## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) #https://github.com/rstudio/rmarkdown/issues/1268 has to move project rmd_knit_tem ## ----eval=FALSE--------------------------------------------------------------- # # the development version from GitHub: # # install.packages("devtools") # devtools::install_github("moggces/Rcurvep") # devtools::install_github("moggces/Rcurvep", dependencies = TRUE, build_vignettes = TRUE) ## ----setup-------------------------------------------------------------------- library(Rcurvep) ## ----------------------------------------------------------------------------- # More details of the dataset can be found ?zfishdev. data(zfishdev) str(zfishdev) ## ----------------------------------------------------------------------------- curvep_defaults() #For details of parameters, see ?curvep. ## ----------------------------------------------------------------------------- identical( combi_run_rcurvep(zfishdev, RNGE = 1000000), combi_run_rcurvep(create_dataset(zfishdev), RNGE = 1000000) ) ## ----------------------------------------------------------------------------- out <- combi_run_rcurvep( zfishdev, TRSH = 25, # BMR = 25 RNGE = 1000000 # increasing direction ) out out$config ## ----------------------------------------------------------------------------- sum_out <- summarize_rcurvep_output(out) sum_out ## ----------------------------------------------------------------------------- set.seed(300) out <- combi_run_rcurvep( zfishdev, n_samples = 10, # often 1000 samples are preferred TRSH = 25, RNGE = 1000000, keep_sets = "act_set" ) sum_out <- summarize_rcurvep_output(out) sum_out ## ----eval = FALSE------------------------------------------------------------- # # The combi_run_rcurvep() can be used for a combination of Curvep parameters. # # finishing the code will take some time. # # set.seed(300) # data(zfishdev_all) # # zfishdev_act <- combi_run_rcurvep( # # zfishdev_all, # n_samples = 100, # keep_sets = c("act_set"), # TRSH = seq(5, 95, by = 5), # test all candidates, 5 to 95 # RNGE = 1000000, # CARR = 20 # ) # ## ----------------------------------------------------------------------------- data(zfishdev_act) bmr_out <- estimate_dataset_bmr(zfishdev_act, plot = FALSE) bmr_out$outcome ## ----message=FALSE, warning = FALSE, fig.align = "center", fig.width = 6------ plot(bmr_out) ## ----------------------------------------------------------------------------- # set the preferred direction as increasing hill_pdir = 1 # this is to use the 3-parameter hill fitd1 <- run_fit(create_dataset(zfishdev), hill_pdir = 1, modls = "hill") fitd1 # can also use the curve class2 4-parameter hill with classification SD as 5% # please ?fit_cc2_modl to understand curve classification fitd2 <- run_fit(create_dataset(zfishdev), cc2_classSD = 5, modls = "cc2") fitd2 ## ----------------------------------------------------------------------------- # thr_resp will get BMC10% and perc_resp will get EC20% # hill with 3-parameter fitd_sum_out1 <- summarize_fit_output(fitd1, thr_resp = 10, perc_resp = 20, extract_only = TRUE) # cc2 (hill with 4-parameter + curve classification) fitd_sum_out2 <- summarize_fit_output(fitd2, thr_resp = 10, perc_resp = 20, extract_only = TRUE) ## ----------------------------------------------------------------------------- #EC20% concordance (when both methods provide values) cor(fitd_sum_out1$result$act_set$ECxx, fitd_sum_out2$result$act_set$ECxx, use = "pairwise.complete.obs") #BMC10% (when both methods provide values) cor(fitd_sum_out1$result$act_set$POD, fitd_sum_out2$result$act_set$POD, use = "pairwise.complete.obs") #EC50 (when both methods provide values) cor(fitd_sum_out1$result$act_set$EC50, fitd_sum_out2$result$act_set$EC50, use = "pairwise.complete.obs") # check number of curves consider as active by both sum(fitd_sum_out1$result$act_set$hit == 0) # no fit sum(fitd_sum_out2$result$act_set$hit == 4) # cc2 = 4 (inactive) ## ----------------------------------------------------------------------------- fitd <- run_fit(create_dataset(zfishdev), hill_pdir = 1, n_samples = 10, modls = "hill")