## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----test best strat---------------------------------------------------------- ## increase the randomization_number to at least 1000 to have ## better results ## our analysis parameters: tad_analysis_parameter <- list( weights = TAD::AB[, c(5:102)], weights_factor = TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")], trait_data = log(TAD::trait[["SLA"]]), aggregation_factor_name = c("Year", "Bloc"), statistics_factor_name = c("Treatment"), regenerate_abundance_df = TRUE, regenerate_weighted_moments_df = TRUE, regenerate_stat_per_obs_df = TRUE, regenerate_stat_per_rand_df = TRUE, seed = 1312, significativity_threshold = c(0.05, 0.95) ) ## We will try different strategies, with different number of randomisations ## with a fixed number of weights (98) strategies <- list( sequencial = future::sequential, multisession = future::multisession ) results_string <- list() ## We run the TAD with 10 and then with 1000 randomisations, with ## multiprocessing and without multiprocessing to see the difference for (randomization_number in c(10, 1000)) { tad_analysis_parameter$randomization_number <- randomization_number for (strat in names(strategies)) { ## We set the strategy future::plan(strategies[[strat]]) time_before <- proc.time()[[1]] do.call(TAD::launch_analysis_tad, tad_analysis_parameter) ellapsed_time <- proc.time()[[1]] - time_before results_string[[length(results_string) + 1]] <- sprintf( "[%s rand - %12s] The TAD Analysis took %s seconds.", as.character(randomization_number), as.character(strat), as.character(ellapsed_time) ) } ## Always reset the strategy to sequential after your processing future::plan(future::sequential) } cat(paste(results_string, collapse = "\n"), "\n")