## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval=FALSE-------------------------------------------------------------- # data("mortgage") ## ----------------------------------------------------------------------------- fm <- deny ~ black + p_irat + hse_inc + ccred + mcred + pubrec + ltv_med + ltv_high + denpmi + selfemp + single + hischl ## ---- eval=FALSE-------------------------------------------------------------- # test <- spe(fm = fm, data = mortgage, var = "black", method = "logit", # us = c(2:98)/100, b = 200, bc = TRUE) ## ---- eval=FALSE-------------------------------------------------------------- # plot(x = test, ylim = c(0, 0.25), ylab = "Change in Probability", # main = "APE and SPE of Being Black on the prob of Mortgage Denial", # sub = "Logit Model") ## ---- eval=FALSE-------------------------------------------------------------- # t <- c("deny", "p_irat", "black", "hse_inc", "ccred", "mcred", "pubrec", # "denpmi", "selfemp", "single", "hischl", "ltv_med", "ltv_high") ## ---- eval=FALSE-------------------------------------------------------------- # CA <- ca(fm = fm, data = mortgage, var = "black", method = "logit", # cl = "both", t = t, b = 200, bc = TRUE) ## ---- eval=FALSE-------------------------------------------------------------- # summary(CA) ## ---- eval=FALSE-------------------------------------------------------------- # CAdiff <- ca(fm = fm, data = mortgage, var = "black", t = t, # method = "logit", cl = "diff", b = 200, bc = TRUE) # # Tabulate the results # summary(CAdiff) ## ---- eval=FALSE-------------------------------------------------------------- # data(wage2015) ## ---- eval=FALSE-------------------------------------------------------------- # <>= # fmla1 <- lnw ~ female* (widowed + divorced + separated + nevermarried + # exp1 + exp2 + exp3 + exp4 + educ + occ2 + ind2 + # mw + so + we) ## ---- eval=FALSE-------------------------------------------------------------- # set <- subpop(fm = fmla0, data = wage2015, var = "female", # samp_weight = wage2015$weight, boot_type = "weighted", # b = 500, subgroup = wage2015[,"female"]==1, u = 0.05) # # plot(set, varx = wage2015$exp1, vary = wage2015$lnw, # main = "Projections of Exp-lnw", sub = "OLS", xlab = "Exp", # ylab = "Log Wages") # # plot(set, varx = wage2015$exp1, vary =wage2015$ms, # main = "Projections of Exp-MS", sub = "OLS", xlab = "Exp", # ylab = "Marital Status")