## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------------ # install.packages('TGS') ## ----setup-------------------------------------------------------------------- library(TGS) ## ---- eval = FALSE------------------------------------------------------------ # ## Assign absolute path to the input directory. # input_dir <- '/home/saptarshi/datasets' ## ---- eval = FALSE------------------------------------------------------------ # ## Assign the name of the desired output directory. # ## The output directory will be created automatically. # output_dir <- '/home/saptarshi/My_TGS_output' # # ## Run algorithm 'TGS'. # ## It is assumed that your data is continuous. # ## In case, your data is discrete, simply # ## make the following changes: # ## (a) is.discrete = TRUE, # ## (b) num.discr.levels = , # ## (c) discr.algo = ''. # ## # TGS::LearnTgs( # isfile = 0, # json.file = '', # input.dirname = input_dir, # input.data.filename = 'input_data_10.tsv', # num.timepts = 21, # true.net.filename = '', # input.wt.data.filename = '', # is.discrete = FALSE, # num.discr.levels = 2, # discr.algo = 'discretizeData.2L.Tesla', # mi.estimator = 'mi.pca.cmi', # apply.aracne = FALSE, # clr.algo = 'CLR', # max.fanin = 14, # allow.self.loop = TRUE, # scoring.func = 'BIC', # output.dirname = output_dir # ) ## ---- eval = FALSE------------------------------------------------------------ # ## Assign the name of the desired output directory. # ## The output directory will be created automatically. # output_dir <- '/home/saptarshi/My_TGS_plus_output' # # ## Run algorithm 'TGS' # TGS::LearnTgs( # isfile = 0, # json.file = '', # input.dirname = input_dir, # input.data.filename = 'input_data_10.tsv', # num.timepts = 21, # true.net.filename = '', # input.wt.data.filename = '', # is.discrete = FALSE, # num.discr.levels = 2, # discr.algo = 'discretizeData.2L.Tesla', # mi.estimator = 'mi.pca.cmi', # apply.aracne = TRUE, # clr.algo = 'CLR', # max.fanin = 14, # allow.self.loop = TRUE, # scoring.func = 'BIC', # output.dirname = output_dir # ) ## ---- eval = FALSE------------------------------------------------------------ # ## Loads a list named 'unrolled.DBN.adj.matrix.list' # load('unrolled.DBN.adj.matrix.list.RData') ## ---- eval = FALSE------------------------------------------------------------ # print(unrolled.DBN.adj.matrix.list[[7]])