplot function fitplot(tidfit) # plot non-aggregated results fitplot(tidfit, annuals = FALSE) ## ----fig.height=4, fig.width=8, message=FALSE, warning=FALSE------------------ # plot january, july as defaults sliceplot(tidfit) ## ----fig.height=6, fig.width=8, message=FALSE, warning=FALSE------------------ # fits by month, normalized fitmoplot(tidfit, predicted = F) ## ----fig.height=4, fig.width=8, message=FALSE, warning=FALSE------------------ seasplot(tidfit) ## ----fig.height=4, fig.width=8, message=FALSE, warning=FALSE------------------ seasyrplot(tidfitmean, predicted = F) ## ----fig.height=4, fig.width=8, message=FALSE, warning=FALSE------------------ # plot predicted, normalized results for each quantile prdnrmplot(tidfit) # plot as monthly values prdnrmplot(tidfit, annuals = FALSE) ## ----fig.height=6, fig.width=8, message=FALSE, warning=FALSE------------------ # plot using defaults # defaults to the fiftieth quantile dynaplot(tidfit) ## ----fig.height=6, fig.width=8, message=FALSE, warning=FALSE------------------ # create a gridded plot # defaults to the fiftieth quantile gridplot(tidfit) gridplot(tidfit, month = 'all') ## ----fig.height=6, fig.width=8, message=FALSE, warning=FALSE------------------ library(dplyr) library(plotly) dat <- attr(tidfitmean, 'fits') %>% .[[1]] %>% select(-date, -year, -month, -day) %>% as.matrix scene <- list( aspectmode = 'manual', aspectratio = list(x = 0.5, y = 1, z = 0.3), xaxis = list(title = 'Salinity'), yaxis = list(title = 'Time'), zaxis = list(title = 'log-Chl') ) p <- plot_ly(z = ~dat) %>% add_surface(colors = rev(RColorBrewer::brewer.pal(11, 'Spectral'))) %>% layout(scene = scene) p ## ----fig.height=7, fig.width=7, message=FALSE, warning=FALSE------------------ # wt plot wtsplot(tidfit, ref = '1995-07-01') ## ----fig.height=3, fig.width=5, message=FALSE, warning=FALSE------------------ # create a nobsplot nobsplot(tidfit) ## ----------------------------------------------------------------------------- wrtdsperf(tidfit) # setup month, year categories for trend summaries mobrks <- list(c(1, 2, 3), c(4, 5, 6), c(7, 8, 9), c(10, 11, 12)) yrbrks <- c(-Inf, 1985, 1994, 2003, Inf) molabs <- c('JFM', 'AMJ', 'JAS', 'OND') yrlabs <- c('1974-1985', '1986-1994', '1995-2003', '2004-2012') wrtdstrnd(tidfit, mobrks, yrbrks, molabs, yrlabs) ## ----------------------------------------------------------------------------- wrtdstrnd_sk(tidfit, mobrks, yrbrks, molabs, yrlabs)