## ----setup, include = FALSE--------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/MedicineBiBMA/fit.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png") if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } ## ----include = FALSE---------------------------------------------------------- library(RoBMA) # we pre-load the RoBMA models, the fitting time is around 2-5 minutes fit <- readRDS(file = "../models/MedicineBiBMA/fit.RDS") ## ----include = FALSE, eval = FALSE-------------------------------------------- # # R package version updating # library(RoBMA) # # data("Poulsen2006", package = "RoBMA") # # # p. 73 in https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD007094.pub5/epdf/full # events_experimental <- c(5, 2) # events_control <- c(0, 0) # observations_experimental <- c(35, 40) # observations_control <- c(39, 40) # study_names <- c("Paul 2007", "Shadkam 2010") # # # domain specific prior distributions: Acute Respiratory Infections # fit <- BiBMA( # x1 = events_experimental, # x2 = events_control, # n1 = observations_experimental, # n2 = observations_control, # study_names = study_names, # priors_effect = prior_informed("Acute Respiratory Infections", type = "logOR", parameter = "effect"), # priors_heterogeneity = prior_informed("Acute Respiratory Infections", type = "logOR", parameter = "heterogeneity"), # seed = 1 # ) # # saveRDS(fit, file = "../models/MedicineBiBMA/fit.RDS") ## ----------------------------------------------------------------------------- library(RoBMA) events_experimental <- c(5, 2) events_control <- c(0, 0) observations_experimental <- c(35, 40) observations_control <- c(39, 40) study_names <- c("Paul 2007", "Shadkam 2010") ## ----------------------------------------------------------------------------- summary(fit, conditional = TRUE, output_scale = "OR") ## ----fig_mu_BMA, dpi = 300, fig.width = 6, fig.height = 4, out.width = "75%", fig.align = "center"---- plot(fit, parameter = "mu", prior = TRUE, conditional = TRUE)