--- title: "TextForecast R package documentation" author: - name : "Luiz Renato Lima" affiliation : "Department of Economics, University of Tennessee, Knoxville, United States and Department of Economics, Federal University of Paraiba, Brazil." email : "llima@utk.edu" - name : "Lucas Godeiro" affiliation : "Department of Applied Social Sciences, Federal Rural University of the Semi-arid Region – UFERSA, Brazil." email : "lucasgodeiro@ufersa.edu.br" affiliation: - id : "1" institution : "Department of Economics, University of Tenessee, Knoxville, United States." - id : "2" institution : "Department of Economics, Federal University of Paraiba, Brazil." - id : "3" institution : "Department of Applied Social Sciences, Federal Rural University of the Semi-arid Region – UFERSA, Brazil." authornote: | Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line. Enter author note here. date: "`r Sys.Date()`" bibliography: Bibliography.bib output: rmarkdown::html_vignette: number_sections: true toc: true pdf_document: number_sections: true toc: true vignette: > %\VignetteIndexEntry{TextForecast R package documentation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" , warning=FALSE, eval = FALSE ) ``` This vignettes shows the functions and examples of the **TextForecast** package. The package functions are based on the @limagodeiromohsin2018 paper and @godeiro2018ensaios Ph.D. thesis. # Installation You can install the released version of TextForecast from github with: ``` r install.packages("devtools") library(devtools) devtools::install_github("lucasgodeiro/TextForecast") install.packages("TextForecast") ``` # get_words function This function counts the words of the texts in the PDF format. ## Arguments **corpus_dates:** A vector of characters indicating the subfolders where are located the texts. **ntrms:** maximum numbers of words that will be filtered by tf-idf. We rank the word by tf-idf in a decreasing order. Then, we select the words with the ntrms highest tf-idf. **st:** set 0 to stem the words and 1 otherwise. **path_name:** the folders path where the subfolders with the dates are located. **language** the texts language. Default is english. ## Value a list containing a matrix with the all words counting and another with a td-idf filtered words couting according to the ntrms. ## Example This is a basic example which shows you how todo a word counting from PDF files. The PDF files contains monthly financial News from The Wall Street Journal and The New York Times between 2017 and 2018. ```{r get words example} ## Example from function get_words. library(TextForecast) st_year=2017 end_year=2018 path_name=system.file("news",package="TextForecast") qt=paste0(sort(rep(seq(from=st_year,to=end_year,by=1),12)), c("m1","m2","m3","m4","m5","m6","m7","m8","m9","m10","m11","m12")) z_wrd=get_words(corpus_dates=qt[1:6],path_name=path_name,ntrms=10,st=0) zz=z_wrd[[2]] head(zz) ``` # get_collocations function This function counts the collocations of the texts in the PDF format. The PDF files contains monthly financial News from The Wall Street Journal and The New York Times between 2017 and 2018. ## Arguments **corpus_dates:** a character vector indicating the subfolders where are located the texts. **path_name:** the folders path where the subfolders with the dates are located. **ntrms:** maximum numbers of collocations that will be filtered by tf-idf. We rank the collocations by tf-idf in a decreasing order. Then, after we select the words with the ntrms highest tf-idf. **ngrams_number:** integer indicating the size of the collocations. Defaults to 2, indicating to compute bigrams. If set to 3, will find collocations of bigrams and trigrams. **min_freq:** integer indicating the frequency of how many times a collocation should at least occur in the data in order to be returned. **language** the texts language. Default is english. ## Value a list containing a matrix with the all collocations counting and another with a td-idf filtered collocations couting according to the ntrms. ## Example ```{r get collocations example} library(TextForecast) st_year=2017 end_year=2018 path_name=system.file("news",package="TextForecast") qt=paste0(sort(rep(seq(from=st_year,to=end_year,by=1),12)), c("m1","m2","m3","m4","m5","m6","m7","m8","m9","m10","m11","m12")) z_coll=get_collocations(corpus_dates=qt[1:23],path_name=path_name, ntrms=20,ngrams_number=3,min_freq=10) zz=z_coll[[2]] #head(zz) knitr::kable(head(zz, 23)) ``` # get_terms function This function counts the terms of the texts in the PDF format. ## Arguments **corpus_dates:** a character vector indicating the subfolders where are located the texts. **ntrms_words:** maximum numbers of words that will be filtered by tf-idf. We rank the word by tf-idf in a decreasing order. Then, we select the words with the ntrms highest tf-idf. **st:** set 0 to stem the words and 1 otherwise. **path.name:** the folders path where the subfolders with the dates are located. **ntrms_collocation:** maximum numbers of collocations that will be filtered by tf-idf. We rank the collocations by tf-idf in a decreasing order. Then, after we select the words with the ntrms highest tf-idf. **ngrams_number:** integer indicating the size of the collocations. Defaults to 2, indicating to compute bigrams. If set to 3, will find collocations of bigrams and trigrams. **min_freq:** integer indicating the frequency of how many times a collocation should at least occur in the data in order to be returned. **language** the texts language. Default is english. ##Value a list containing a matrix with the all collocations and words couting and another with a td-idf filtered collocations and words counting according to the ntrms. ##Example This function counts the words and collocations of the texts in the PDF format. The PDF files contains monthly financial News from The Wall Street Journal and The New York Times between 2017 and 2018. ```{r get terms example} library(TextForecast) st_year=2017 end_year=2018 path_name=system.file("news",package="TextForecast") qt=paste0(sort(rep(seq(from=st_year,to=end_year,by=1),12)), c("m1","m2","m3","m4","m5","m6","m7","m8","m9","m10","m11","m12")) z_terms=get_terms(corpus_dates=qt[1:23],path.name=path_name,ntrms_words=10, ngrams_number=3,st=0,ntrms_collocation=10,min_freq=10) zz=z_terms[[2]] #head(zz,23) knitr::kable(head(zz, 23)) ``` # tf-idf function This function computes the terms tf-idf. ## Arguments **x:** a input matrix x of terms counting. ## Value a list with the terms tf-idf and the terms tf-idf in descending order. ## Example ```{r tf-idf example} library(TextForecast) data("news_data") X=as.matrix(news_data[,2:ncol(news_data)]) tf_idf=tf_idf(X) head(tf_idf[[1]]) ``` # optimal alphas function This functions computes the optimal alphas. ## Arguments **x:** A matrix of variables to be selected by shrinkrage methods. **w:** Optional Argument. A matrix or vector of variables that cannot be selected(no shrinkrage). **y:** response variable. **grid_alphas:** a grid of alphas between 0 and 1. **cont_folds:** Set TRUE for contiguous folds used in time depedent data. **family** The glmnet family. ## Value **lambdas_opt:** a vector with the optimal alpha and lambda. ## Example ```{r optimal alphas example} library(TextForecast) set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") X=news_data[,2:ncol(news_data)] x=as.matrix(X) grid_alphas=seq(by=0.05,to=0.95,from=0.05) cont_folds=TRUE t=length(y) optimal_alphas=optimal_alphas(x[1:(t-1),],w[1:(t-1),],y[2:t],grid_alphas,TRUE,"gaussian") print(optimal_alphas) ``` # tv dictionary function This functions selects from $X $ the most predictive terms $X^{\ast} $ using supervised machine learning techniques(Elastic Net). ## Arguments **x:** A matrix of variables to be selected by shrinkrage methods. **w:** Optional Argument. A matrix or vector of variables that cannot be selected(no shrinkrage). **y:** response variable. **alpha:** the alpha required in glmnet. **lambda:** the lambda required in glmnet. **newx:** Matrix that selection will applied. Useful for time series, when we need the observation at time t. **family:** the glmnet family. ## Value $ X_{t}^{\ast}$: a list with the coefficients and a matrix with the most predictive terms. ## Example This example select the most predictive words from the news database. The news database contains the terms counting of the Wall street journal and the New York Times financial news. ```{r tv dictionary example} library(TextForecast) set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") X=news_data[,2:ncol(news_data)] x=as.matrix(X) grid_alphas=seq(by=0.05,to=0.95,from=0.05) cont_folds=TRUE t=length(y) optimal_alphas=optimal_alphas(x=x[1:(t-1),],w=w[1:(t-1),],y=y[2:t],grid_alphas=grid_alphas,cont_folds=TRUE,family="gaussian") x_star=tv_dictionary(x=x[1:(t-1),],w=w[1:(t-1),],y=y[2:t],alpha=optimal_alphas[1],lambda=optimal_alphas[2],newx=x,family="gaussian") optimal_alphas1=optimal_alphas(x=x[1:(t-1),],y=y[2:t],grid_alphas=grid_alphas,cont_folds=TRUE,family="gaussian") x_star1=tv_dictionary(x=x[1:(t-1),],y=y[2:t],alpha=optimal_alphas1[1],lambda=optimal_alphas1[2],newx=x,family="gaussian") ``` # Optimal number of factors function This function computes the optimal number of factors according to @ahn2013eigenvalue. ## Arguments **X:** a input matrix X. **kmax:** the maximum number of factors. ## Value a list with the optimal factors. ## Example ``` {r optimal factor example} library(TextForecast) data("optimal_x") optimal_factor <- TextForecast::optimal_factors(optimal_x,8) head(optimal_factor[[1]]) ``` #Hard thresholding function This function carries out the hard thresholding according to @bai2008forecasting ## Arguments **x:** the input matrix x. **w:** Optional Argument. The optional input matrix w, that cannot be selected. **y:** the response variable. **p_value:** the threshold p-value. **newx:** matrix that selection will applied. Useful for time series, when we need the observation at time t. ## Value the variables less than p-value. ## Example ``` {r hard thresholding example } library(TextForecast) data("stock_data") data("optimal_factors") y=as.matrix(stock_data[,2]) y=as.vector(y) w=as.matrix(stock_data[,3]) pc=as.matrix(optimal_factors) t=length(y) news_factor <- hard_thresholding(w=w[1:(t-1),], x=pc[1:(t-1),],y=y[2:t],p_value = 0.01,newx = pc) ``` # Text Forecast function This functions computes the $h$ step ahead forecast based on textual and/or economic data. ## Arguments **x:** the input matrix x. **y:** the response variable **h:** the forecast horizon **intercept:** TRUE for include intercept in the forecast equation. ## Value The h step ahead forecast ## Example ``` {r Text Forecast Example} library(TextForecast) set.seed(1) data("stock_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("optimal_factors_data") pc=as.matrix(optimal_factors) z=cbind(w,pc) fcsts=text_forecast(z,y,1,TRUE) print(fcsts) ``` # Text Nowcast function This function computes the nowcast h=0. ## Arguments **x:** the input matrix x. **y:** the response variable **intercept:** TRUE for include intercept in the forecast equation. ## Value the nowcast h=0 for the variable y. ## Example ``` {r Text Nowcast Example} library(TextForecast) set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") data("optimal_factors_data") pc=as.matrix(optimal_factors) z=cbind(w,pc) t=length(y) ncsts=text_nowcast(z,y[1:(t-1)],TRUE) print(ncsts) ``` # Top Terms function This function computes the highest k predictive words by using the highest absolute coefficient value. ## Arguments **x:** the input matrix of terms to be selected. **w:** optional argument. the input matrix of structured data to not be selected. **y:** the response variable **alpha:** the glmnet alpha **lambda:** the glmnet lambda **k:** the k top terms **wordcloud:** set TRUE to plot the wordcloud **max.words:** the maximum number of words in the wordcloud **scale:** the wordcloud size. **rot.per:** wordcloud proportion 90 degree terms **family:** glmnet family ## Value the top k terms and the corresponding wordcloud. ## Example ``` {r Top Terms Example} library(TextForecast) set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") X=news_data[,2:ncol(news_data)] x=as.matrix(X) grid_alphas=seq(by=0.05,to=0.95,from=0.05) cont_folds=TRUE t=length(y) optimal_alphas=optimal_alphas(x[1:(t-1),],w[1:(t-1),], y[2:t],grid_alphas,TRUE,"gaussian") top_trms<- top_terms(x[1:(t-1),],w[1:(t-1),],y[2:t],optimal_alphas[[1]], optimal_alphas[[2]],10,TRUE,10,c(2,0.3),.15,"gaussian") ``` # TV sentiment index function ## Arguments **x:** A matrix of variables to be selected by shrinkrage methods. **w:** Optional Argument. A matrix of variables to be selected by shrinkrage methods. **y:** the response variable. **alpha:** the alpha required in glmnet. **lambda:** the lambda required in glmnet. **newx:** Matrix that selection will applied. Useful for time series, when we need the observation at time t. **family:** the glmnet family. **k:** the highest positive and negative coefficients to be used. ## Value The time-varying sentiment index. The index is based on the k word/term counting and is computed using: tv_index=(pos-neg)/(pos+neg). ## Example ``` {r TV sentiment index example} library(TextForecast) set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") X=news_data[,2:ncol(news_data)] x=as.matrix(X) grid_alphas=seq(by=0.05,to=0.95,from=0.05) cont_folds=TRUE t=length(y) optimal_alphas=optimal_alphas(x[1:(t-1),],w[1:(t-1),], y[2:t],grid_alphas,TRUE,"gaussian") tv_index <- tv_sentiment_index(x[1:(t-1),],w[1:(t-1),], y[2:t],optimal_alphas[[1]],optimal_alphas[[2]],x,"gaussian",2) head(tv_index) ``` # TV sentiment index function using all positive and negative coefficients. Unlike the TV sentiment index functions, this function uses all positive and negative coefficiens to compute the index. ## Arguments **x:** A matrix of variables to be selected by shrinkrage methods. **w:** Optional Argument. A matrix of variables to be selected by shrinkrage methods. **y:** the response variable. **alpha:** the alpha required in glmnet. **lambda:** the lambda required in glmnet. **newx:** Matrix that selection will applied. Useful for time series, when we need the observation at time t. **family:** the glmnet family. **k_mov_avg:** The moving average order. **type_mov_avg:** The type of moving average. See \link[pracma]{movavg}. ## Value A list with the net, postive and negative sentiment index. The net time-varying sentiment index. The index is based on the word/term counting and is computed using: tv_index=(pos-neg)/(pos+neg). The postive sentiment index is computed using: tv_index_pos=pos/(pos+neg) and the negative tv_index_neg=neg/(pos+neg). ## Example ```{r TV sentiment index all coefs example} set.seed(1) data("stock_data") data("news_data") y=as.matrix(stock_data[,2]) w=as.matrix(stock_data[,3]) data("news_data") X=news_data[,2:ncol(news_data)] x=as.matrix(X) grid_alphas=0.15 cont_folds=TRUE t=length(y) optimal_alphas=optimal_alphas(x=x[1:(t-1),], y=y[2:t],grid_alphas=grid_alphas,cont_folds=TRUE,family="gaussian") tv_idx=tv_sentiment_index_all_coefs(x=x[1:(t-1),],y=y[2:t],alpha = optimal_alphas[1],lambda = optimal_alphas[2],newx=x, scaled = TRUE,k_mov_avg = 4,type_mov_avg = "s") ``` # References {-}