%\VignetteIndexEntry{Stationary Time Series} %\VignetteKeywords{LaTeX,HTML,table} %\VignettePackage{TSTutorial} %************************************************************************** \documentclass[a4paper]{article} \usepackage{graphicx} \usepackage[colorlinks=true,urlcolor=blue]{hyperref} \usepackage{color} \usepackage{Sweave} \setkeys{Gin}{width=0.7\textwidth} <>= library(TSTutorial) data(AirBcn) data(Victimes) data(Turismes) @ \begin{document} \title{Stationary Time Series} \author{Alberto Lopez Moreno} \date{ \texttt{TSTutorial} version \texttt{{1.2.4}} } \maketitle A Time Series is stationary if has the following conditions: \begin{enumerate} \item Constant $\mu$ (mean) for all \texttt{t}. \item Constant $\sigma$ (variance) for all \texttt{t}. \item The autocovariance function between $X_{t_{1}}$ and $X_{t_{2}}$ only depends on the interval $t_{1}$ and $t_{2}$. \end{enumerate} In the following graphic you can observe the typical form of an stationary time series, commonly known as white noise. \begin{center} <>= series=diff(diff(log(AirBcn),12)) ts.plot(series,main="Stationary") @ \end{center} Below shows some examples of the different types of series that can exists and that it can be transformed to obtain an stationary series. \newpage \begin{enumerate} \item{Nonconstant variance series (Heterocedasticity)} \begin{center} <>= series=diff(diff(AirBcn,12))/100 ts.plot(series,main="Nonconstant variance") @ \end{center} \item{Nonconstant mean series (trend)} \begin{center} <>= series=1:300 ts.plot(series,main="Nonconstant mean") @ \end{center} \newpage \item{Seasonal component series} \begin{center} <>= series=Turismes ts.plot(series,main="Seasonal component") @ \end{center} \item{Nonconstant mean and variance series} \begin{center} <>= series=(1:300)^2 ts.plot(series,main="Nonconstant mean and variance") @ \end{center} \newpage \item{Nonconstant variance and seasonal component series} \begin{center} <>= series=Victimes ts.plot(series,main="Nonconstant variance and seasonal component") @ \end{center} \item{Nonconstant mean and seasonal component series} \begin{center} <>= series=log(AirBcn) ts.plot(series,main="Nonconstant mean and seasonal component") @ \end{center} \newpage \item{Nonconstant mean and variance, and seasonal component series} \begin{center} <>= series=AirBcn ts.plot(series,main="Nonconstant mean and variance, and seasonal comp.") @ \end{center} \end{enumerate} \end{document}