## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 4, fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(SCOUTer) ## ----pcamb-------------------------------------------------------------------- X <- as.matrix(X) pcamodel_ref <- pcamb_classic(X, 2, 0.05, "cent") ## ----pcame-------------------------------------------------------------------- pcax <- pcame(X, pcamodel_ref) ## ----dscplot_ref, fig.cap="Distance plot (left) and score plot (right) of the reference data and PCA model.", fig.dim = c(6, 3)---- dscplot(X, pcamodel_ref) ## ----dscplot_ref_vertical, fig.cap="Distance plot (left) and score plot (right) of the reference data and PCA model with vertical layout.", fig.dim = c(3, 5.5)---- dscplot(X, pcamodel_ref, nrow = 2, ncol = 1) ## ----distplot_ref, fig.cap="Distance plot of the reference data and PCA model.", fig.dim = c(3, 3)---- distplot(X, pcamodel_ref) ## ----obscontrib, fig.cap="Contribution panel for _SPE_ and _T^2^_ values.", fig.dim = c(9, 2), fig.fullwidth = TRUE---- obscontribpanel(pcax, pcamodel_ref, which.max(pcax$SPE)) ## ----barplot1, fig.cap="Bar plot with the _SPE_ value of an observation (bar) and the UCL according to the PCA model (red line)", fig.dim = c(1, 1.5)---- # Display SPE of the first observation barwithucl(pcax$SPE, 1, pcamodel_ref$limspe, plotname = "SPE") ## ----barplot2, fig.cap="Bar plot with the contributions of each variable (error vector, *e*) to the _SPE_ value", fig.dim = c(2, 2)---- # Display contributions to the SPE of the same observation custombar(pcax$E, 1, plotname = "Contributions to SPE") ## ----scout_x_simple----------------------------------------------------------- set.seed(1218) # ensure always the same result indsel <- sample(1:nrow(X), 1) x <- t(as.matrix(X[indsel,])) x.out <- scout(x, pcamodel_ref, T2.y = 40, SPE.y = 40, mode = "simple") ## ----scout_X_simple----------------------------------------------------------- n <- nrow(X) X.T2.40 <- scout(X, pcamodel_ref, T2.y = matrix(40, n, 1), mode = "simple") ## ----dcsplot_X_simple, fig.cap="Distance plot (left) and score plot (right) of the data simulated with simple mode.", fig.dim = c(6, 3)---- X.all <- rbind(X, X.T2.40$X) tag.all <- dotag(X, X.T2.40$X) dscplot(X.all, pcamodel_ref, obstag = tag.all) ## ----scout_x_steps, fig.cap="Distance plot (left) and score plot (right) of the data simulated with steps mode.", fig.dim = c(6, 3)---- x.out.steps <- scout(x, pcamodel_ref, T2.y = 40, SPE.y = 40, nsteps = 10, mode = "steps") x.all <- rbind(x, x.out.steps$X) tag.all <- dotag(x, x.out.steps$X) dscplot(x.all, pcamodel_ref, obstag = tag.all) ## ----scout_x_grid, fig.cap="Distance plot (left) and score plot (right) of the data simulated with grid mode.", fig.dim = c(6, 3)---- x.out.grid <- scout(x, pcamodel_ref, T2.y = 40, SPE.y = 40, nsteps.spe = 2, nsteps.t2 = 3, gspe = 3, gt2 =0.3, mode = "grid") x.all <- rbind(x, x.out.grid$X) tag.all <- dotag(x, x.out.grid$X) dscplot(x.all, pcamodel_ref, obstag = tag.all)